

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k42t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U
IC
<u>``</u>
$\overline{\mathbf{x}}$
8
Ξ
\mathbf{i}
N
6
Ν
7
4
5
1
4
G
1
/47/
Z
/55/
M
5
;/56
Q
δ
5
5
Z
Σ
42
N

IABLE 1	-				TABLE (PIC18)	(_)//	(00.1.1												
0/I	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	DDA	Voltage Reference	DAC	Comparators	Zero Cross Detect	1²C	IdS	UART	WSQ	Timers/SMT	CCP and PWM	9M0	כרכ	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RC0	11	8	ANC0	1	_	-	-	_	1	_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMTWIN1 ⁽¹⁾	_	1	1	1	-	IOCC0	SOSCO
RC1	12	9	ANC1	-	_	_	-	_	-	_	_	SMTSIG1 ⁽¹⁾	CCP2 ⁽¹⁾	-	-	-	_	IOCC1	SOSCI
RC2	13	10	ANC2	_	_	—	—	_	_	_	_	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	_	_	_	_	IOCC2	_
RC3	14	11	ANC3	_	—	—	_	SCL1 ^(3,4)	SCK1 ⁽¹⁾	_	-	T2IN ⁽¹⁾	—	_	_	_	—	IOCC3	-
RC4	15	12	ANC4	—	—	—	—	SDA1 ^(3,4)	SDI1 ⁽¹⁾	-	—	—	—	—	_	—	—	IOCC4	—
RC5	16	13	ANC5	_	—	_	_	—	—	_		T4IN ⁽¹⁾	—	—	-	_	_	IOCC5	_
RC6	17	14	ANC6	—	—	-	_	—	—	CTS1 ⁽¹⁾	-	—	_	—	_	—	—	IOCC6	—
RC7	18	15	ANC7	_	—	—	_	_	_	RX1 ⁽¹⁾		—	_	_	_	_	_	IOCC7	_
RE3	1	26	-	_	-	—	-	-	—	-	_	-	-	_	_	_	—	IOCE3	MCLR VPP
VDD	20	17	_	_	—	—	—	—	_	—	_	_	—	_	_	_	—	-	—
Vss	8, 19	5, 16	_	-	—	-	-	-	-	-	—	—	—	—	—	-	—	_	—
OUT ⁽²⁾	_	_	ADGRDA ADGRDB		_	C1OUT C2OUT	_	SDA1 SCL1 SDA2 SCL2	SS1 SCK1 SDO1	DTR1 RTS1 TX1 DTR2 RTS2 TX2	DSM	TMR0	CCP1 CCP2 CCP3 CCP4 PWM50UT PWM60UT PWM70UT PWM80UT	CWG1A CWG1B CWG1C CWG1D CWG2A CWG2A CWG2A CWG2C CWG3A CWG3A CWG3B CWG3C CWG3D	CLC10UT CLC20UT CLC30UT CLC40UT	NCO	CLKR	_	_

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F2XK42) (CONTINUED)

2: All output signals shown in this row are PPS remappable.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. These pins can be configured for I²C and SMB™ 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUs input buffer thresholds. 4:

3:

TABLE 1-1: **DEVICE FEATURES (CONTINUED)**

© 2016-2017	
Microchip	
Technology	
Inc.	

ADLE I-I. DEVICE FEATURES (CONTINUED)													
Features	PIC18(L)F26K42	PIC18(L)F27K42	PIC18(L)F45K42	PIC18(L)F46K42	PIC18(L)F47K42	PIC18(L)F55K42	PIC18(L)F56K42	PIC18(L)F57K42					
Comparator Module					2								
Direct Memory Access (DMA)				:	2								
Configurable Logic Cell (CLC)					4								
Peripheral Pin Select (PPS)				Ye	es								
Peripheral Module Disable (PMD)		Yes											
16-bit CRC with Scanner		Yes											
Programmable High/ Low-Voltage Detect (HLVD)				Yı	es								
Resets (and Delays)		POR, Programmable BOR, RESET Instruction, Stack Overflow, Stack Underflow (PWRT, OST), MCLR, WDT, MEMV											
Instruction Set				81 Instr 87 with Extended Ins	uctions; struction Set enabled	1							
Maximum Operating Frequency				64 1	MHz								

Note 1: PORTE is partially implemented. Pin RE3 is an input-only pin on 28/40/44/48-pin variants. In addition to that, on 40/44/48-pin variants, PORTE also consists of RE0, RE1 and RE2 pins.

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 3-4: DMA2PR: DMA2 PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1 R/W-1/1				
—	—	—	—	_	DMA2PR<2:0>					
bit 7							bit 0			

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 DMA2PR<2:0>: DMA2 Priority Selection bits

REGISTER 3-5: SCANPR: SCANNER PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-0/0				
—	—	—	_	—	SCANPR<2:0>					
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 SCANPR<2:0>: Scanner Priority Selection bits

REGISTER 3-6: PRLOCK: PRIORITY LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	PRLOCKED
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-1 Unimplemented: Read as '0'

bit 0 PRLOCKED: PR Register Lock bit^(1, 2)

0 = Priority Registers can be modified by write operations; Peripherals do not have access to the memory

1 = Priority Registers are locked and cannot be written; Peripherals have access to the memory

- Note 1: The PRLOCKED bit can only be set or cleared after the unlock sequence.
 - 2: If PR1WAY = 1, the PRLOCKED bit cannot be cleared after it has been set. A device Reset will clear the bit and allow one more set.

TABLE 4-3: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES BANK 64

				_		_									
40FFh	—	40DFh		40BFh	—	409Fh	—	407Fh	_	405Fh	—	403Fh		401Fh	_
40FEh	—	40DEh		40BEh	_	409Eh	_	407Eh	_	405Eh	—	403Eh		401Eh	_
40FDh	_	40DDh	T6PR_M2	40BDh	ADRESH_M2	409Dh	_	407Dh	_	405Dh	—	403Dh	-	401Dh	_
40FCh	_	40DCh	PWM5DCH_M2	40BCh	ADRESL_M2	409Ch	_	407Ch	_	405Ch	—	403Ch	-	401Ch	_
40FBh	TMR5H_M1	40DBh	PWM5DCL_M2	40BBh	ADPCH_M2	409Bh	_	407Bh	_	405Bh	—	403Bh	-	401Bh	_
40FAh	TMR5L_M1	40DAh	T6PR_M1	40BAh	ADCLK_M1	409Ah	—	407Ah	_	405Ah	—	403Ah		401Ah	_
40F9h	TMR3H_M1	40D9h	CCPR1H_M2	40B9h	ADACT_M1	4099h	—	4079h	_	4059h	—	4039h		4019h	_
40F8h	TMR3L_M1	40D8h	CCPR1L_M2	40B8h	ADREF_M1	4098h	—	4078h	_	4058h	—	4038h		4018h	_
40F7h	TMR1H_M1	40D7h	T4PR_M4	40B7h	ADCON3_M1	4097h	—	4077h	_	4057h	—	4037h		4017h	_
40F6h	TMR1L_M1	40D6h	PWM8DCH_M1	40B6h	ADCON2_M1	4096h	ADRESH_M1	4076h	_	4056h	—	4036h		4016h	_
40F5h	—	40D5h	PWM8DCL_M1	40B5h	ADCON1_M1	4095h	ADRESL_M1	4075h	_	4055h	—	4035h		4015h	_
40F4h	—	40D4h	T4PR_M3	40B4h	ADCON0_M1	4094h	ADPCH_M1	4074h	_	4054h	—	4034h		4014h	_
40F3h	—	40D3h	PWM7DCH_M1	40B3h	ADCAP_M2	4093h	ADCAP_M1	4073h	_	4053h	—	4033h	_	4013h	—
40F2h	—	40D2h	PWM7DCL_M1	40B2h	ADACQH_M2	4092h	ADACQH_M1	4072h	—	4052h	—	4032h	—	4012h	—
40F1h	—	40D1h	T4PR_M2	40B1h	ADACQL_M2	4091h	ADACQL_M1	4071h	_	4051h	—	4031h	—	4011h	—
40F0h	—	40D0h	CCPR4H_M1	40B0h	ADPREVH_M2	4090h	ADPREVH_M1	4070h	_	4050h	—	4030h	—	4010h	—
40EFh P	WM8DCH_M2	40CFh	CCPR4L_M1	40AFh	ADPREVL_M2	408Fh	ADPREVL_M1	406Fh	_	404Fh	—	402Fh	—	400Fh	—
40EEh P	WM8DCL_M2	40CEh	T4PR_M1	40AEh	ADRPT_M2	408Eh	ADRPT_M1	406Eh	_	404Eh	—	402Eh	—	400Eh	—
40EDh P	WM7DCH_M2	40CDh	CCPR3H_M1	40ADh	ADCNT_M2	408Dh	ADCNT_M1	406Dh	_	404Dh	—	402Dh	—	400Dh	—
40ECh P	WM7DCL_M2	40CCh	CCPR3L_M1	40ACh	ADACCU_M2	408Ch	ADACCU_M1	406Ch	_	404Ch	—	402Ch	—	400Ch	—
40EBh P	WM6DCH_M2	40CBh	T2PR_M3	40ABh	ADACCH_M2	408Bh	ADACCH_M1	406Bh	_	404Bh	—	402Bh	—	400Bh	—
	WM6DCL_M2	40CAh	PWM6DCH_M1	40AAh	ADACCL_M2	408Ah	ADACCL_M1	406Ah	_	404Ah	—	402Ah		400Ah	_
40E9h P	WM5DCH_M3	40C9h	PWM6DCL_M1	40A9h	ADFLTRH_M2	4089h	ADFLTRH_M1	4069h	_	4049h	—	4029h		4009h	_
40E8h P	PWM5DCL_M3	40C8h	T2PR_M2	40A8h	ADFLTRL_M2	4088h	ADFLTRL_M1	4068h	_	4048h	—	4028h		4008h	_
40E7h (CCPR4H_M2	40C7h	PWM5DCH_M1	40A7h	ADSTPTH_M2	4087h	ADSTPTH_M1	4067h	_	4047h	—	4027h	—	4007h	—
40E6h	CCPR4L_M2	40C6h	PWM5DCL_M1	40A6h	ADSTPTL_M2	4086h	ADSTPTL_M1	4066h	_	4046h	—	4026h	—	4006h	—
40E5h (CCPR3H_M2	40C5h	T2PR_M2	40A5h	ADERRH_M2	4085h	ADERRH_M1	4065h	_	4045h	—	4025h	—	4005h	—
40E4h	CCPR3L_M2	40C4h	CCPR2H_M1	40A4h	ADERRL_M2	4084h	ADERRL_M1	4064h	_	4044h	—	4024h	_	4004h	
40E3h	CCPR2H_M2	40C3h	CCPR2L_M1	40A3h	ADUTHH_M2	4083h	ADUTHH_M1	4063h	IOCEF_M1	4043h	_	4023h	_	4003h	—
40E2h	CCPR2L_M2	40C2h	T2PR_M1	40A2h	ADUTHL_M2	4082h	ADUTHL_M1	4062h	IOCCF_M1	4042h	—	4022h	—	4002h	
40E1h	CCPR1H_M3	40C1h	CCPR1H_M1	40A1h	ADLTHH_M2	4081h	ADLTHH_M1	4061h	IOCBF_M1	4041h	—	4021h	—	4001h	
40E0h	CCPR1L_M3	40C0h	CCPR1L_M1	40A0h	ADLTHL_M2	4080h	ADLTHL_M1	4060h	IOCAF_M1	4040h	_	4020h	_	4000h	_

Note 1: Addresses in Bank 64 are accessible ONLY through DMA Source and Destination Address Registers. CPU does not have access to registers in Bank 64.

7.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes).

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate internal system clock sources. The High-Frequency Internal Oscillator (HFINTOSC) can produce 1, 2, 4, 8, 12, 16, 32, 48 and 64 MHz clock. The frequency can be controlled through the OSCFRQ register (Register 7-5). The Low-Frequency Internal Oscillator (LFINTOSC) generates a fixed 31 kHz frequency.

A 4x PLL is provided that can be used with an external clock. When used with the HFINTOSC the 4x PLL has input frequency limitations.See **Section 7.2.1.4 "4x PLL"** for more details.

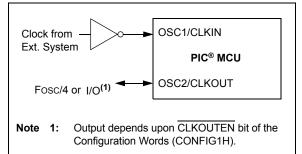
The system clock can be selected between external or internal clock sources via the NOSC bits in the OSCCON1 register. See **Section 7.3 "Clock Switching"** for additional information. The system clock can be made available on the OSC2/CLKOUT pin for any of the modes that do not use the OSC2 pin. The clock out functionality is governed by the CLKOUTEN bit in the CONFIG1H register (Register 5-2). If enabled, the clock out signal is always at a frequency of Fosc/4.

7.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the RSTOSC<2:0> and FEXTOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> and NDIV<3:0> bits in the OSCCON1 register to switch the system clock source.

See **Section 7.3 "Clock Switching"** for more information.


7.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/ CLKOUT is available for general purpose I/O or CLKOUT. Figure 7-2 shows the pin connections for EC mode. EC mode has three power modes to select from through Configuration Words:

- ECH High power
- ECM Medium power
- · ECL Low power

Refer to Table 44-9 for External Clock/Oscillator Timing Requirements. The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 7-2: EXTERNAL CLOCK (EC) MODE OPERATION

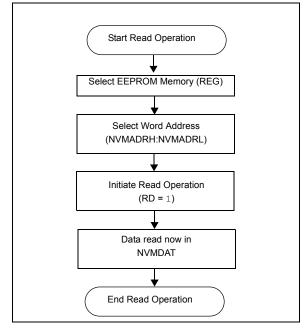
7.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification (above 100 kHz - 8 MHz).

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting (above 8 MHz).


Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

13.3.3 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the NVMADRL and NVMADRH register pair, clear REG<1:0> control bit in NVMCON1 register to access Data EEPROM locations and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the NVMDAT register can be read by the next instruction. NVMDAT will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 13-5.

FIGURE 13-11: DATA EEPROM READ FLOWCHART

13.3.4 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the address must first be written to the NVMADRL and NVMADRH register pair and the data written to the NVMDAT register. The sequence in Example 13-6 must be followed to initiate the write cycle.

The write will not begin if NVM Unlock sequence, described in **Section 13.1.4 "NVM Unlock Sequence"**, is not exactly followed for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in NVMCON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, NVMCON1, NVMADRL, NVMADRH and NVMDAT cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. A single Data EEPROM word is written and the operation includes an implicit erase cycle for that word (it is not necessary to set FREE). CPU execution continues in parallel and at the completion of the write cycle, the WR bit is cleared in hardware and the NVM Interrupt Flag bit (NVMIF) is set. The user can either enable this interrupt or poll this bit. NVMIF must be cleared by software.

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 15-3: DMA COUNTERS BLOCK DIAGRAM

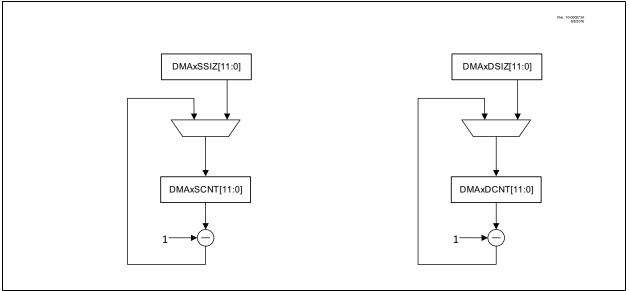


Table 15-2 has a few examples of configuring DMAMessage sizes.

TABLE 15-2:	EXAMPLE	E MESSAGE SIZE	TABLE	
Operat	ion	Example	SCNT	DONT

Operation	Example	SCNT	DCNT	Comments
Read from single SFR location to RAM	U1RXB	1	Ν	N equals the number of bytes desired in the destination buffer. N >= 1.
Write to single SFR location from RAM	U1TXB	N	1	N equals the number of bytes desired in the source buffer. N >= 1.
	ADRES[H:L]	2	2*N	N equals the number of ADC results to be stored in memory. N>= 1
Read from multiple SFR location	TMR1[H:L]	2	2*N	N equals the number of TMR1 Acquisition results to be stored in memory. N>= 1
	SMT1CPR[U:H:L]	3	3*N	N equals the number of Capture Pulse Width measurements to be stored in memory. N>= 1
Write to Multiple SFR regis-	PWMDC[H:L]	2*N	2	N equals the number of PWM duty cycle val- ues to be loaded from a memory table. N>= 1
ters	All ADC registers	N*31	31	Using the DMA to transfer a complete ADC context from RAM to the ADC registers.N>= 1

16.2.6 INPUT THRESHOLD CONTROL

The INLVLx register (Register 16-8) controls the input voltage threshold for each of the available PORTx input pins. A selection between the Schmitt Trigger CMOS or the TTL compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTx register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 44-6 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

16.2.7 WEAK PULL-UP CONTROL

The WPUx register (Register 16-5) controls the individual weak pull-ups for each port pin.

16.2.8 EDGE SELECTABLE INTERRUPT-ON-CHANGE

An interrupt can be generated by detecting a signal at the port pin that has either a rising edge or a falling edge. Any individual pin can be configured to generate an interrupt. The interrupt-on-change module is present on all the pins. For further details about the IOC module refer to Section 18.0 "Interrupt-on-Change".

16.2.9 I²C PAD CONTROL

For the PIC18(L)F26/27/45/46/47/55/56/57K42 devices, the I^2C specific pads are available on RB1, RB2, RC3, RC4, RD0⁽¹⁾ and RD1⁽¹⁾ pins. The I^2C characteristics of each of these pins is controlled by the RxyI2C registers (see Register 16-9). These characteristics include enabling I^2C specific slew rate (over standard GPIO slew rate), selecting internal pullups for I^2C pins, and selecting appropriate input threshold as per SMBus specifications.

Note 1: RD0 and RD1 I²C pads are not available in PIC18(L)F26K42 parts.

 Any peripheral using the I²C pins read the I²C ST inputs when enabled via RxyI2C.

16.3 PORTE Registers

Depending on the device, PORTE is implemented in two different ways.

16.3.1 PORTE ON 40/44/48-PIN DEVICES

For PIC18(L)F45/46/47/55/56/57K42 devices, PORTE is a 4-bit wide port. Three pins (RE0, RE1 and RE2) are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers. When selected as an analog input, these pins will read as '0's. The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver).

Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). TRISE controls the direction of the REx pins, even when they are being used as analog pins. The user must make sure to keep the pins configured as inputs when using them as analog inputs. RE<2:0> bits have other registers associated with them (i.e., ANSELE, WPUE, INLVLE, SLRCONE and ODCONE). The functionality is similar to the other ports. The Data Latch register (LATE) is also memory-mapped. Readmodify-write operations on the LATE register read and write the latched output value for PORTE.

Note: On a Power-on Reset, RE<2:0> are configured as analog inputs.

The fourth pin of PORTE (MCLR/VPP/RE3) is an input-only pin. Its operation is controlled by the MCLRE Configuration bit. When selected as a port pin, (MCLRE = 0), it functions as a digital input-only pin; as such, it does not have TRIS or LAT bits associated with its operation. Otherwise, it functions as the device's Master Clear input. In either configuration, RE3 also functions as the programming voltage input during programming. RE3 in PORTE register is a read-only bit and will read '1' when MCLRE = 1 (i.e., Master Clear enabled).

Note: On a Power-on Reset, RE3 is enabled as a digital input only if Master Clear functionality is disabled.

x = Bit is unknown

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLx7	INLVLx6	INLVLx5	INLVLx4	INLVLx3	INLVLx2	INLVLx1	INLVLx0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			

REGISTER 16-8: INLVLx: INPUT LEVEL CONTROL REGISTER

-n/n = Value at POR and BOR/Value at all other Resets

'0' = Bit is cleared

bit 7-0

'1' = Bit is set

- INLVLx<7:0>: Input Level Select on Pins Rx<7:0>, respectively
- 1 = ST input used for port reads and interrupt-on-change

0 = TTL input used for port reads and interrupt-on-change

TABLE 16-9: INPUT LEVEL PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2 ⁽¹⁾	INLVLB1 ⁽¹⁾	INLVLB0
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4 ⁽¹⁾	INLVLC3 ⁽¹⁾	INLVLC2	INLVLC1	INLVLC0
INLVLD ⁽²⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1 ⁽¹⁾	INLVLD0 ⁽¹⁾
INLVLE		_	_	—	INLVLE3	INLVLE2 ⁽²⁾	INLVLE1 ⁽²⁾	INLVLE0 ⁽²⁾
INLVLF ⁽³⁾	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0

Note 1: Any peripheral using the I^2C pins read the I^2C ST inputs when enabled via Rxyl2C.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

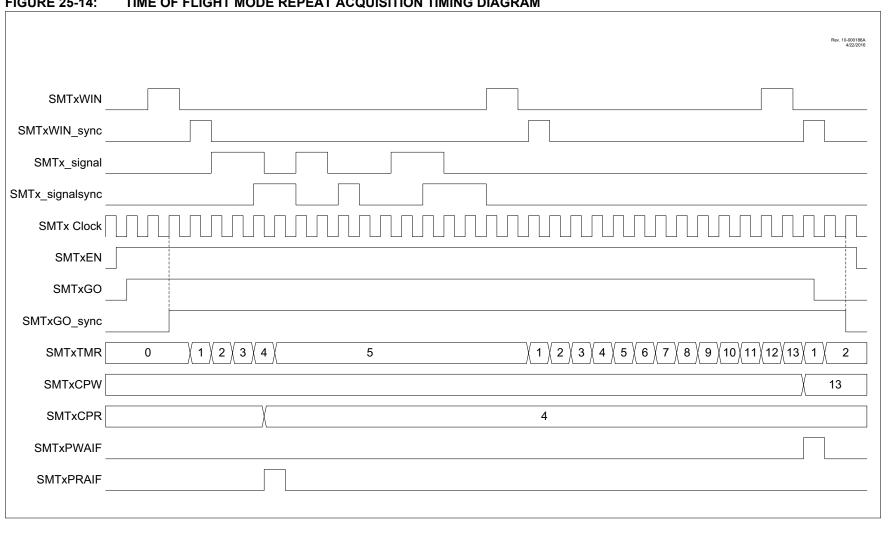

	MODE	<4:0>	Output	Onersting		Timer Control	
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop
		000		Software gate (Figure 22-6)	ON = 1	_	ON = 0
		001	Period Pulse	Hardware gate, active-high (Figure 22-7)	ON = 1 & TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0
		010	1 0136	Hardware gate, active-low	ON = 1 & TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1
Free		011		Rising or Falling Edge Reset		TMRx_ers	
Running Period	00	100	Period	Rising Edge Reset (Figure 22-8)	_	TMRx_ers ↑	ON = 0
		101	Pulse	Falling Edge Reset]	TMRx_ers ↓	
		110	with Hardware	Low Level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0
		111	Reset	High Level Reset (Figure 22-9)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1
		000	One-Shot	Software Start (Figure 22-10)	ON = 1	_	
		001	Edge	Rising Edge Start (Figure 22-9)	ON = 1 & TMRx_ers ↑	_	
		010 Triggered Start	Falling Edge Start	ON = 1 & TMRx_ers ↓	_		
		011	(Note 1)	Any eEdge Start	ON = 1 & TMRx_ers	_	ON = 0 or
One-shot	01	100	Edge	Rising Edge Start & Rising Edge Reset (Figure 22-12)	ON = 1 & TMRx_ers ↑	TMRx_ers ↑	Next clock after TMRx = PRx
		101	Triggered Start	Falling Edge Start & Falling Edge Reset	ON = 1 & TMRx_ers ↓	TMRx_ers ↓	(Note 2)
		110	and Hardware Reset	Rising Edge Start & Low Level Reset (Figure 22-13)	ON = 1 & TMRx_ers ↑	TMRx_ers = 0	
		111	(Note 1)	Falling Edge Start & High Level Reset	ON = 1 & TMRx_ers ↓	TMRx_ers = 1	
		000		Res			
		001	Edge	Rising Edge Start (Figure 22-12)	ON = 1 & TMRx_ers ↑	—	ON=0
Monostable		010	Triggered Start	Falling Edge Start	ON = 1 & TMRx_ers ↓	—	or Next clock after TxTMR = TxPR
		011	(Note 1)	Any Edge Start	ON = 1 & TMRx_ers	_	(Note 3)
Reserved	10	100		Res	erved		
Reserved		101		Res	erved		
		110	Level Triggered	High Level Start & Low Level Reset (Figure 22-13)	ON = 1 & TMRx_ers = 1	TMRx_ers = 0	ON = 0 or
0			Start and	Low Level Start &	ON = 1 &		Held in Reset
One-shot		111	Hardware Reset	High Level Reset	TMRx_ers = 0	TMRx_ers = 1	(Note 2)

TABLE 22-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TxTMR = TxPR then the next clock clears ON and stops TxTMR at 00h.

3: When TxTMR = TxPR then the next clock stops TxTMR at 00h but does not clear ON.

FIGURE 25-14: TIME OF FLIGHT MODE REPEAT ACQUISITION TIMING DIAGRAM

R/W/HC-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
GO	REPEAT				MODE	<3:0>			
bit 7							bit (
Legend:									
HC = Bit is clea	ared by hardv	vare		HS = Bit is se	t by hardware				
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condi	tion			
bit 7	1 = Increme	ta Acquisition bit nting, acquiring nting, acquiring	data is enabl						
bit 6	1 = Repeat I	MT Repeat Acqu Data Acquisition cquisition mode	mode is ena						
bit 5-4	Unimpleme	nted: Read as ')'						
bit 3-0	MODE<3:0> SMT Operation Mode Select bits								
	1111 = Res	erved							
	•								
	•								
	1011 = Res	erved							
		dowed counter							
	1001 = Gate 1000 = Cou								
	0111 = Cap								
	0110 = Time								
		ed windowed me	asure						
	0100 = Windowed measure 0011 = High and low time measurement								
		od and Duty-Cyc		n					
	0001 = Gate		·						
	0000 = Time								

REGISTER 25-2: SMT1CON1: SMT CONTROL REGISTER 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	G4D4T: Gate	e 3 Data 4 True	(non-inverted)) bit				
		(true) is gated i						
		(true) is not gat						
bit 6		e 3 Data 4 Nega	· · ·	·				
		(inverted) is ga (inverted) is no						
bit 5		e 3 Data 3 True	•					
bit 5		(true) is gated i						
		(true) is not gat						
bit 4	G4D3N: Gate	e 3 Data 3 Nega	ated (inverted)) bit				
	1 = CLCIN2	(inverted) is ga	ted into CLCx	Gate 3				
	0 = CLCIN2	(inverted) is no	t gated into C	LCx Gate 3				
bit 3	G4D2T: Gate	e 3 Data 2 True	(non-inverted)) bit				
		(true) is gated i						
		(true) is not gat						
bit 2		e 3 Data 2 Nega						
		(inverted) is ga (inverted) is no						
bit 1		e 4 Data 1 True	•					
			•	,				
	 CLCIN0 (true) is gated into CLCx Gate 3 CLCIN0 (true) is not gated into CLCx Gate 3 							
bit 0	G4D1N: Gate	e 3 Data 1 Nega	ated (inverted)) bit				
		(inverted) is ga						
	0 = CLCIN0	(inverted) is no	t gated into C	LCx Gate 3				

REGISTER 27-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

29.0 ZERO-CROSS DETECTION (ZCD) MODULE

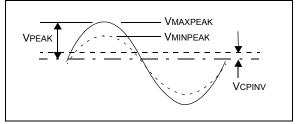
The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 29-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- Accurate long term time measurement
- Dimmer phase delayed drive
- Low EMI cycle switching

29.1 External Resistor Selection


The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 29-1 and Figure 29-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 29-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 29-1: EXTERNA

30.11 Register Definitions: Modulation Control

Long bit name prefixes for the Modulation peripheral is shown below. Refer to **Section 1.3.2.2 "Long Bit Names**" for more information.

Peripheral	Bit Name Prefix
MD1	MD1

REGISTER 30-1: MD1CON0: MODULATION CONTROL REGISTER 0

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	—	OUT	OPOL	—	—	—	BIT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: Modulator Module Enable bit
	1 = Modulator module is enabled and mixing input signals
	0 = Modulator module is disabled and has no output
bit 6	Unimplemented: Read as '0'
bit 5	OUT: Modulator Output bit
	Displays the current output value of the Modulator module. ⁽¹⁾
bit 4	OPOL: Modulator Output Polarity Select bit
	1 = Modulator output signal is inverted; idle high output
	0 = Modulator output signal is not inverted; idle low output
bit 3-1	Unimplemented: Read as '0'
bit 0	BIT: Allows software to manually set modulation source input to module ⁽²⁾
	1 = Modulator selects Carrier High
	0 = Modulator selects Carrier Low
Note 1:	The modulated output frequency can be greater and asynchronous from the clock that updates this register bit, the bit value may not be valid for higher speed modulator or carrier signals.

2: BIT bit must be selected as the modulation source in the MD1SRC register for this operation.

The SPI transmit output (SDO_out) is available to the remappable PPS SDO pin and internally to the following peripherals:

- Configurable Logic Cell (CLC)
- Data Signal Modulator (DSM)

The SPI bus typically operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions typically involve shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new bit is shifted into the device. Unlike older Microchip devices, the SPI on the PIC18(L)F2X/4X/5XK42 contains two separate registers for incoming and outgoing data. Both registers also have 2-byte FIFO buffers and allow for DMA bus connections.

Figure 32-2 shows a typical connection between two PIC18F2X/4X/5XK42 devices configured as master and slave devices.

Data is shifted out of the transmit FIFO on the programmed clock edge and into the receive shift register on the opposite edge of the clock.

The master device transmits information on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

The master device sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its output register (on its SDO pin) and the slave device is reading this bit and saving as the LSb of its input register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its input register.

After eight bits have been shifted out, the master and slave have exchanged register values and stored the incoming data into the receiver FIFOs.

If there is more data to exchange, the registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data) depends on the application software. This leads to three scenarios for data transmission:

· Master sends useful data and slave sends dummy

data

- Master sends useful data and slave sends useful data
- Master sends dummy data and slave sends useful data

In this particular SPI module, dummy data may be sent without software involvement, by clearing either the RXR bit (for receiving dummy data) or the TXR bit (for sending dummy data) (see Table 32-1 as well as Section 32.5 "Master mode" and Section 32.6 "Slave Mode" for further TXR/RXR setting details). This SPI module can send transmissions of any number of bits, and can send information in segments of varying size (from 1-8 bits in width). As such, transmissions may involve any number of clock cycles, depending on the amount of data to be transmitted.

When there is no more data to be transmitted, the master stops sending the clock signal and deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line disregards the clock and transmission signals and does not transmit out any data of its own.

32.7 SPI Operation in Sleep Mode

SPI master mode will operate in Sleep, provided the clock source selected by SPIxCLK is active in Sleep mode. FIFOs will operate as they would when the part is awake. When TXR = 1, the TXFIFO will need to contain data in order for transfers to take place in Sleep. All interrupts will still set the interrupt flags in Sleep but only enabled interrupts will wake the device from Sleep.

SPI Slave mode will operate in Sleep, because the clock is provided by an external master device. FIFOs will still operate and interrupts will set interrupt flags, and enabled interrupts will wake the device from Sleep.

32.8 SPI Interrupts

There are three top level SPI interrupts in the PIRx register:

- SPI Transmit
- SPI Receive
- · SPI Module status

The status interrupts are enabled at the module level in the SPIxINTE register. Only enabled status interrupts will cause the single top level SPIxIF flag to be set.

32.8.1 SPI RECEIVER DATA INTERRUPT

The SPI Receiver Data Interrupt is set when RXFIFO contains data, and is cleared when the RXFIFO is empty. The interrupt flag SPI1RXIF is located in PIRx and the interrupt enable SPI1RXIE is located in PIEx. This interrupt flag is read-only.

32.8.2 SPI TRANSMITTER DATA INTERRUPT

The SPI Transmitter Data Interrupt is set when TXFIFO is not full, and is cleared when the TXFIFO is full. The interrupt flag SPI1TXIF is located in PIRx and the interrupt enable SPI1TXIE is located in PIEx. The interrupt flag is read-only.

32.8.3 SPI MODULE STATUS INTERRUPTS

The SPIxIF flag in the respective PIR register is set when any of the individual status flags in SPIxINTF and their respective SPIxINTE bits are set. In order for the setting of any specific interrupt flag to interrupt normal program flow both the SPIxIE bit as well as the specific bit in SPIxINTE associated with that interrupt must be set.

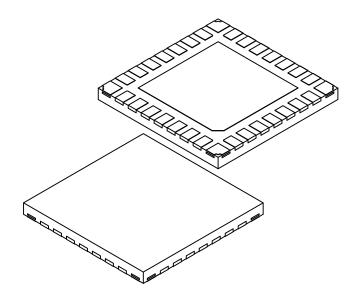
The Status Interrupts are:

- Shift Register Empty Interrupt
- Transfer Counter is Zero Interrupt
- · Start of Slave Select Interrupt
- · End of Slave Select Interrupt
- · Receiver Overflow Interrupt
- Transmitter Underflow Interrupt

PIC18(L)F26/27/45/46/47/55/56/57K42

CPF	SLT	Compare	Compare f with W, skip if f < W					
Synta	ax:	CPFSLT f	{,a}					
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Oper	ation:	(f) – (W), skip if (f) < ((unsigned c						
Statu	s Affected:	None						
Enco	ding:	0110	000a fff	f ffff				
	ription:	location 'f' tr performing a If the content contents of instruction is executed in 2-cycle instru If 'a' is '0', th If 'a' is '1', th GPR bank.	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the CPR bank					
Word	ls:	1						
Cycle	es: ycle Activity:		ycles if skip ar a 2-word instru					
QU	Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
		register 'f'	Data	operation				
lf sk	ip:							
1	Q1	Q2	Q3	Q4				
	No	No	No	No				
lf ok	operation	operation	operation	operation				
II SK	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Example</u> :		HERE C NLESS : LESS :		1				
	Before Instruc PC W After Instructic	= Ad = ?	dress (HERE))				
	If REG PC If REG	< W;	dress (LESS))				
	PC	,	dress (NLESS	5)				

DAW	D	Decimal Adjust W Register					
Syntax:	D	DAW					
Operands:	N	None					
Operation:	(V el	If [W<3:0> > 9] or [DC = 1] then (W<3:0>) + 6 \rightarrow W<3:0>; else (W<3:0>) \rightarrow W<3:0>;					
	() el	If [W<7:4> + DC > 9] or [C = 1] then (W<7:4>) + 6 + DC \rightarrow W<7:4> ; else (W<7:4>) + DC \rightarrow W<7:4>					
Status Affected:	С						
Encoding:	Γ	0000	0000	000	00	0 0111	
Description:	in al	DAW adjusts the 8-bit value in W, result- ing from the earlier addition of two vari- ables (each in packed BCD format) and produces a correct packed BCD result.				f two vari- rmat) and	
Words:	1	1					
Cycles:							
Q Cycle Activity	<i>r</i> :						
Q1		Q2	Q3		Q4		
Decode	re	Read gister W	Proce Dat			Write W	
Example1:							
DAW							
Before Inst	ruction						
W C DC	= = =	A5h 0 0					
After Instruction							
W C DC <u>Example 2</u> :	= = =	05h 1 0					
Before Instruction							
W C DC After Instru	= = = ction	CEh 0 0					
W C DC	= = =	34h 1 0					


PIC18(L)F26/27/45/46/47/55/56/57K42

DCF	DCFSNZ Decrement f, skip if not 0					
Synta	ax:	DCFSNZ	f {,d {,a}}			
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Oper	ation:	(f) – 1 \rightarrow dest, skip if result $\neq 0$				
Statu	is Affected:	None				
Enco	oding:	0100 11da ffff ffff				
Desc	ription:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.				
Word	ls:	1				
Cycle	es:		cycles if skip an a 2-word instr			
QC	ycle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read	Process	Write to		
		register 'f'	Data	destination		
lf sk	-	00	02	04		
	Q1 No	Q2 No	Q3 No	Q4 No		
	operation	operation	operation	operation		
If skip and followed by 2-word instruction:						
	Q1	Q2	Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
	No	No	No	No		
	operation	operation	operation	operation		
<u>Exan</u>		ZERO : NZERO :	:	P, 1, 0		
Before Instruction TEMP = ?						
After Instruction						
TEMP = TEMP			TEMP – 1,			
	If TEMP PC If TEMP PC	= = ≠	0; Address (2 0; Address (1)	IERO) IZERO)		

Operands: $0 \le k \le 1048575$ Operation: $k \rightarrow PC<20:1>$ Status Affected:NoneEncoding: 1st word (k<7:0>) 2nd word(k<19:8>) 1110 1111 k_1gkkk k_7kkk $kkkk$ $kkkk$ Description:GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction.Words:2Q Cycles:2Q Cycle Activity:Q1Q2Q3Q4DecodeRead literal 'k'<7:0>, operationNoNoNo operationNoNo operationNo operationExample:GOTO THERE After Instruction	Syntax:	GOTO k	GOTO k				
Status Affected: None Encoding: 1st word (k<7:0>) 1st word (k<19:8>) 1110 1111 kr7kkk kkkko Description: GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction. Words: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal No Read literal 'k'<7:0>, operation 'k'<19:8>, Write to PC No No No No No Example: GOTO THERE GOTO THERE After Instruction	Operands:	$0 \leq k \leq 1048575$					
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>) Description: GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction. Words: 2 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal 'k'<7:0>, operation 'k'<19:8>, Write to PC No operation operation operation operation operation operation operation	Operation:	$k \rightarrow PC < 20$	$k \rightarrow PC < 20:1 >$				
1st word (k<7:0>) 1110 1111 k ₁ 9kkk kkkk ₀ 2nd word(k<19:8>) 1111 k ₁ 9kkk kkkk kkkk ₀ Description: GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction. Words: 2 Q Cycle Activity: 2 Q1 Q2 Q3 Q4 Pecode Pecode Read literal 'k'<7:0>, operation 'k'<19:8>, Write to PC No No operation operation 'k'<19:8>, Write to PC No No No operation operation operation Operation operation	Status Affected:	None					
anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction. Words: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal No Read literal 'k'<7:0>, operation 'k'<19:8>, Write to PC No No No No No operation operation operation Example: GOTO THERE After Instruction	1st word (k<7:0>)			'		0	
Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal No Read literal 'k'<7:0>, operation 'k'<19:8>, Write to PC No No No No No operation operation operation Example: GOTO THERE After Instruction	Description:	anywhere v 2-Mbyte me value 'k' is GOTO is alv	vithin enti emory rar loaded in	ire nge. T to PC	he 2	20-bit	
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal No Read literal 'k'<7:0>, operation 'k'<19:8>, Write to PC No No No No operation operation operation Example: GOTO THERE After Instruction	Words:	Nords: 2					
Q1 Q2 Q3 Q4 Decode Read literal 'k'<7:0>, No Read literal operation No No No No Write to PC No No No No operation operation operation Example: GOTO THERE After Instruction	Cycles:	vcles: 2					
Decode Read literal 'k'<7:0>, No operation Read literal 'k'<19:8>, Write to PC No No No No operation operation operation operation Example: GOTO THERE After Instruction operation	Q Cycle Activity:						
'k'<7:0>, operation 'k<19:8>, No No No No operation operation operation Example: GOTO THERE After Instruction	Q1	Q2	Q3		Q4		
operation operation operation Example: GOTO THERE After Instruction	Decode				'k'<19:8>		
Example: GOTO THERE After Instruction							
After Instruction							
PC = Address (THERE)					op		

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Number of Pins	N		28		
Pitch	е	0.65 BSC			
Overall Height	Α	0.40	0.50	0.60	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	(A3)	0.127 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2		4.00		
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2		4.00		
Terminal Width	b	0.35	0.40	0.45	
Corner Pad	b1	0.55	0.60	0.65	
Corner Pad, Metal Free Zone	b2	0.15	0.20	0.25	
Terminal Length	L	0.55	0.60	0.65	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 4. Outermost portions of corner structures may vary slightly.

Microchip Technology Drawing C04-0209 Rev C Sheet 2 of 2