

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k42-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5 Data Memory Organization

Data memory in PIC18F26/27/45/46/47/55/56/57K42 devices is implemented as static RAM. Each register in the data memory has a 14-bit address, allowing up to 16384 bytes of data memory. The memory space is divided into 64 banks that contain 256 bytes each. Figure 4-3 shows the data memory organization for the PIC18F26/27/45/46/47/55/56/57K42 devices in this data sheet.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (select SFRs and GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to some SFRs and the lower portion of GPR Bank 0 without using the Bank Select Register (BSR). **Section 4.5.4 "Access Bank"** provides a detailed description of the Access RAM.

4.5.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 64 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 14-bit address, or an 8-bit low-order address and a 6-bit Bank Select Register.

This SFR holds the six Most Significant bits of a location address; the instruction itself includes the eight Least Significant bits. Only the six lower bits of the BSR are implemented (BSR<5:0>). The upper two bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory; the eight bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 4-3.

Since up to 64 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 3Fh will end up corrupting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory maps in Figure 4-3 indicate which banks are implemented.

9.4.4 SIMULTANEOUS LOW AND HIGH PRIORITY INTERRUPTS

When both high and low interrupts are active in the same instruction cycle (i.e., simultaneous interrupt events), both the high and the low priority requests are generated. The high priority ISR is serviced first before servicing the low priority interrupt see Figure 9-5.

FIGURE 9-5: INTERRUPT EXECUTION: SIMULTANEOUS LOW AND HIGH PRIORITY INTERRUPTS

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0
_		INT2IF ⁽²⁾	CLC2IF	CWG2IF		CCP2IF	TMR4IF
bit 7							bit 0
r							
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is ι	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is clea	ared	HS = Bit is se	et in hardware		
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	INT2IF: Exter	rnal Interrupt 2	Interrupt Flag	bit			
	1 = Interrupt	has occurred (I	must be cleare	ed by software	e)		
	0 = Interrupt	event has not o	occurred				
bit 4	CLC2IF: CLC	2 Interrupt Flag	g bit				
	1 = Interrupt 0 = Interrupt	has occurred (i event has not o	must be cleare	ed by software	e)		
bit 3	CWG2IF: CW	VG2 Interrupt FI	lag bit				
	1 = Interrupt	has occurred (I	must be cleare	ed by software	e)		
	0 = Interrupt	event has not o	occurred				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	CCP2IF: CCI	P2 Interrupt Fla	g bit				
	1 = Interrupt	has occurred (I	must be cleare	ed by software	e)		
	0 = Interrupt	event has not o	occurred				
bit 0	TMR4IF: TM	R4 Interrupt Fla	ig bit				
	1 = Interrupt	has occurred (i	must be cleare	ed by software	e)		
Note 1:	U - Interrupt			dition occurs .	concretions of the	a atata of ita aa	rrooponding
Note 1:	enable bit, or the c	alobal enable bi	t. User softwa	re should ensi	ure the appropri	ate interrupt fla	inesponding id bits are
	clear prior to enab	ling an interrup	t.				9 210 010

REGISTER 9-10: PIR7: PERIPHERAL INTERRUPT REGISTER 7⁽¹⁾

2: The external interrupt GPIO pin is selected by the INTxPPS register.

15.9.6 ABORT TRIGGER, MESSAGE COMPLETE

Г

The AIRQEN needs to be set in order for the DMA to sample Abort Interrupt sources. When an abort interrupt is received the SIRQEN bit is cleared and the AIRQEN bit is cleared to avoid receiving further abort triggers.

FIGURE 15-10:	ABORT AT THE END OF MESSAGE

	(j (j (j (j (j (j (j (j (j (k)))))))) (j (j (j (j (k)))))) (k) (k) (k) (k) (k) (k) (k) (k
Instruction Clock	NNNNNNNNNN
EN	
SIRQEN	
AIRQEN	
Source Hardware Trigger	
Abort Hardware	
DGO	
DMAxSPTR	Ox3EEF Ox3EF0
DMAxDPTR	0x100 0x101 () 0x109 0x10A () 0x100 ()
DMAxSCNT	$\langle 2 \rangle \langle 1 \rangle \langle 5 \rangle 2 \rangle \langle 1 \rangle \langle 2 \rangle \rangle$
DMAxDCNT	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
DMA STATE	$ \left(\text{IDLE} \right) \left(SR^{(1)} \right) DW^{(2)} \left(SR^{(1)} \right) DW^{(2)} \left(SR^{(1)} \right) SR^{(1)} \right) DW^{(2)} \left(SR^{(1)} \right) DW^{(2)} \left(DUE \right) $
DMAxSCNTIF	
DMAxDCNTIF -	<u>_</u>
DMAxAIF -	<u>}</u>
	DMAxSSA 0x3EEF DMAxDSA 0x100
	DMAxSSZ 0x2 DMAxDSZ 0xA
Note 1:	SR - Source Read
2:	DW - Destination Write

REGISTER 15-9: DMAxSPTRU: DMAx SOURCE POINTER UPPER REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
_	—		SPTR<21:16>							
bit 7							bit 0			

Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and 1 = bit is set 0 = bit is cleared x = bit is unknown BOR/Value at all other u = bit is unchanged Resets 0 = bit is cleared x = bit is unchanged

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SPTR<21:16>: Current Source Address Pointer

REGISTER 15-10: DMAxSSZL: DMAx SOURCE SIZE LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			SSZ	<u>/</u> <7:0>			
bit 7							bit 0
Legend:							
						(0)	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged	

bit 7-0 SSZ<7:0>: Source Message Size bits

REGISTER 15-11: DMAxSSZH: DMAx SOURCE SIZE HIGH REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	—	SSZ<11:8>				
bit 7							bit 0	

Legend:					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged		

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SSZ<11:8>: Source Message Size bits

16.0 I/O PORTS

The PIC18(L)F26/27/45/46/47/55/56/57K42 devices have six I/O ports, allocated as shown in Table 16-1.

TABLE 16-1: PORT ALLOCATION TABLE FOR PIC18(L)F26/27/45/46/47/ 55/56/57K42 DEVICES

Device	PORTA	PORTB	PORTC	РОКТD	PORTE	РОКТЕ
PIC18(L)F26K42	•	•	•		. (1)	
PIC18(L)F27K42	•	•	•		. (1)	
PIC18(L)F45K42	•	•	•	•	•(2)	
PIC18(L)F46K42	•	•	•	•	•(2)	
PIC18(L)F47K42	•	•	•	•	•(2)	
PIC18(L)F55K42	•	•	•	•	•(2)	•
PIC18(L)F56K42	•	•	•	•	•(2)	•
PIC18(L)F57K42	•	•	•	•	•(2)	•

Note 1: Pin RE3 only.

2: Pins RE0, RE1, RE2 and RE3 only.

Each port has ten registers to control the operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate control)
- ODCONx registers (open-drain control)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSELx bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 16-1.

FIGURE 16-1: GENERIC I/O PORT

16.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See Section 17.0 "Peripheral Pin Select (PPS) Module" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over digital outputs and force the digital output driver into a high-impedance state.

The pin function priorities are as follows:

- 1. Configuration bits
- 2. Analog outputs (disable the input buffers)
- 3. Analog inputs
- 4. Port inputs and outputs from PPS

16.2 PORTx Registers

In this section, the generic names such as PORTx, LATx, TRISx, etc. can be associated with PORTA, PORTB, and PORTC. The functionality of PORTE is different compared to other ports and is explained in a separate section.

-							1
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
NCO1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BOI	R/Value at all c	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
-							
bit 7	NCO1MD: Di	isable NCO1 M	odule bit				
	1 = NCO1 m	nodule disabled					
	0 = NCO1 m	nodule enabled					
bit 6	TMR6MD: Di	sable Timer TM	IR6 bit				
	1 = TMR6 m	nodule disabled					
	0 = TMR6 m	nodule enabled					
bit 5	TMR5MD: Di	sable Timer TM	IR5 bit				
	1 = TMR5 m	nodule disabled					
	0 = TMR5 m	nodule enabled					
bit 4	TMR4MD: Di	sable Timer TM	IR4 bit				
	1 = TMR4 m	nodule disabled					
	0 = TMR4 m	nodule enabled					
bit 3	TMR3MD: Di	sable Timer TM	IR3 bit				
	1 = TMR3 m	nodule disabled					
	0 = TMR3 m	nodule enabled					
bit 2	TMR2MD: Di	sable Timer TM	IR2 bit				
	1 = TMR2 m	odule disabled					
	0 = TMR2 m	odule enabled					
bit 1	TMR1MD: Di	sable Timer TM	IR1 bit				
	1 = TMR1 m	odule disabled					
hit O							
			IKU DIL				
	$\perp = 1 \text{ MR0 m}$ 0 = TMR0 m						

REGISTER 19-2: PMD1: PMD CONTROL REGISTER 1

REGISTER 20-3: TMR0L: TIMER0 COUNT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMR0	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Res			
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMR0L<7:0>: TMR0 Counter bits <7:0>

REGISTER 20-4: TMR0H: TIMER0 PERIOD REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
TMR0H<15:8>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 When MD16 = 0 **PR0<7:0>:**TMR0 Period Register Bits <7:0> When MD16 = 1 **TMR0H<15:8>:** TMR0 Counter bits <15:8>

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T0CON0	EN		OUT	MD16		301			
T0CON1	CS<2:0> ASYNC CKPS<3:0>					302			
TMR0L	TMR0L<7:0>							303	
TMR0H	TMR0H<15:8>							303	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Timer0.

FIGURE 25-9: HIGH AND LOW MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 30-1: SIMPLIFIED BLOCK DIAGRAM OF THE DATA SIGNAL MODULATOR

© 2017 Microchip Technology Inc.

31.2.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error flag bit. A framing error indicates that the Stop bit was not seen at the expected time. The framing error flag is accessed via the FERIF bit in the UxERRIR register. The FERIF bit represents the frame status of the top unread character of the receive FIFO. Therefore, the FERIF bit must be read before reading UxRXB.

The FERIF bit is read-only and only applies to the top unread character of the receive FIFO. A framing error (FERIF = 1) does not preclude reception of additional characters. It is neither necessary nor possible to clear the FERIF bit directly. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERIF bit is cleared when the character at the top of the FIFO does not have a framing error or when all bytes in the receive FIFO have been read. Clearing the ON bit resets the receive FIFO, thereby also clearing the FERIF bit.

A framing error will generate a summary UxERR interrupt when the FERIE bit in the UxERRIE register is set. The summary error is reset when the FERIF bit of the top of the FIFO is '0' or when all FIFO characters have been retrieved.

When FERIE is set, UxRXIF interrupts are suppressed when FERIF is '1'.

31.2.2.5 Receiver Parity Modes

Even and odd parity is automatically detected when the MODE<3:0> bits are set to '0011' and '0010', respectively. Parity modes receive eight data bits and one parity bit for a total of nine bits for each character. The PERIF bit in the UXERRIR register represents the parity error of the top unread character of the receive FIFO rather than the parity bit itself. The parity error must be read before reading the UXRXB register advances the FIFO.

A parity error will generate a summary UxERR interrupt when the PERIE bit in the UxERRIE register is set. The summary error is reset when the PERIF bit of the top of the FIFO is '0' or when all FIFO characters have been retrieved.

When PERIE is set, UxRXIF interrupts are suppressed when PERIF is '1'.

31.2.2.6 Receive FIFO Overflow

When more characters are received than the receive FIFO can hold, the RXFOIF bit in the UxERRIR register is set. The character causing the overflow condition is discarded. The RUNOVF bit in the UxCON2 register determines how the receive circuit responds to characters while the overflow condition persists. When RUNOVF is set, the receive shifter stays synchronized to the incoming data stream by responding to Start, data, and Stop bits. However, all received bytes not already in the FIFO are discarded. When RUNOVF is cleared, the receive shifter ceases operation and Start. data, and Stop bits are ignored. The receive overflow condition is cleared by reading the UxRXB register and clearing the RXFOIF bit. If the UxRXB register is not read to open a space in the FIFO, the next character received will be discarded and cause another overflow condition.

A receive overflow error will generate a summary UxEIF interrupt when the RXFOIE bit in the UxERRIE register is set.

31.2.2.7 Asynchronous Reception Setup

- Initialize the UxBRGH, UxBRGL register pair and the BRGS bit to achieve the desired baud rate (see Section 31.17 "UART Baud Rate Generator (BRG)").
- 2. Configure the RXPPS register for the desired RX pin
- 3. Clear the ANSEL bit for the RX pin (if applicable).
- 4. Set the MODE<3:0> bits to the desired asynchronous mode.
- 5. Set the RXPOL bit if the data stream is inverted.
- 6. Enable the serial port by setting the ON bit.
- 7. If interrupts are desired, set the UxRXIE bit in the PIEx register and the GIE bits in the INTCON0 register.
- 8. Enable reception by setting the RXEN bit.
- 9. The UxRXIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the UxRXIE interrupt enable bit is also set.
- 10. Read the UxERRIR register to get the error flags.
- 11. Read the UxRXB register to get the received byte.
- 12. If an overrun occurred, clear the RXFOIF bit.

31.12.3 XON/XOFF FLOW CONTROL

XON/XOFF flow control is selected by setting the FLO<1:0> bits to '01'.

XON/XOFF is a data based flow control method. The signals to suspend and resume transmission are special characters sent by the receiver to the transmitter The advantage is that additional hardware lines are not needed.

XON/XOFF flow control requires full duplex operation because the transmitter must be able to receive the signal to suspend transmitting while the transmission is in progress. Although XON and XOFF are not defined in the ASCII code, the generally accepted values are 13h for XOFF and 11h for XON. The UART uses those codes.

The transmitter defaults to XON, or transmitter enabled. This state is also indicated by the read-only XON bit in the UxFIFO register.

When an XOFF character is received, the transmitter stops transmitting after completing the character actively being transmitted. The transmitter remains disabled until an XON character is received.

XON will be forced on when software toggles the TXEN bit.

When the RUNOVF bit in the UxCON2 register is set then XON and XOFF characters continue to be received and processed without the need to clear the input FIFO by reading the UxRXB. However, if the RUNOVF bit is clear then the UxRXB must be read to avoid a receive overflow which will suspend flow control when the receive buffer overflows.

FIGURE 33-12: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION

REGISTER 33	3-7: I2CxS	TAT1: I ² C ST/	ATUS REGIS	STER 1			
R/W/HS-0	U-0	R-1	U-0	R/W/HS-0	R/S-0/0	U-0	R-0
TXWE ⁽²⁾	_	TXBE ^(1, 3)	_	RXRE ⁽²⁾	CLRBF	_	RXBF ^(1,3)
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set HC = Hardware clear

bit 7		TXWE: Transmit Write Error Status bit ⁽²⁾ 1 = A new byte of data was written to I2CTXB when it was full (Must be cleared by software) 0 = No transmit write error
bit 6		Unimplemented: Read as '0'
bit 5		TXBE: Transmit Buffer Empty Status bit 1 = I2CTXB is empty (Cleared by writing the I2CTXB register) 0 = I2CTXB is full
bit 4		Unimplemented: Read as '0'
bit 3		RXRE: Receive Read Error Status bit 1 = A byte of data was read from I2CxRXB when it was empty. (Must be cleared by software) 0 = No receive overflow
bit 2		CLRBF: Clear Buffer bit Setting this bit clears/empties the receive and transmit buffers, causing reset of RXBF and TXBE. Setting this bit clears the RXIF and TXIF interrupt flags. This bit is set-only special function, and always reads '0'
bit 1		Unimplemented: Read as '0'
bit 0		RXBF: Receive Buffer Full Status bit 1 = I2CRXB has received new data (Cleared by reading the I2CRXB register) 0 = I2CRXB is empty
Note	1: 2:	The bits are held in Reset when I2CEN = 0. Will cause NACK to be sent for slave address and master/slave data read bytes.

3: Used as triggers for DMA operation.

36.0 ANALOG-TO-DIGITAL CONVERTER WITH COMPUTATION (ADC²) MODULE

The Analog-to-Digital Converter with Computation (ADC²) allows conversion of an analog input signal to a 12-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 12-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair).

Additionally, the following features are provided within the ADC module:

- 13-bit Acquisition Timer
- Hardware Capacitive Voltage Divider (CVD) support:
 - 13-bit Precharge Timer
 - Adjustable sample and hold capacitor array
- Guard ring digital output drive
- · Automatic repeat and sequencing:
 - Automated double sample conversion for CVD
 - Two sets of result registers (Result and Previous result)
 - Auto-conversion trigger
 - Internal retrigger
- Computation features:
 - Averaging and Low-Pass Filter functions
 - Reference Comparison
 - 2-level Threshold Comparison
 - Selectable Interrupts

Figure 36-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion and upon threshold comparison. These interrupts can be used to wake up the device from Sleep.

DECF	Decremer	nt f		DEC	CFSZ	Decrement f, skip if 0			
Syntax:	DECF f{,c	1 {,a}}		Synt	ax:	DECFSZ f {,d {,a}} $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			Оре	rands:				
Operation:	$(f) - 1 \rightarrow de$	est		Ope	ration:	(f) – 1 \rightarrow de skip if result	st, = 0		
Status Affected:	tus Affected: C, DC, N, OV, Z		Statu	us Affected:	None	. 0			
	Decrement	Ulda ff:		Enco	oding:	0010	11da ffi	f fff	
Words: Cycles: Q Cycle Activity: Q1 Decode	Decrement register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details. 1 1 2 2 2 2 2 3 2 4 2 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 3 4			Wor	ds:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.			
	register 'f'	Data	destination	Cycl	es:	1(2)			
Example:	DECE	∼ນπ 1 0				by a	2-word instru	a followed iction.	
Before Instruc	tion	JN1, 1, U		QC	Cycle Activity:				
<u>C</u> NT	= 01h				Q1	Q2	Q3	Q4	
Z After Instructio	= 0				Decode	Read	Process	Write to	
CNT	= 00h			lfel	(in:	register f	Data	destination	
Z	= 1					Q2	Q3	Q4	
					No	No	No	No	
					operation	operation	operation	operation	
				lf sl	kip and followe	d by 2-word ins	struction:	.	
					Q1	Q2	Q3	Q4	
					operation	operation	operation	operation	
					No	No	No	No	
					operation	operation	operation	operation	
				Exar	<u>mple</u> :	HERE	DECFSZ GOTO	CNT, 1, 1 LOOP	
					Defero lastare	CONTINUE			
					PC	= Address	(HERE)		
					After Instruction	on	、 ·= /		
					CNT If CNT	= CNT - 1 = 0:			
						= Address	(CONTINUE)	
					PC	≠ 0,= Address	(HERE + 2)	

TABLE 44-10: INTERNAL OSCILLATOR PARAMETERS⁽¹⁾

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS50	Fhfosc	Precision Calibrated HFINTOSC Frequency		4 8 12 16 48 64	_	MHz	(Note 2)		
OS51	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency	0.93 1.86	1 2	1.07 2.14	MHz MHz			
OS53*	FLFOSC	Internal LFINTOSC Frequency		31		kHz			
OS54*	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20	μs μs	VREGPM = 0 VREGPM = 1		
OS56	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time		0.2		ms	7		

These parameters are characterized but not tested. *

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

2: See Figure 44-6: Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature.

PRECISION CALIBRATED HEINTOSC FREQUENCY ACCURACY OVER DEVICE **FIGURE 44-6:** VDD AND TEMPERATURE

FIGURE 44-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP

FIGURE 44-17: SPI SLAVE MODE TIMING (CKE = 1)

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS					
Dimension	MIN	NOM	MAX				
Number of Pins	N		44				
Pitch	е		0.65 BSC				
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3		0.20 REF				
Overall Width	E		8.00 BSC				
Exposed Pad Width	E2	6.25	6.45	6.60			
Overall Length	D		8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60			
Terminal Width	b	0.20	0.30	0.35			
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed-Pad	К	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2