



Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 64MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT                           |
| Number of I/O              | 36                                                                         |
| Program Memory Size        | 128KB (64K x 16)                                                           |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 1K x 8                                                                     |
| RAM Size                   | 8K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                                |
| Data Converters            | A/D 35x12b; D/A 1x5b                                                       |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 44-VQFN Exposed Pad                                                        |
| Supplier Device Package    | 44-QFN (8x8)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k42-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### Analog Peripherals

- Analog-to-Digital Converter with Computation (ADC<sup>2</sup>):
  - 12-bit with up to 35 external channels
  - Automated post-processing
  - Automated math functions on input signals: averaging, filter calculations, oversampling and threshold comparison
  - Operates in Sleep
  - Integrated charge pump for improved lowvoltage operation
- Hardware Capacitive Voltage Divider (CVD):
  - Automates touch sampling and reduces software size and CPU usage when touch or
  - software size and CPU usage when touch or proximity sensing is required
  - Adjustable sample and hold capacitor array
  - Two guard ring output drives
- Temperature Sensor
  - Internal connection to ADC
  - Can be calibrated for improved accuracy
- Two Comparators:
  - Low-Power/High-Speed mode
  - Fixed Voltage Reference at noninverting input(s)
  - Comparator outputs externally accessible
- 5-bit Digital-to-Analog Converter (DAC):
  - 5-bit resolution, rail-to-rail
  - Positive Reference Selection
  - Unbuffered I/O pin output
  - Internal connections to ADCs and comparators
- Voltage Reference
  - Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels

### **Flexible Oscillator Structure**

- High-Precision Internal Oscillator
  - Selectable frequency range up to 64 MHz
    ±1% at calibration (nominal)
- Low-Power Internal 32 kHz Oscillator (LFINTOSC)
- External 32 kHz Crystal Oscillator (SOSC)
- External Oscillator Block with:
  - x4 PLL with external sources
  - Three crystal/resonator modes up to 20 MHz
- Three external clock modes up to 20 MHz
- Fail-Safe Clock Monitor
- Oscillator Start-up Timer (OST)
   Ensures stability of crystal oscillator sources

| Ρ            |
|--------------|
| C            |
| Ľ            |
| $\infty$     |
| F            |
| ) <b>F</b>   |
| Ň            |
| 6            |
| 12           |
| 7            |
| 4            |
| ζī           |
| 4            |
| Ō            |
| 4            |
| 7            |
| 5            |
| হ            |
| 5            |
| 6            |
| S            |
| 7            |
| $\mathbf{x}$ |
| 5            |

| 0/1                | 28-Pin SPDIP/SOIC/SSOP | 28-Pin (U)QFN | ADC              | Voltage Reference | DAC               | Comparators    | Zero Cross Detect | l²c                          | SPI                 | UART                                       | WSD              | Timers/SMT                                                                                   | CCP and PWM                                                              | CWG                                                                                    | CLC                                      | NCO | Clock Reference (CLKR) | Interrupt-on-Change | Basic       |
|--------------------|------------------------|---------------|------------------|-------------------|-------------------|----------------|-------------------|------------------------------|---------------------|--------------------------------------------|------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|-----|------------------------|---------------------|-------------|
| RC0                | 11                     | 8             | ANC0             | _                 | _                 | _              |                   | —                            | _                   |                                            | I                | T1CKI <sup>(1)</sup><br>T3CKI <sup>(1)</sup><br>T3G <sup>(1)</sup><br>SMTWIN1 <sup>(1)</sup> | _                                                                        | I                                                                                      | _                                        | _   |                        | IOCC0               | SOSCO       |
| RC1                | 12                     | 9             | ANC1             | -                 | -                 | -              | _                 | _                            | _                   | _                                          | _                | SMTSIG1 <sup>(1)</sup>                                                                       | CCP2 <sup>(1)</sup>                                                      | _                                                                                      | -                                        | _   | _                      | IOCC1               | SOSCI       |
| RC2                | 13                     | 10            | ANC2             | -                 | _                 | -              | —                 | _                            | _                   | _                                          | _                | T5CKI <sup>(1)</sup>                                                                         | CCP1 <sup>(1)</sup>                                                      | _                                                                                      | _                                        | _   | _                      | IOCC2               | _           |
| RC3                | 14                     | 11            | ANC3             | -                 | _                 | -              | _                 | SCL1 <sup>(3,4)</sup>        | SCK1 <sup>(1)</sup> | _                                          | _                | T2IN <sup>(1)</sup>                                                                          | -                                                                        | _                                                                                      | _                                        | _   | -                      | IOCC3               | -           |
| RC4                | 15                     | 12            | ANC4             | —                 | _                 | —              | _                 | SDA1 <sup>(3,4)</sup>        | SDI1 <sup>(1)</sup> | —                                          | _                | —                                                                                            | -                                                                        | _                                                                                      | _                                        | _   | —                      | IOCC4               | _           |
| RC5                | 16                     | 13            | ANC5             | —                 | —                 | —              | _                 | —                            | —                   | —                                          | _                | T4IN <sup>(1)</sup>                                                                          | —                                                                        | _                                                                                      | _                                        | —   | _                      | IOCC5               | _           |
| RC6                | 17                     | 14            | ANC6             | —                 | —                 | —              | —                 | —                            | —                   | CTS1 <sup>(1)</sup>                        | _                | —                                                                                            | —                                                                        | _                                                                                      | _                                        | —   | —                      | IOCC6               | _           |
| RC7                | 18                     | 15            | ANC7             | _                 | —                 | _              | _                 | —                            | —                   | RX1 <sup>(1)</sup>                         | -                |                                                                                              | -                                                                        | _                                                                                      | _                                        | —   | _                      | IOCC7               |             |
| RE3                | 1                      | 26            | -                | -                 | -                 | -              | —                 | —                            | —                   | —                                          | —                | —                                                                                            | —                                                                        | -                                                                                      | —                                        | -   | —                      | IOCE3               | MCLR<br>VPP |
| Vdd                | 20                     | 17            | _                | -                 | _                 | -              | _                 | _                            | _                   | _                                          | _                | _                                                                                            | -                                                                        | _                                                                                      | _                                        | _   | -                      | —                   | _           |
| Vss                | 8,<br>19               | 5,<br>16      | —                | —                 | —                 | —              |                   | —                            | —                   | -                                          | —                | —                                                                                            | —                                                                        | _                                                                                      | —                                        | —   | -                      | -                   | —           |
| OUT <sup>(2)</sup> | _                      |               | ADGRDA<br>ADGRDB |                   | _                 | C1OUT<br>C2OUT | _                 | SDA1<br>SCL1<br>SDA2<br>SCL2 | SS1<br>SCK1<br>SDO1 | DTR1<br>RTS1<br>TX1<br>DTR2<br>RTS2<br>TX2 | DSM              | TMR0                                                                                         | CCP1<br>CCP2<br>CCP3<br>CCP4<br>PWM5OUT<br>PWM6OUT<br>PWM7OUT<br>PWM8OUT | CWG1A<br>CWG1B<br>CWG1C<br>CWG1D<br>CWG2A<br>CWG2B<br>CWG2C<br>CWG2D<br>CWG3A<br>CWG3B | CLC10UT<br>CLC20UT<br>CLC30UT<br>CLC40UT | NCO | CLKR                   | _                   | _           |
| Note               | 1:                     | This          | s is a PPS rem   | nappable inr      | out signal. The i | input functio  | on may            | be moved fro                 | m the default       | location show                              | vn to one of sev | eral other PORT                                                                              | ( pins                                                                   |                                                                                        |                                          | 1   |                        |                     |             |

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F2XK42) (CONTINUED)

1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All output signals shown in this row are PPS remappable.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. These pins can be configured for I<sup>2</sup>C and SMB™ 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I<sup>2</sup>C specific or SMBUs input buffer thresholds. 4:

3:

|  | Ĭ                       |
|--|-------------------------|
|  | <b>O</b>                |
|  | <b>_</b>                |
|  | $\mathbf{\omega}$       |
|  | $\tilde{}$              |
|  |                         |
|  | $\leq$                  |
|  | <u> </u>                |
|  | N                       |
|  | Q                       |
|  |                         |
|  |                         |
|  | -                       |
|  | 4                       |
|  | S                       |
|  | ~                       |
|  | #                       |
|  | 2                       |
|  | 4                       |
|  | $\overline{\mathbf{N}}$ |
|  |                         |
|  | <b>S</b>                |
|  | S                       |
|  | G                       |
|  | ö                       |
|  | ~                       |
|  | S                       |
|  | 7                       |
|  | X                       |
|  | 4                       |
|  | $\overline{\mathbf{N}}$ |
|  |                         |

# © 2016-2017 Microchip Technology Inc.

Note

| Q                  | 48-Pin TQFP | 48-Pin UQFN | ADC              | Voltage Reference | DAC | Comparators    | Zero Cross Detect | I <sup>2</sup> C             | IdS                 | UART                                       | WSQ | Timers/SMT | CCP and PWM                                                              | CWG                                                                                             | CLC                                      | NCO | Clock Reference (CLKR) | Interrupt-on-Change | Basic |
|--------------------|-------------|-------------|------------------|-------------------|-----|----------------|-------------------|------------------------------|---------------------|--------------------------------------------|-----|------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------|-----|------------------------|---------------------|-------|
| VDD                | 7,<br>30    | 7,<br>30    | -                | —                 | —   | -              | -                 | —                            | -                   | -                                          | —   | _          | _                                                                        | —                                                                                               | -                                        | -   | —                      | —                   | —     |
| Vss                | 6,<br>31    | 6,<br>31    | -                | -                 | -   | -              | -                 | _                            | -                   | -                                          | -   | -          | -                                                                        | _                                                                                               | -                                        | -   | _                      | -                   | -     |
| OUT <sup>(2)</sup> | -           | _           | ADGRDA<br>ADGRDB | _                 | _   | C1OUT<br>C2OUT |                   | SDA1<br>SCL1<br>SDA2<br>SCL2 | SS1<br>SCK1<br>SDO1 | DTR1<br>RTS1<br>TX1<br>DTR2<br>RTS2<br>TX2 | DSM | TMR0       | CCP1<br>CCP2<br>CCP3<br>CCP4<br>PWM50UT<br>PWM60UT<br>PWM70UT<br>PWM80UT | CWG1A<br>CWG1B<br>CWG1C<br>CWG1D<br>CWG2A<br>CWG2A<br>CWG2C<br>CWG2D<br>CWG3A<br>CWG3B<br>CWG3D | CLC10UT<br>CLC20UT<br>CLC30UT<br>CLC40UT | NCO | CLKR                   | _                   | _     |

1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All output signals shown in this row are PPS remappable.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins can be configured for I<sup>2</sup>C and SMB<sup>™</sup> 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4/RD0/RD1 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I<sup>2</sup>C specific or SMBus input buffer thresholds.

### TABLE 3: 48-PIN ALLOCATION TABLE FOR PIC18(L)F5XK42 (CONTINUED)



### 4.2.5.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 4-4) contains the Stack Pointer value. The STKOVF (Stack Overflow) Status bit and the STKUNF (Stack Underflow) Status bit can be accessed using the PCON0 register. The value of the Stack Pointer can be 0 through 31. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for stack maintenance. After the PC is pushed onto the stack 32 times (without popping any values off the stack), the STKOVF bit is set. The STKOVF bit is cleared by software or by a POR. The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to Section 5.1 "Configuration Words" for a description of the device Configuration bits.)

If STVREN is set (default), a Reset will be generated and a Stack Overflow will be indicated by the STKOVF bit when the 32nd push is initiated. This includes CALL and CALLW instructions, as well as stacking the return address during an interrupt response. The STKOVF bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKOVF bit will be set on the 32nd push and the Stack Pointer will remain at 31 but no Reset will occur. Any additional pushes will overwrite the 31<sup>st</sup> push but the STKPTR will remain at 31.

Setting STKOVF = 1 in software will change the bit, but will not generate a Reset.

The STKUNF bit is set when a stack pop returns a value of zero. The STKUNF bit is cleared by software or by POR. The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to Section 5.1 "Configuration Words" for a description of the device Configuration bits).

If STVREN is set (default) and the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC, it will set the STKUNF bit and a Reset will be generated. This condition can be generated by the RETURN, RETLW and RETFIE instructions.

When STVREN = 0, STKUNF will be set but no Reset will occur.

| Note: | Returning a value of zero to the PC on an |
|-------|-------------------------------------------|
|       | undernow has the effect of vectoring the  |
|       | program to the Reset vector, where the    |
|       | stack conditions can be verified and      |
|       | appropriate actions can be taken. This is |
|       | not the same as a Reset, as the contents  |
|       | of the SFRs are not affected.             |

### 4.2.5.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

| REGISTER 5                | -3: CONFIG                                                                                                                                                                                            | <b>URATION W</b>                                                                                                                                                                                                                                       | ORD 2L (30                                                                                                                                                                 | 0002h)                                                                                                                                 |                                                                     |                                                     |                  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|------------------|
| R/W-1                     | R/W-1                                                                                                                                                                                                 | R/W-1                                                                                                                                                                                                                                                  | R/W-1                                                                                                                                                                      | R/W-1                                                                                                                                  | R/W-1                                                               | R/W-1                                               | R/W-1            |
| BORE                      | EN<1:0>                                                                                                                                                                                               | LPBOREN                                                                                                                                                                                                                                                | IVT1WAY                                                                                                                                                                    | MVECEN                                                                                                                                 | PWRT                                                                | <sup>-</sup> S<1:0>                                 | MCLRE            |
| bit 7                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                        |                                                                     |                                                     | bit 0            |
|                           |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                        |                                                                     |                                                     |                  |
| Legend:                   |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                        |                                                                     |                                                     |                  |
| R = Readable              | bit                                                                                                                                                                                                   | W = Writable                                                                                                                                                                                                                                           | bit                                                                                                                                                                        | U = Unimpler                                                                                                                           | mented bit, rea                                                     | ad as '1'                                           |                  |
| -n = Value for            | blank device                                                                                                                                                                                          | '1' = Bit is set                                                                                                                                                                                                                                       |                                                                                                                                                                            | '0' = Bit is cle                                                                                                                       | ared                                                                | x = Bit is unk                                      | nown             |
| bit 7-6<br>bit 5<br>bit 4 | BOREN<1:0>:<br>When enabled<br>11 = Brown-ou<br>01 = Brown-ou<br>00 = Brown-ou<br><b>LPBOREN</b> : Lo<br>1 = Low-Powe<br>0 = Low-Powe<br><b>IVT1WAY</b> : IVTI<br>1 = IVTLOCK<br>cycle<br>0 = IVTLOCK | Brown-out Res<br>, Brown-out Rest<br>at Reset is enabled<br>at Reset is enabled<br>at Reset is enabled<br>at Reset is disabled<br>at Reset is disabled<br>aw-Power BOR<br>ar BOR is disabled<br>ar BOR is enabled<br>LOCK bit One-1<br>ED bit can be s | set Enable bit<br>set Voltage (\<br>bled, SBOREI<br>bled while run<br>bled according<br>bled<br>Enable bit<br>led<br>ed<br>Way Set Enat<br>leared and se<br>et and cleared | s<br>/BOR) is set by<br>N bit is ignored<br>ning, disabled<br>g to SBOREN<br>ble bit<br>t only once; IV <sup>-</sup><br>multiple times | the BORV bit<br>in Sleep; SBC<br>Γ registers ren<br>(subject to the | DREN is ignore<br>nain locked afte<br>unlock sequen | er one clear/set |
| bit 3                     | MVECEN: Mul<br>1 = Multi-vecto<br>0 = Legacy int                                                                                                                                                      | ti-vector Enable<br>or enabled; Vec<br>errupt behavior                                                                                                                                                                                                 | e bit<br>stor table used<br>r                                                                                                                                              | d for interrupts                                                                                                                       |                                                                     |                                                     |                  |
| bit 2-1<br>bit 0          | <b>PWRTS&lt;1:0&gt;:</b><br>11 = PWRT is<br>10 = PWRT se<br>01 = PWRT se<br>00 = PWRT se<br><b>MCLRE:</b> Maste<br>If LVP = 1:<br>RE3 pin function<br>If LVP = 0:<br>1 = MCLR pin<br>0 = MCLR pin     | Power-up Time<br>disabled<br>et at 64 ms (204<br>et at 16 ms (512<br>et at 1 ms (32 Li<br>er Clear (MCLR<br>on is MCLR<br>is MCLR<br>function is a po                                                                                                  | er Selection b<br>8 LFINTOSC<br>2 LFINTOSC (<br>FINTOSC Cyc<br>7) Enable bit                                                                                               | its<br>Cycles)<br>Cycles)<br>cles)<br>nction                                                                                           |                                                                     |                                                     |                  |

| U-1                                                                                  | U-1 | U-1 | U-1 | U-1 | U-1 | U-1 | R/W-1 |  |  |  |
|--------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-------|--|--|--|
| _                                                                                    | _   | _   | -   | _   | —   | _   | CP    |  |  |  |
| bit 7                                                                                |     |     |     |     |     | •   | bit 0 |  |  |  |
|                                                                                      |     |     |     |     |     |     |       |  |  |  |
| Legend:                                                                              |     |     |     |     |     |     |       |  |  |  |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '1'                 |     |     |     |     |     |     |       |  |  |  |
| -n = Value for blank device '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |     |     |     |     |     |     |       |  |  |  |

### REGISTER 5-9: CONFIGURATION WORD 5L (30 0008h)

### bit 7-1 Unimplemented: Read as '1'

bit 0

CP: User Program Flash Memory and Data EEPROM Code Protection bit

1 = User Program Flash Memory and Data EEPROM code protection is disabled

0 = User Program Flash Memory and Data EEPROM code protection is enabled

### REGISTER 5-10: CONFIGURATION WORD 5H (30 0009h)

| U-1   | U-1 | U-1 | U-1 | U-1 | U-1 | U-1 | U-1   |
|-------|-----|-----|-----|-----|-----|-----|-------|
| —     | —   | _   | _   | _   | _   | _   | _     |
| bit 7 |     |     |     |     |     |     | bit 0 |
|       |     |     |     |     |     |     |       |

| Legend:                     |                  |                             |                    |
|-----------------------------|------------------|-----------------------------|--------------------|
| R = Readable bit            | W = Writable bit | U = Unimplemented bit, read | d as '1'           |
| -n = Value for blank device | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-0 Unimplemented: Read as '1'

### TABLE 5-2:SUMMARY OF CONFIGURATION WORDS

| Address  | Name     | Bit 7  | Bit 6  | Bit 5      | Bit 4      | Bit 3   | Bit 2        | Bit 1           | Bit 0 | Default/<br>Unprogrammed<br>Value |
|----------|----------|--------|--------|------------|------------|---------|--------------|-----------------|-------|-----------------------------------|
| 30 0000h | CONFIG1L | _      | l      | RSTOSC<2:0 | >          |         | FEXTOSC<2:0> |                 |       | 1111 1111                         |
| 30 0001h | CONFIG1H | _      | _      | FCMEN      | _          | CSWEN   |              | PR1WAY CLKOUTEN |       | 1111 1111                         |
| 30 0002h | CONFIG2L | BORE   | N<1:0> | LPBOREN    | IVT1WAY    | MVECEN  | PWRT         | S<1:0> MCLRE    |       | 1111 1111                         |
| 30 0003h | CONFIG2H | XINST  | —      | DEBUG      | STVREN     | PPS1WAY | ZCD          | BORV<1:0>       |       | 1111 1111                         |
| 30 0004h | CONFIG3L | _      | WDTI   | E<1:0>     |            |         | WDTCPS       | <4:0>           |       | 1111 1111                         |
| 30 0005h | CONFIG3H | _      | —      | V          | VDTCCS<2:0 | >       |              | WDTCWS<2        | :0>   | 1111 1111                         |
| 30 0006h | CONFIG4L | WRTAPP | _      | _          | SAFEN      | BBEN    |              | BBSIZE<2:0      | )>    | 1111 1111                         |
| 30 0007h | CONFIG4H | _      | —      | LVP        | _          | WRTSAF  | WRTD         | WRTC            | WRTB  | 1111 1111                         |
| 30 0008h | CONFIG5L | _      | _      | _          | _          | _       | _            | _               | CP    | 1111 1111                         |
| 30 0009h | CONFIG5H | _      | _      | _          | _          | _       | _            | _               | _     | 1111 1111                         |

© 2017 Microchip Technology Inc.

### 9.5 Context Saving

The Interrupt controller supports a two-level deep context saving (Main routine context and Low ISR context). Refer to state machine shown in Figure 9-6 for details.

The Program Counter (PC) is saved on the dedicated device PC stack. CPU registers saved include STATUS, WREG, BSR, FSR0/1/2, PRODL/H and PCLATH/U.

After WREG has been saved to the context registers, the resolved vector number of the interrupt source to be serviced is copied into WREG. Context save and restore operation is completed by the interrupt controller based on current state of the interrupts and the order in which they were sent to the CPU.

Context save/restore works the same way in both states of MVECEN. When IPEN = 0, there is only one level interrupt active. Hence, only the main context is saved when an interrupt is received.

### 9.5.1 ACCESSING SHADOW REGISTERS

The Interrupt controller automatically saves the context information in the shadow registers available in Bank 56. Both the saved context values (i.e., main routine and low ISR) can be accessed using the same set of shadow registers. By clearing the SHADLO bit in the SHADCON register (Register 9-43), the CPU register values saved for main routine context can accessed, and by setting the SHADLO bit of the CPU register, values saved for low ISR context can accessed. Low ISR context is automatically restored to the CPU registers upon exiting the high ISR. Similarly, the main context is automatically restored to the CPU registers upon exiting the low ISR.

The Shadow registers in Bank 56 are readable and writable, so if the user desires to modify the context, then the corresponding shadow register should be modified and the value will be restored when exiting the ISR. Depending on the user's application, other registers may also need to be saved.

| Name  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3                 | Bit 2  | Bit 1  | Bit 0  |
|-------|--------|--------|--------|--------|-----------------------|--------|--------|--------|
| IOCAP | IOCAP7 | IOCAP6 | IOCAP5 | IOCAP4 | IOCAP3                | IOCAP2 | IOCAP1 | IOCAP0 |
| IOCAN | IOCAN7 | IOCAN6 | IOCAN5 | IOCAN4 | IOCAN3                | IOCAN2 | IOCAN1 | IOCAN0 |
| IOCAF | IOCAF7 | IOCAF6 | IOCAF5 | IOCAF4 | IOCAF3                | IOCAF2 | IOCAF1 | IOCAF0 |
| IOCBP | IOCBP7 | IOCBP6 | IOCBP5 | IOCBP4 | IOCBP3                | IOCBP2 | IOCBP1 | IOCBP0 |
| IOCBN | IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3                | IOCBN2 | IOCBN1 | IOCBN0 |
| IOCBF | IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3                | IOCBF2 | IOCBF1 | IOCBF0 |
| IOCCP | IOCCP7 | IOCCP6 | IOCCP5 | IOCCP4 | IOCCP3                | IOCCP2 | IOCCP1 | IOCCP0 |
| IOCCN | IOCCN7 | IOCCN6 | IOCCN5 | IOCCN4 | IOCCN3                | IOCCN2 | IOCCN1 | IOCCN0 |
| IOCCF | IOCCF7 | IOCCF6 | IOCCF5 | IOCCF4 | IOCCF3                | IOCCF2 | IOCCF1 | IOCCF0 |
| IOCEP | —      | —      | -      | —      | IOCEP3 <sup>(1)</sup> | _      | _      | —      |
| IOCEN |        |        |        |        | IOCEN3 <sup>(1)</sup> |        |        |        |
| IOCEF | _      | _      | _      | _      | IOCEF3 <sup>(1)</sup> | _      | _      | _      |

### TABLE 18-1: IOC REGISTERS

Note 1: If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and IOC on RE3 is not available.

### TABLE 18-2: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

| Name  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Register<br>on Page |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------------------|
| IOCxF | IOCxF7 | IOCxF6 | IOCxF5 | IOCxF4 | IOCxF3 | IOCxF2 | IOCxF1 | IOCxF0 | 287                 |
| IOCxN | IOCxN7 | IOCxN6 | IOCxN5 | IOCxN4 | IOCxN3 | IOCxN2 | IOCxN1 | IOCxN0 | 287                 |
| IOCxP | IOCxP7 | IOCxP6 | IOCxP5 | IOCxP4 | IOCxP3 | IOCxP2 | IOCxP1 | IOCxP0 | 287                 |

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

### 19.0 PERIPHERAL MODULE DISABLE (PMD)

Sleep, Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume some amount of power. There may be cases where the application needs what these modes do not provide: the ability to allocate limited power resources to the CPU while eliminating power consumption from the peripherals.

The PIC18F26/27/45/46/47/55/56/57K42 microcontrollers address this requirement by allowing peripheral modules to be selectively enabled or disabled, placing them into the lowest possible power mode.

All modules are ON by default following any Reset.

### **19.1** Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset.
- · Any SFR becomes "unimplemented"
  - Writing is disabled
  - Reading returns 00h
- I/O functionality is prioritized as per Section 16.1, I/O Priorities
- All associated Input Selection registers are also disabled

### 19.2 Enabling a Module

When the PMD register bit is cleared, the module is re-enabled and will be in its Reset state (Power-on Reset). SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

### 19.3 Effects of a Reset

Following any Reset, each control bit is set to '0', enabling all modules.

### **19.4** System Clock Disable

Setting SYSCMD (PMD0, Register 19-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.



2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

### FIGURE 21-4: TIMER1/3/5 GATE ENABLE MODE



| Mada       | MODE         | E<4:0> | Output                                                  | On creation                                           |                          | Timer Control                  |                           |  |  |
|------------|--------------|--------|---------------------------------------------------------|-------------------------------------------------------|--------------------------|--------------------------------|---------------------------|--|--|
| wode       | <4:3>        | <2:0>  | Operation                                               | Operation                                             | Start                    | Reset                          | Stop                      |  |  |
|            |              | 000    |                                                         | Software gate (Figure 22-6)                           | <b>ON =</b> 1            | —                              | ON = 0                    |  |  |
|            |              | 001    | Period                                                  | Hardware gate, active-high<br>(Figure 22-7)           | ON = 1 &<br>TMRx_ers = 1 | _                              | ON = 0 or<br>TMRx_ers = 0 |  |  |
|            |              | 010    |                                                         | Hardware gate, active-low                             | ON = 1 &<br>TMRx_ers = 0 | —                              | ON = 0 or<br>TMRx_ers = 1 |  |  |
| Free       | 0.0          | 011    |                                                         | Rising or Falling Edge Reset                          |                          | TMRx_ers                       |                           |  |  |
| Period     | 00           | 100    | Period                                                  | Rising Edge Reset (Figure 22-8)                       |                          | TMRx_ers ↑                     | <b>ON =</b> 0             |  |  |
|            |              | 101    | Pulse                                                   | Falling Edge Reset                                    |                          | TMRx_ers ↓                     |                           |  |  |
|            |              | 110    | with<br>Hardware                                        | Low Level Reset                                       | <b>ON =</b> 1            | TMRx_ers = 0                   | ON = 0 or<br>TMRx_ers = 0 |  |  |
|            |              | 111    | Reset                                                   | High Level Reset (Figure 22-9)                        |                          | TMRx_ers = 1                   | ON = 0 or<br>TMRx_ers = 1 |  |  |
|            |              | 000    | One-Shot                                                | Software Start (Figure 22-10)                         | <b>ON =</b> 1            | —                              |                           |  |  |
|            |              | 001    | Edge                                                    | Rising Edge Start (Figure 22-9)                       | ON = 1 &<br>TMRx_ers ↑   | —                              |                           |  |  |
|            |              | 010    | Triggered<br>Start                                      | Falling Edge Start                                    | ON = 1 &<br>TMRx_ers ↓   | —                              |                           |  |  |
|            |              | 011    | (Note 1)                                                | Any eEdge Start                                       | ON = 1 &<br>TMRx_ers     | —                              | ON = 0<br>or              |  |  |
| One-shot   | 01 100       | Edge   | Rising Edge Start &<br>Rising Edge Reset (Figure 22-12) | ON = 1 &<br>TMRx_ers ↑                                | TMRx_ers ↑               | Next clock after<br>TMRx = PRx |                           |  |  |
|            |              | 101    | Triggered<br>Start                                      | Falling Edge Start &<br>Falling Edge Reset            | ON = 1 &<br>TMRx_ers ↓   | TMRx_ers ↓                     | (Note 2)                  |  |  |
|            |              | 110    | Hardware<br>Reset                                       | Rising Edge Start &<br>Low Level Reset (Figure 22-13) | ON = 1 &<br>TMRx_ers ↑   | TMRx_ers = 0                   |                           |  |  |
|            |              | 111    | (Note 1)                                                | Falling Edge Start &<br>High Level Reset              | ON = 1 &<br>TMRx_ers ↓   | TMRx_ers = 1                   |                           |  |  |
|            |              | 000    |                                                         | Res                                                   | erved                    |                                |                           |  |  |
|            |              | 001    | Edge                                                    | Rising Edge Start<br>(Figure 22-12)                   | ON = 1 &<br>TMRx_ers ↑   | _                              | ON=0                      |  |  |
| Monostable |              | 010    | Triggered<br>Start                                      | Falling Edge Start                                    | ON = 1 &<br>TMRx_ers ↓   | —                              | or<br>Next clock after    |  |  |
|            | 011 (Note 1) |        | (Note 1)                                                | Any Edge Start                                        | ON = 1 &<br>TMRx_ers     | —                              | (Note 3)                  |  |  |
| Reserved   | 10           | 100    | Reserved                                                |                                                       |                          |                                |                           |  |  |
| Reserved   |              | 101    |                                                         | Res                                                   | erved                    | •                              | •                         |  |  |
|            |              | 110    | Level<br>Triggered                                      | High Level Start &<br>Low Level Reset (Figure 22-13)  | ON = 1 &<br>TMRx_ers = 1 | TMRx_ers = 0                   | ON = 0  or                |  |  |
| One-shot   |              | 111    | Start<br>and<br>Hardware<br>Reset                       | Low Level Start &<br>High Level Reset                 | ON = 1 &<br>TMRx_ers = 0 | TMRx_ers = 1                   | Held in Reset<br>(Note 2) |  |  |
| Reserved   | 11           | XXX    | Reserved                                                |                                                       |                          |                                |                           |  |  |

### TABLE 22-1: TIMER2 OPERATING MODES

**Note 1:** If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TxTMR = TxPR then the next clock clears ON and stops TxTMR at 00h.

3: When TxTMR = TxPR then the next clock stops TxTMR at 00h but does not clear ON.

### 23.5 Register Definitions: CCP Control

Long bit name prefixes for the CCP peripherals are shown below. Refer to **Section 1.3.2.2 "Long Bit Names**" for more information.

| Peripheral | Bit Name Prefix |
|------------|-----------------|
| CCP1       | CCP1            |
| CCP2       | CCP2            |
| CCP3       | CCP3            |
| CCP4       | CCP4            |

### REGISTER 23-1: CCPxCON: CCPx CONTROL REGISTER

| R/W-0/0 | U-0 | R-x | R/W-0/0 | R/W-0/0   | R/W-0/0 | R/W-0/0 | R/W-0/0 |
|---------|-----|-----|---------|-----------|---------|---------|---------|
| EN      | —   | OUT | FMT     | MODE<3:0> |         |         |         |
| bit 7   |     |     |         |           |         |         | bit 0   |

| Legend:           |                     |                          |                    |
|-------------------|---------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit    | U = Unimplemented bit, r | ead as '0'         |
| -n = Value at POR | '1' = Bit is set    | '0' = Bit is cleared     | x = Bit is unknown |
|                   |                     |                          |                    |
| bit 7 EN: CC      | P Module Enable bit |                          |                    |
| 1 = CC            | CP is enabled       |                          |                    |
| 0 = C             | CP is disabled      |                          |                    |

- bit 6 Unimplemented: Read as '0'
- bit 5 OUT: CCPx Output Data bit (read-only)
- bit 4 FMT: CCPW (pulse-width) Alignment bit <u>MODE = Capture mode:</u> Unused <u>MODE = Compare mode:</u> Unused
  - MODE = PWM mode:
  - 1 = Left-aligned format
    - 0 = Right-aligned format
- bit 3-0 MODE<3:0>: CCPx Mode Select bits

| MODE | Operating Mode | Operation                                | Set CCPxIF |
|------|----------------|------------------------------------------|------------|
| 11xx | PWM            | PWM operation                            | Yes        |
| 1011 |                | Pulse output; clear TMR1 <sup>(2)</sup>  | Yes        |
| 1010 | Compare        | Pulse output                             | Yes        |
| 1001 |                | Clear output <sup>(1)</sup>              | Yes        |
| 1000 |                | Set output <sup>(1)</sup>                | Yes        |
| 0111 |                | Every 16th rising edge of CCPx input     | Yes        |
| 0110 |                | Every 4th rising edge of CCPx input      | Yes        |
| 0101 | Capture        | Every rising edge of CCPx input          | Yes        |
| 0100 |                | Every falling edge of CCPx input         | Yes        |
| 0011 |                | Every edge of CCPx input                 | Yes        |
| 0010 | Compore        | Toggle output                            | Yes        |
| 0001 | Compare        | Toggle output; clear TMR1 <sup>(2)</sup> | Yes        |
| 0000 | Disabled       |                                          | _          |

Note 1: The set and clear operations of the Compare mode are reset by setting MODE = 4'b0000 or EN = 0.

2: When MODE = 0001 or 1011, then the timer associated with the CCP module is cleared. TMR1 is the default selection for the CCP module, so it is used for indication purpose only.

### 25.6.8 CAPTURE MODE

This mode captures the Timer value based on a rising or falling edge on the SMTWINx input and triggers an interrupt. This mimics the capture feature of a CCP module. The timer begins incrementing upon the GO bit being set, and updates the value of the SMT1CPR register on each rising edge of SMTWINx, and updates the value of the CPW register on each falling edge of the SMTWINx. The timer is not reset by any hardware conditions in this mode and must be reset by software, if desired. See Figure 25-16 and Figure 25-17.

### REGISTER 28-3: NCO1ACCL: NCO1 ACCUMULATOR REGISTER – LOW BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
|         |         |         | ACC     | <7:0>   |         |         |         |
| bit 7   |         |         |         |         |         |         | bit 0   |
|         |         |         |         |         |         |         |         |
| Legend: |         |         |         |         |         |         |         |

| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
|----------------------|----------------------|-------------------------------------------------------|
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 ACC<7:0>: NCO1 Accumulator, Low Byte

### REGISTER 28-4: NCO1ACCH: NCO1 ACCUMULATOR REGISTER – HIGH BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
|         |         |         | ACC<1   | 5:8>    |         |         |         |
| bit 7   |         |         |         |         |         |         | bit 0   |
|         |         |         |         |         |         |         |         |
| Legend: |         |         |         |         |         |         |         |

| 0                    |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 ACC<15:8>: NCO1 Accumulator, High Byte

When TXMTIF goes true, indicating the transmit shift register has completed sending the last byte in the frame, the TX output is held in Idle state for the number of half-bit periods selected by the STP bits in the UxCON2 register.

After the last Stop bit, the TX output is held in Idle state for an additional wait time determined by the half-bit period count in the UxP1 register. For example, a 2450 µs delay (~6 half-bit times) requires a value of 6 in UxP1L.

Any writes to the UxTXB register that occur after TXMTIF goes true, but before the UxP1 wait time expires, are held and then transmitted immediately following the wait time. If a backward frame is received during the wait time, any bytes that may have been written to UxTXB will be transmitted after completion of the backward frame reception plus the UxP1 wait time.

The wait timer is reset by the backward frame and starts over immediately following the reception of the Stop bits of the backward frame. Data pending in the transmit shift register will be sent when the wait time elapses.

To replace or delete any pending forward frame data, the TXBE bit needs to be set to flush the shift register and transmit buffer. A new control byte can then be written to the UxTXB register. The control byte will be held in the buffer and sent at the beginning of the next forward frame following the UxP1 wait time.

In Control Device mode, PERIF is set when a forward frame is received. This helps the software to determine whether the received byte is part of a forward frame from a Control Device (either from the Control Device under consideration or from another Control Device on the bus) or a backward frame from a Control Gear.

### 31.6.2 CONTROL GEAR

The Control Gear mode is configured with the following settings:

- MODE = 0b1001
- **TXEN =** 1
- RXEN = 1
- UxP1 = Back Frames are held for transmission this number of half-bit periods after the completion of a Forward Frame.

 UxP2 = Forward/Back Frame threshold delimiter. Idle periods more than this number of half-bit periods are detected as Forward Frames.

- UxBRGH:L = Value to achieve 1200 baud rate
- TXPOL = appropriate polarity for interface circuit
- RXPOL = same as TXPOL
- STP = 0b10 for two Stop bits
- RxyPPS = TX pin output code
- TX pin TRIS control = 0
- RXPPS = RX pin selection code
- RX pin TRIS control = 1
- Input pin ANSEL bit = 0
- ON = 1

The UART starts listening for a forward frame when the Control Gear mode is entered. Only the frames that follow an Idle period longer than UxP2 half-bit periods are detected as forward frames. Backward frames from other Control Gear are ignored. Only forward frames will be stored in UxRXB. This is necessary because a backward frame can be sent only as a response to a forward frame.

The forward frame is received one byte at a time in the receive FIFO and retrieved by reading the UxRXB register. The end of the forward frame starts a timer to delay the backward frame response by wait time equal to the number of half-bit periods stored in UxP1.

The data received in the forward frame is processed by the application software. If the application decides to send a backward frame in response to the forward frame, the value of the backward frame is written to UxTXB. This value is held for transmission in the transmit shift register until the wait time expires and is then transmitted.

If the backward frame data is written to UxTXB after the wait time has expired, it is held in the UxTXB register until the end of the wait time following the next forward frame. The TXMTIF bit is false when the backward frame data is held in the transmit shift register. Receiving a UxRXIF interrupt before the TXMTIF goes true indicates that the backward frame write was too late and another forward frame. The pending backward frame has to be flushed by setting the TXBE bit, to prevent it from being sent after the next Forward Frame.

| U-0                                     | U-0 | U-0               | U-0                                | U-0                                                   | U-0 | U-0 | R/W-0/0 |  |
|-----------------------------------------|-----|-------------------|------------------------------------|-------------------------------------------------------|-----|-----|---------|--|
| —                                       | —   | —                 | —                                  | —                                                     | —   | —   | P1<8>   |  |
| bit 7                                   |     |                   |                                    |                                                       |     |     | bit 0   |  |
|                                         |     |                   |                                    |                                                       |     |     |         |  |
| Legend:                                 |     |                   |                                    |                                                       |     |     |         |  |
| R = Readable bit W = Writable bit       |     |                   | U = Unimplemented bit, read as '0' |                                                       |     |     |         |  |
| u = Bit is unchanged x = Bit is unknown |     |                   | iown                               | -n/n = Value at POR and BOR/Value at all other Resets |     |     |         |  |
| '1' = Bit is set                        |     | '0' = Bit is clea | ared                               |                                                       |     |     |         |  |
|                                         |     |                   |                                    |                                                       |     |     |         |  |

### REGISTER 31-12: UxP1H: UART PARAMETER 1 HIGH REGISTER

| Unimplemented: Read as '0'                                                                                |
|-----------------------------------------------------------------------------------------------------------|
| P1<8>: Most Significant Bit of Parameter 1                                                                |
| DMX mode:                                                                                                 |
| Most Significant bit of number of bytes to transmit between Start Code and automatic Break generation     |
| DALI Control Device mode:                                                                                 |
| Most Significant bit of idle time delay after which a Forward Frame is sent. Measured in half-bit periods |
| DALI Control Gear mode:                                                                                   |
| Most Significant bit of delay between the end of a Forward Frame and the start of the Back Frame          |
| Measured in half-bit periods                                                                              |
| Other modes:                                                                                              |
| Not used                                                                                                  |
|                                                                                                           |

### REGISTER 31-13: UxP1L: UART PARAMETER 1 LOW REGISTER

| R/W-0/0 |  |  |
|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| P1<7:0> |         |         |         |         |         |         |         |  |  |
| bit 7   |         |         |         |         |         |         |         |  |  |
|         |         |         |         |         |         |         |         |  |  |
| Lanandı |         |         |         |         |         |         |         |  |  |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0

P1<7:0>: Least Significant Bits of Parameter 1

DMX mode:

Least Significant Byte of number of bytes to transmit between Start Code and automatic Break generation

DALI Control Device mode:

Least Significant Byte of idle time delay after which a Forward Frame is sent. Measured in half-bit periods <u>DALI Control Gear mode</u>:

Least Significant Byte of delay between the end of a Forward Frame and the start of the Back Frame Measured in half-bit periods

LIN mode:

PID to transmit (Only Least Significant 6 bits used) <u>Asynchronous Address mode:</u> Address to transmit (9th transmit bit automatically set to '1') <u>Other modes</u>: Not used



## **FIGURE 33-19:**

### 39.10 Register Definitions: HLVD Control

Long bit name prefixes for the HLVD peripheral is shown in Table 39-1. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

### TABLE 39-1:

| Peripheral | Bit Name Prefix |  |  |  |
|------------|-----------------|--|--|--|
| HLVD       | HLVD            |  |  |  |

### REGISTER 39-1: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0

| R/W-0/0 | U-0 | R-x | R-x | U-0 | U-0 | R/W-0/0 | R/W-0/0 |
|---------|-----|-----|-----|-----|-----|---------|---------|
| EN      | —   | OUT | RDY | —   | —   | INTH    | INTL    |
| bit 7   |     |     |     | •   |     |         | bit 0   |
|         |     |     |     |     |     |         |         |
| Legend: |     |     |     |     |     |         |         |

| Legenu.           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 7   | <ul> <li>EN: High/Low-voltage Detect Power Enable bit</li> <li>1 = Enables HLVD, powers up HLVD circuit and supporting reference circuitry</li> <li>0 = Disables HLVD, powers down HLVD and supporting circuitry</li> </ul> |  |  |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| bit 6   | Unimplemented: Read as '0'                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| bit 5   | OUT: HLVD Comparator Output bit                                                                                                                                                                                             |  |  |  |  |  |  |  |
|         | <ul> <li>1 = Voltage ≤ selected detection limit (HLVDL&lt;3:0&gt;)</li> <li>0 = Voltage ≥ selected detection limit (HLVDL&lt;3:0&gt;)</li> </ul>                                                                            |  |  |  |  |  |  |  |
| bit 4   | RDY: Band Gap Reference Voltages Stable Status Flag bit                                                                                                                                                                     |  |  |  |  |  |  |  |
|         | <ul> <li>1 = Indicates HLVD Module is ready and output is stable</li> <li>0 = Indicates HLVD Module is not ready</li> </ul>                                                                                                 |  |  |  |  |  |  |  |
| bit 3-2 | Unimplemented: Read as '0'                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| bit 1   | INTH: HLVD Positive going (High Voltage) Interrupt Enable                                                                                                                                                                   |  |  |  |  |  |  |  |
|         | <ul> <li>1 = HLVDIF will be set when voltage ≥ selected detection limit (SEL&lt;3:0&gt;)</li> <li>0 = HLVDIF will not be set</li> </ul>                                                                                     |  |  |  |  |  |  |  |
| bit 0   | INTL: HLVD Negative going (Low Voltage) Interrupt Enable                                                                                                                                                                    |  |  |  |  |  |  |  |
|         | <ul> <li>1 = HLVDIF will be set when voltage ≤ selected detection limit (SEL&lt;3:0&gt;)</li> <li>0 = HLVDIF will not be set</li> </ul>                                                                                     |  |  |  |  |  |  |  |

### 42.0 REGISTER SUMMARY

### **TABLE 42-1**: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

| Address | Name     | Bit 7                                                                                                    | Bit 6                                  | Bit 5         | Bit 4          | Bit 3          | Bit 2           | Bit 1      | Bit 0   | Register on page |
|---------|----------|----------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|----------------|----------------|-----------------|------------|---------|------------------|
| 3FFFh   | TOSU     | — — Top of Stack Upper byte                                                                              |                                        |               |                |                |                 |            | 37      |                  |
| 3FFEh   | TOSH     | Top of Stack High byte                                                                                   |                                        |               |                |                |                 |            |         | 37               |
| 3FFDh   | TOSL     |                                                                                                          | Top of Stack Low byte                  |               |                |                |                 |            |         | 37               |
| 3FFCh   | STKPTR   | _                                                                                                        | Stack Pointer                          |               |                |                |                 |            |         | 39               |
| 3FFBh   | PCLATU   | _                                                                                                        | _                                      | _             |                | Holding        | Register for PC | Upper byte |         | 36               |
| 3FFAh   | PCLATH   |                                                                                                          |                                        | Но            | lding Register | for PC High b  | yte             |            |         | 36               |
| 3FF9h   | PCL      |                                                                                                          | PC Low byte                            |               |                |                |                 |            |         |                  |
| 3FF8h   | TBLPTRU  | _                                                                                                        | _                                      |               | Progr          | am Memory T    | able Pointer Up | per byte   |         | 192              |
| 3FF7h   | TBLPTRH  |                                                                                                          | Program Memory Table Pointer High byte |               |                |                |                 |            |         |                  |
| 3FF6h   | TBLPTRL  |                                                                                                          |                                        | Progra        | am Memory Ta   | ble Pointer Lo | w byte          |            |         | 192              |
| 3FF5h   | TABLAT   |                                                                                                          |                                        |               | Table          | Latch          |                 |            |         | 192              |
| 3FF4h   | PRODH    |                                                                                                          |                                        |               | Product Regis  | ster High byte |                 |            |         | 187              |
| 3FF3h   | PRODL    |                                                                                                          |                                        |               | Product Regi   | ster Low byte  |                 |            |         | 187              |
| 3FF2h   | _        |                                                                                                          |                                        |               | Unimple        | emented        |                 |            |         |                  |
| 3FF1h   | PCON1    | —                                                                                                        | _                                      | _             | —              | —              | —               | MEMV       | _       | 91               |
| 3FF0h   | PCON0    | STKOVF                                                                                                   | STKUNF                                 | WDTWV         | RWDT           | RMCLR          | RI              | POR        | BOR     | 90               |
| 3FEFh   | INDF0    | Uses contents                                                                                            | of FSR0 to addr                        | ress data mem | ory – value of | FSR0 not cha   | nged            |            |         | 60               |
| 3FEEh   | POSTINC0 | Uses contents of FSR0 to address data memory – value of FSR0 post-incremented                            |                                        |               |                |                |                 |            | 61      |                  |
| 3FEDh   | POSTDEC0 | Uses contents of FSR0 to address data memory – value of FSR0 post-decremented                            |                                        |               |                |                |                 |            | 61      |                  |
| 3FECh   | PREINC0  | Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented                             |                                        |               |                |                |                 |            |         | 61               |
| 3FEBh   | PLUSW0   | Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented – value of FSR0 offset by W |                                        |               |                |                |                 |            | 61      |                  |
| 3FEAh   | FSR0H    | —      —      Indirect Data Memory Address Pointer 0 High                                                |                                        |               |                |                |                 |            | 61      |                  |
| 3FE9h   | FSR0L    | Indirect Data Memory Address Pointer 0 Low                                                               |                                        |               |                |                |                 |            |         | 61               |
| 3FE8h   | WREG     | Working Register                                                                                         |                                        |               |                |                |                 |            |         |                  |
| 3FE7h   | INDF1    | Uses contents of FSR1 to address data memory – value of FSR1 not changed                                 |                                        |               |                |                |                 |            | 61      |                  |
| 3FE6h   | POSTINC1 | Uses contents of FSR1 to address data memory – value of FSR1 post-incremented                            |                                        |               |                |                |                 |            | 61      |                  |
| 3FE5h   | POSTDEC1 | Uses contents of FSR1 to address data memory – value of FSR1 post-decremented                            |                                        |               |                |                |                 |            |         | 61               |
| 3FE4h   | PREINC1  | Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented                             |                                        |               |                |                |                 |            | 61      |                  |
| 3FE3h   | PLUSW1   | Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented - value of FSR1 offset by W |                                        |               |                |                |                 |            | 61      |                  |
| 3FE2h   | FSR1H    | Indirect Data Memory Address Pointer 1 High                                                              |                                        |               |                |                |                 |            | 61      |                  |
| 3FE1h   | FSR1L    | Indirect Data Memory Address Pointer 1 Low                                                               |                                        |               |                |                |                 |            | 61      |                  |
| 3FE0h   | BSR      | — Bank Select Register                                                                                   |                                        |               |                |                |                 |            | 44      |                  |
| 3FDFh   | INDF2    | Uses contents of FSR2 to address data memory – value of FSR2 not changed                                 |                                        |               |                |                |                 |            | 61      |                  |
| 3FDEh   | POSTINC2 | Uses contents of FSR2 to address data memory – value of FSR2 post-incremented                            |                                        |               |                |                |                 |            | 61      |                  |
| 3FDDh   | POSTDEC2 | Uses contents of FSR2 to address data memory – value of FSR2 post-decremented                            |                                        |               |                |                |                 |            | 61      |                  |
| 3FDCh   | PREINC2  | Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented                             |                                        |               |                |                |                 |            | 61      |                  |
| 3FDBh   | PLUSW2   | Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented – value of FSR2 offset by W |                                        |               |                |                |                 |            | 61      |                  |
| 3FDAh   | FSR2H    | Indirect Data Memory Address Pointer 2 High                                                              |                                        |               |                |                |                 |            | 61      |                  |
| 3FD9h   | FSR2L    | Indirect Data Memory Address Pointer 2 Low                                                               |                                        |               |                |                |                 |            | 61      |                  |
| 3FD8h   | STATUS   | —                                                                                                        | TO                                     | PD            | N              | OV             | Z               | DC         | С       | 58               |
| 3FD7h   | IVTBASEU | —                                                                                                        | —                                      | _             | BASE20         | BASE19         | BASE18          | BASE17     | BASE16  | 166              |
| 3FD6h   | IVTBASEH | BASE15                                                                                                   | BASE14                                 | BASE13        | BASE12         | BASE11         | BASE10          | BASE9      | BASE8   | 166              |
| 3FD5h   | IVTBASEL | BASE7                                                                                                    | BASE6                                  | BASE5         | BASE4          | BASE3          | BASE2           | BASE1      | BASE0   | 166              |
| 3FD4h   | IVTLOCK  |                                                                                                          |                                        |               |                |                | IVTLOCKED       | 168        |         |                  |
| 3FD3h   | INTCON1  | ST                                                                                                       | TAT                                    |               | _              |                | _               | _          | _       | 136              |
| 3FD2h   | INTCON0  | GIE                                                                                                      | GIEL                                   | IPEN          | _              | _              | INT2EDG         | INT1EDG    | INT0EDG | 135              |

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition Note

Unimplemented in LF devices. 1:

Unimplemented in PIC18(L)F26/27K42. 2:

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

Unimplemented in PIC18(L)F45/55K42. 4:

