



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 64MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                 |
| Number of I/O              | 44                                                                         |
| Program Memory Size        | 64KB (32K x 16)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 1K x 8                                                                     |
| RAM Size                   | 4K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                                |
| Data Converters            | A/D 43x12b; D/A 1x5b                                                       |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 48-UFQFN Exposed Pad                                                       |
| Supplier Device Package    | 48-UQFN (6x6)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f56k42-i-mv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| CASE 1:             |                  |                              |
|---------------------|------------------|------------------------------|
| Object Code         | Source Code      |                              |
| 0110 0110 0000 0000 | TSTFSZ REG1      | ; is RAM location 0?         |
| 1100 0001 0010 0011 | MOVFF REG1, REG2 | ; Yes, skip this word        |
| 1111 0100 0101 0110 |                  | ; Execute this word as a NOP |
| 0010 0100 0000 0000 | ADDWF REG3       | ; continue code              |
| CASE 2:             |                  |                              |
| Object Code         | Source Code      |                              |
| 0110 0110 0000 0000 | TSTFSZ REG1      | ; is RAM location 0?         |
| 1100 0001 0010 0011 | MOVFF REG1, REG2 | ; No, execute this word      |
| 1111 0100 0101 0110 |                  | ; 2nd word of instruction    |
| 0010 0100 0000 0000 | ADDWF REG3       | ; continue code              |

### EXAMPLE 4-4: TWO-WORD INSTRUCTIONS

### EXAMPLE 4-5: THREE-WORD INSTRUCTIONS

| CASE 1:             |                   |                              |
|---------------------|-------------------|------------------------------|
| Object Code         | Source Code       |                              |
| 0110 0110 0000 0000 | TSTFSZ REG1       | ; is RAM location 0?         |
| 0000 0000 0110 0000 | MOVFFL REG1, REG2 | 2 ; Yes, skip this word      |
| 1111 0100 1000 1100 |                   | ; Execute this word as a NOP |
| 1111 0100 0101 0110 |                   | ; Execute this word as a NOP |
| 0010 0100 0000 0000 | ADDWF REG3        | ; continue code              |
| CASE 2:             |                   |                              |
| Object Code         | Source Code       |                              |
| 0110 0110 0000 0000 | TSTFSZ REG1       | ; is RAM location 0?         |
| 0000 0000 0110 0000 | MOVFFL REG1, REG2 | 2 ; No, execute this word    |
| 1111 0100 1000 1100 |                   | ; 2nd word of instruction    |
| 1111 0100 0101 0110 |                   | ; 3rd word of instruction    |
| 0010 0100 0000 0000 | ADDWF REG3        | ; continue code              |

| Bank            | BSR<5:0>  | Address<br>addr<7:0> | PIC18(L)F45K42<br>PIC18(L)F55K42 | PIC18(L)F26K42<br>PIC18(L)F46K42<br>PIC18(L)F56K42 | PIC18(L)F27K42<br>PIC18(L)F47K42<br>PIC18(L)F57K42 | Address<br>addr<13:0> |                                                |
|-----------------|-----------|----------------------|----------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------|------------------------------------------------|
|                 |           | 00h                  | Access RAM                       | Access RAM                                         | Access RAM                                         | 0000h                 | 1                                              |
| ank 0           | 00 0000   |                      | CDD                              | CDD                                                |                                                    | 005Fh                 | 4/                                             |
|                 |           | FFh                  | GPR                              | GPR                                                | GPR                                                | 006011<br>00FFh       |                                                |
| ank 1           | 00 0001   | 00h                  |                                  |                                                    |                                                    | 0100h                 |                                                |
| ank 0           | 0.0.001.0 | FFh                  |                                  |                                                    |                                                    | •                     |                                                |
|                 | 00 0010   | FFh                  |                                  | 000                                                |                                                    |                       |                                                |
|                 |           | 00h                  | GPR                              | GPR                                                | GPR                                                |                       |                                                |
| ank 3           | 0.0.0011  |                      |                                  |                                                    |                                                    | •                     |                                                |
| unit o          | 00 0011   | FFh                  |                                  |                                                    |                                                    | 03FFh                 | Virtual Bank                                   |
|                 |           | 00h                  |                                  |                                                    |                                                    | 0400h                 |                                                |
| lanks           | 00 0100   |                      | GPR                              | GPR                                                | GPR                                                |                       |                                                |
| to 7            | 00 0111   | EEb                  |                                  |                                                    |                                                    | 0755b                 | SER                                            |
|                 |           | 00h                  |                                  |                                                    |                                                    | 0800h                 | - /   0.11                                     |
| lanks           | 00 1000   | :                    |                                  | CPP                                                |                                                    | •                     | · / / <u>· · · · · · · · · · · · · · · · ·</u> |
| to 15           | - 00 1111 |                      |                                  | Ont                                                |                                                    |                       |                                                |
|                 |           | FFh<br>00b           |                                  |                                                    | GPR                                                | 0FFFh<br>1000b        | - //                                           |
| anks            | 01 0000   |                      | Unimplemented                    |                                                    |                                                    |                       |                                                |
| 6 to 31         | -         |                      | Unimplemented                    |                                                    |                                                    |                       |                                                |
|                 | 01 1111   | FFh                  |                                  | Unimplemented                                      |                                                    | 1FFFh                 | - //                                           |
| anks            | 10 0000   | ·                    |                                  |                                                    |                                                    |                       |                                                |
| 2 to 55         | -         | :                    |                                  |                                                    | Unimplemented                                      |                       |                                                |
|                 | 11 0111   | FFh                  |                                  |                                                    |                                                    | 37FFh                 |                                                |
|                 | 11 1000   | 00h                  |                                  |                                                    |                                                    | 3800h                 |                                                |
| anks<br>5 to 62 | 11 1000   |                      | SFR                              | SFR                                                | SFR                                                |                       |                                                |
|                 | 11 1110   | FFh                  |                                  |                                                    |                                                    | 3EFFh                 | //                                             |
|                 |           | 00h                  | SED                              | SED                                                | SED                                                | 3800h                 | 7//                                            |
| ank 63          | 11 1111   |                      | ork                              | SFK                                                | ork                                                | 3F60h                 | - <b>1</b> /                                   |
|                 |           |                      |                                  |                                                    |                                                    | 3FFFh                 | /                                              |

FIGURE 4-4:

### DATA MEMORY MAP FOR PIC18/I )E26/27/45/46/47/55/56/57K42 DEVICES

© 2016-2017 Microchip Technology Inc.



|                  |                                   | <u> </u>         |                 |                |                  |                  |              |  |  |  |  |
|------------------|-----------------------------------|------------------|-----------------|----------------|------------------|------------------|--------------|--|--|--|--|
| R/W-0/0          | R/W-0/0                           | R/W-0/0          | R/W-0/0         | R/W-0/0        | R/W-0/0          | R/W-0/0          | R/W-0/0      |  |  |  |  |
| TMR0IE           | U1IE                              | U1EIE            | U1TXIE          | U1RXIE         | I2C1EIE          | I2C1IE           | I2C1TXIE     |  |  |  |  |
| bit 7            |                                   |                  |                 |                |                  |                  | bit 0        |  |  |  |  |
|                  |                                   |                  |                 |                |                  |                  |              |  |  |  |  |
| Legend:          |                                   |                  |                 |                |                  |                  |              |  |  |  |  |
| R = Readable     | bit                               | W = Writable     | bit             | U = Unimpler   | mented bit, read | l as '0'         |              |  |  |  |  |
| u = Bit is unch  | anged                             | x = Bit is unk   | nown            | -n/n = Value a | at POR and BO    | R/Value at all o | other Resets |  |  |  |  |
| '1' = Bit is set |                                   | '0' = Bit is cle | ared            |                |                  |                  |              |  |  |  |  |
|                  |                                   |                  |                 |                |                  |                  |              |  |  |  |  |
| bit 7            | TMROIE: TMI                       | R0 Interrupt Er  | able bit        |                |                  |                  |              |  |  |  |  |
|                  | 1 = Enabled                       | I                |                 |                |                  |                  |              |  |  |  |  |
| bit 6            |                                   | l Interrunt Enal | ole hit         |                |                  |                  |              |  |  |  |  |
|                  | 1 = Enabled                       |                  |                 |                |                  |                  |              |  |  |  |  |
|                  | 0 = Disabled                      | l                |                 |                |                  |                  |              |  |  |  |  |
| bit 5            | U1EIE: UAR                        | T1 Framing Err   | or Interrupt Er | nable bit      |                  |                  |              |  |  |  |  |
|                  | 1 = Enabled                       | 1 = Enabled      |                 |                |                  |                  |              |  |  |  |  |
| L:1 4            |                                   |                  |                 | - 1-14         |                  |                  |              |  |  |  |  |
| DIT 4            |                                   | R11 Transmit Ir  | iterrupt Enable | e bit          |                  |                  |              |  |  |  |  |
|                  | 0 = Disabled                      | 0 = Disabled     |                 |                |                  |                  |              |  |  |  |  |
| bit 3            | U1RXIE: UA                        | RT1 Receive Ir   | iterrupt Enable | e bit          |                  |                  |              |  |  |  |  |
|                  | 1 = Enabled                       |                  |                 |                |                  |                  |              |  |  |  |  |
|                  | 0 = Disabled                      | 0 = Disabled     |                 |                |                  |                  |              |  |  |  |  |
| bit 2            | <b>12C1EIE:</b> 1 <sup>2</sup> C  | 1 Error Interrup | ot Enable bit   |                |                  |                  |              |  |  |  |  |
|                  | 1 = Enabled                       | 1 = Enabled      |                 |                |                  |                  |              |  |  |  |  |
| hit 1            |                                   | Interrunt Enab   | le hit          |                |                  |                  |              |  |  |  |  |
| bit i            | 1 = Enabled                       |                  |                 |                |                  |                  |              |  |  |  |  |
|                  | 0 = Disabled                      | l                |                 |                |                  |                  |              |  |  |  |  |
| bit 0            | <b>12C1TXIE:</b> 1 <sup>2</sup> 0 | C1 Transmit Int  | errupt Enable   | bit            |                  |                  |              |  |  |  |  |
|                  | 1 = Enabled                       |                  |                 |                |                  |                  |              |  |  |  |  |
|                  | 0 = Disabled                      |                  |                 |                |                  |                  |              |  |  |  |  |
|                  |                                   |                  |                 |                |                  |                  |              |  |  |  |  |

### REGISTER 9-17: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

| R/W-0/0          | R/W-0/0                                 | U-0               | U-0            | U-0                                                   | U-0              | U-0    | U-0   |  |
|------------------|-----------------------------------------|-------------------|----------------|-------------------------------------------------------|------------------|--------|-------|--|
| TMR5GIE          | TMR5IE                                  | _                 | —              | _                                                     | —                | —      | —     |  |
| bit 7            |                                         |                   |                |                                                       |                  |        | bit 0 |  |
|                  |                                         |                   |                |                                                       |                  |        |       |  |
| Legend:          |                                         |                   |                |                                                       |                  |        |       |  |
| R = Readable     | bit                                     | W = Writable      | bit            | U = Unimpler                                          | mented bit, read | as '0' |       |  |
| u = Bit is uncha | anged                                   | x = Bit is unkr   | iown           | -n/n = Value at POR and BOR/Value at all other Resets |                  |        |       |  |
| '1' = Bit is set |                                         | '0' = Bit is clea | ared           |                                                       |                  |        |       |  |
|                  |                                         |                   |                |                                                       |                  |        |       |  |
| bit 7            | TMR5GIE: TN                             | MR5 Gate Inter    | rupt Enable bi | it                                                    |                  |        |       |  |
|                  | 1 = Enabled                             |                   |                |                                                       |                  |        |       |  |
|                  | 0 = Disabled                            |                   |                |                                                       |                  |        |       |  |
| bit 6            | bit 6 TMR5IE: TMR5 Interrupt Enable bit |                   |                |                                                       |                  |        |       |  |
|                  | 1 = Enabled                             |                   |                |                                                       |                  |        |       |  |
|                  | 0 = Disabled                            |                   |                |                                                       |                  |        |       |  |
| bit 5-0          | Unimplemen                              | ted: Read as '    | ) <b>'</b>     |                                                       |                  |        |       |  |

### REGISTER 9-22: PIE8: PERIPHERAL INTERRUPT ENABLE REGISTER 8

#### REGISTER 9-23: PIE9: PERIPHERAL INTERRUPT ENABLE REGISTER 9

| U-0   | U-0 | U-0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 |
|-------|-----|-----|-----|---------|---------|---------|---------|
| —     | —   | —   | —   | CLC3IE  | CWG3IE  | CCP3IE  | TMR6IE  |
| bit 7 |     |     |     |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7-4 | Unimplemented: Read as '0'        |
|---------|-----------------------------------|
| bit 3   | CLC3IE: CLC3 Interrupt Enable bit |
|         | 1 = Enabled<br>0 = Disabled       |
| bit 2   | CWG3IE: CWG3 Interrupt Enable bit |
|         | 1 = Enabled<br>0 = Disabled       |
| bit 1   | CCP3IE: CCP3 Interrupt Enable bit |
|         | 1 = Enabled<br>0 = Disabled       |
| bit 0   | TMR6IE: TMR6 Interrupt Enable bit |
|         | 1 = Enabled                       |
|         | U = Disabled                      |

|              | MOVLW   | D'64′              | ; number of bytes in erase block         |
|--------------|---------|--------------------|------------------------------------------|
|              | MOVWF   | COUNTER            |                                          |
|              | MOVLW   | BUFFER_ADDR_HIGH   | ; point to buffer                        |
|              | MOVWF   | FSROH              |                                          |
|              | MOVLW   | BUFFER_ADDR_LOW    |                                          |
|              | MOVWF   | FSRUL              | . I and motomo with the base             |
|              | MOVEW   | CODE_ADDK_OFFER    | ; LOAD IBLFIR WITH THE DASE              |
|              | MOVIW   | CODE ADDR HIGH     | , address of the memory brock            |
|              | MOVWF   | TBLPTRH            |                                          |
|              | MOVLW   | CODE ADDR LOW      |                                          |
|              | MOVWF   | TBLPTRL —          |                                          |
| READ_BLOCK   |         |                    |                                          |
|              | TBLRD*+ |                    | ; read into TABLAT, and inc              |
|              | MOVF    | TABLAT, W          | ; get data                               |
|              | MOVWF   | POSTINCO           | ; store data                             |
|              | DECFSZ  | COUNTER            | ; done?                                  |
| MODIEN MODE  | BRA     | READ_BLOCK         | ; repeat                                 |
| MODIF.X_WORD |         | מטידה מטעע מאבאוני | · point to buffer                        |
|              | MOAME   | FSROH              | , point to buildi                        |
|              | MOVIW   | BUFFER ADDR LOW    |                                          |
|              | MOVWF   | FSR0L              |                                          |
|              | MOVLW   | NEW DATA LOW       | ; update buffer word                     |
|              | MOVWF   | POSTINC0           |                                          |
|              | MOVLW   | NEW_DATA_HIGH      |                                          |
|              | MOVWF   | INDFO              |                                          |
| ERASE_BLOCK  |         |                    |                                          |
|              | MOVLW   | CODE_ADDR_UPPER    | ; load TBLPTR with the base              |
|              | MOVWE   | TBLPTRU            | ; address of the memory block            |
|              | MOVLW   | CODE_ADDK_HIGH     |                                          |
|              | MOVIW   | CODE ADDE LOW      |                                          |
|              | MOVWF   | TBLPTRL            |                                          |
|              | BCF     | NVMCON1, REG0      | ; point to Program Flash Memory          |
|              | BSF     | NVMCON1, REG1      | ; point to Program Flash Memory          |
|              | BSF     | NVMCON1, WREN      | ; enable write to memory                 |
|              | BSF     | NVMCON1, FREE      | ; enable Erase operation                 |
|              | BCF     | INTCON0, GIE       | ; disable interrupts                     |
|              | MOVLW   | 55h                |                                          |
| Required     | MOVWF'  | NVMCON2            | ; write 55h                              |
| sequence     | MOVLW   | AAN<br>NYMCON2     | · write OAAb                             |
|              | BSF     | NVMCON1 WR         | , will UAAN<br>• start prasp (CPN stall) |
|              | BSF     | INTCONO, GIE       | ; re-enable interrupts                   |
|              | TBLRD*- |                    | ; dummy read decrement                   |
|              | MOVLW   | BUFFER ADDR HIGH   | ; point to buffer                        |
|              | MOVWF   | FSROH              |                                          |
|              | MOVLW   | BUFFER_ADDR_LOW    |                                          |
|              | MOVWF   | FSROL              |                                          |
| WRITE_BUFFEF | BACK    |                    |                                          |
|              | MOVLW   | BlockSize          | ; number of bytes in holding register    |
|              | MOVWE   | COUNTER            |                                          |
|              | MOVINE  | D. 04, \RTOCK2126  | ; number of Write blocks in 64 bytes     |
|              | MOVWE   | COUNTERZ           |                                          |

#### EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY

### REGISTER 15-9: DMAxSPTRU: DMAx SOURCE POINTER UPPER REGISTER

| U-0   | U-0 | R-0 | R-0         | R-0 | R-0 | R-0 | R-0   |  |  |
|-------|-----|-----|-------------|-----|-----|-----|-------|--|--|
| _     | —   |     | SPTR<21:16> |     |     |     |       |  |  |
| bit 7 |     |     |             |     |     |     | bit 0 |  |  |

# Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and 1 = bit is set 0 = bit is cleared x = bit is unknown BOR/Value at all other u = bit is unchanged Resets 0 = bit is cleared x = bit is unchanged

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SPTR<21:16>: Current Source Address Pointer

### REGISTER 15-10: DMAxSSZL: DMAx SOURCE SIZE LOW REGISTER

| R/W-0/0  | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 |  |  |
|----------|---------|---------|---------|---------|---------|---------|---------|--|--|
| SSZ<7:0> |         |         |         |         |         |         |         |  |  |
| bit 7    |         |         |         |         |         |         | bit 0   |  |  |
|          |         |         |         |         |         |         |         |  |  |
| Legend:  |         |         |         |         |         |         |         |  |  |
|          |         |         |         |         |         | (0)     |         |  |  |

| R = Readable bit                                            | W = Writable bit | U = Unimplemented bit, read as '0' |                                            |  |
|-------------------------------------------------------------|------------------|------------------------------------|--------------------------------------------|--|
| -n/n = Value at POR and<br>BOR/Value at all other<br>Resets | 1 = bit is set   | 0 = bit is cleared                 | x = bit is unknown<br>u = bit is unchanged |  |

bit 7-0 SSZ<7:0>: Source Message Size bits

### REGISTER 15-11: DMAxSSZH: DMAx SOURCE SIZE HIGH REGISTER

| U-0   | U-0 | U-0 | U-0 | R/W-0/0   | R/W-0/0 | R/W-0/0 | R/W-0/0 |  |
|-------|-----|-----|-----|-----------|---------|---------|---------|--|
| —     | —   | —   | —   | SSZ<11:8> |         |         |         |  |
| bit 7 |     |     |     |           |         |         | bit 0   |  |

| Legend:                                                     |                  |                                    |                                            |  |
|-------------------------------------------------------------|------------------|------------------------------------|--------------------------------------------|--|
| R = Readable bit                                            | W = Writable bit | U = Unimplemented bit, read as '0' |                                            |  |
| -n/n = Value at POR and<br>BOR/Value at all other<br>Resets | 1 = bit is set   | 0 = bit is cleared                 | x = bit is unknown<br>u = bit is unchanged |  |

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SSZ<11:8>: Source Message Size bits

| R/W-0/0         | R/W-1/1                                                                                                                                                  | R/W-0/0                                                                         | R/W-1/1                        | R/W-0/0           | R/W-1/1          | R/W-0/0         | R/W-1/1 |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|-------------------|------------------|-----------------|---------|
| P8TSE           | L<1:0>                                                                                                                                                   | P7TSE                                                                           | L<1:0>                         | P6TSE             | EL<1:0>          | P5TSE           | L<1:0>  |
| bit 7           |                                                                                                                                                          |                                                                                 |                                |                   |                  |                 | bit 0   |
|                 |                                                                                                                                                          |                                                                                 |                                |                   |                  |                 |         |
| Legend:         |                                                                                                                                                          |                                                                                 |                                |                   |                  |                 |         |
| R = Readable    | bit                                                                                                                                                      | W = Writable                                                                    | bit                            | U = Unimplen      | nented bit, read | l as '0'        |         |
| -n = Value at F | POR                                                                                                                                                      | '1' = Bit is set                                                                |                                | '0' = Bit is clea | ared             | x = Bit is unkr | Iown    |
| bit 7-6         | <b>P8TSEL&lt;1:0</b> <sup>2</sup><br>11 = PWM8<br>10 = PWM8<br>01 = PWM8<br>00 = Reserve                                                                 | PWM8 Time<br>based on TMR<br>based on TMR<br>based on TMR<br>based on TMR<br>ed | r Selection bit<br>6<br>4<br>2 | S                 |                  |                 |         |
| bit 5-4         | 5-4 <b>P7TSEL&lt;1:0&gt;:</b> PWM7 Timer Selection bit<br>11 = PWM7 based on TMR6<br>10 = PWM7 based on TMR4<br>01 = PWM7 based on TMR2<br>00 = Reserved |                                                                                 |                                | S                 |                  |                 |         |
| bit 3-2         | P6TSEL<1:02<br>11 = PWM6 b<br>10 = PWM6 b<br>01 = PWM6 b<br>00 = Reserve                                                                                 | PWM6 Time<br>based on TMR6<br>based on TMR4<br>based on TMR2<br>d               | r Selection bit                | S                 |                  |                 |         |
| bit 1-0         | <b>P5TSEL&lt;1:0</b><br>11 = PWM5 b<br>10 = PWM5 b<br>01 = PWM5 b<br>00 = Reserve                                                                        | PWM5 Time<br>pased on TMR6<br>pased on TMR4<br>pased on TMR2<br>d               | r Selection bit                | S                 |                  |                 |         |

### REGISTER 24-2: CCPTMRS1: CCP TIMERS CONTROL REGISTER 1

### 25.6.8 CAPTURE MODE

This mode captures the Timer value based on a rising or falling edge on the SMTWINx input and triggers an interrupt. This mimics the capture feature of a CCP module. The timer begins incrementing upon the GO bit being set, and updates the value of the SMT1CPR register on each rising edge of SMTWINx, and updates the value of the CPW register on each falling edge of the SMTWINx. The timer is not reset by any hardware conditions in this mode and must be reset by software, if desired. See Figure 25-16 and Figure 25-17.





| U-0              | U-0   | U-0               | R/W-0/0 | R/W-0/0        | R/W-0/0                | R/W-0/0          | R/W-0/0      |
|------------------|-------|-------------------|---------|----------------|------------------------|------------------|--------------|
| —                | —     | —                 |         |                | CH<4:0> <sup>(1)</sup> |                  |              |
| bit 7            |       |                   |         |                |                        |                  | bit 0        |
|                  |       |                   |         |                |                        |                  |              |
| Legend:          |       |                   |         |                |                        |                  |              |
| R = Readable I   | bit   | W = Writable      | bit     | U = Unimpler   | nented bit, read       | as '0'           |              |
| u = Bit is uncha | anged | x = Bit is unkn   | iown    | -n/n = Value a | at POR and BOI         | R/Value at all o | other Resets |
| '1' = Bit is set |       | '0' = Bit is clea | ared    |                |                        |                  |              |
|                  |       |                   |         |                |                        |                  |              |

### REGISTER 30-3: MD1CARH: MODULATION HIGH CARRIER CONTROL REGISTER

| bit 7-5 | Unimplemented:              | Read   | as        | '0' |
|---------|-----------------------------|--------|-----------|-----|
|         | e i i i pie i i e i i e a i | 1.0044 | <u> ~</u> | 0   |

bit 4-0 CH<4:0>: Modulator Carrier High Selection bits<sup>(1)</sup> See Table 30-1 for signal list

Note 1: Unused selections provide an input value.

### REGISTER 30-4: MD1CARL: MODULATION LOW CARRIER CONTROL REGISTER

| U-0   | U-0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0                | R/W-0/0 | R/W-0/0 |
|-------|-----|-----|---------|---------|------------------------|---------|---------|
| —     | —   | —   |         |         | CL<4:0> <sup>(1)</sup> |         |         |
| bit 7 |     |     |         |         |                        |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-5 Unimplemented: Read as '0'

bit 4-0 CL<4:0>: Modulator Carrier Low Input Selection bits<sup>(1)</sup> See Table 30-1 for signal list

Note 1: Unused selections provide a zero as the input value.

© 2017 Microchip Technology Inc.

### 31.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) WITH PROTOCOL SUPPORT

The Universal Asynchronous Receiver Transmitter (UART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer, independent of device program execution. The UART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or one of several automated protocols. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers.

Supported protocols include:

- LIN Master and Slave
- DMX mode
- · DALI control gear and control device

The UART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- · Two-character input buffer
- · One-character output buffer
- · Programmable 7-bit or 8-bit character length
- 9th bit Address detection
- · 9th bit even or odd parity
- · Input buffer overrun error detection
- · Received character framing error detection
- · Hardware and software flow control
- · Automatic checksums
- Programmable 1, 1.5, and 2 Stop bits
- Programmable data polarity
- Manchester encoder/decoder
- · Operation in Sleep
- Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- Automatic and user timed Break period generation
- RX and TX inactivity timeouts (with Timer2)

Block diagrams of the UART transmitter and receiver are shown in Figure 31-1 and Figure 31-2.

The UART transmit output (TX\_out) is available to the TX pin and internally to various peripherals.

### FIGURE 31-1: UART TRANSMIT BLOCK DIAGRAM



### REGISTER 32-6: SPIxBAUD: SPI BAUD RATE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| BAUD7   | BAUD6   | BAUD5   | BAUD4   | BAUD3   | BAUD2   | BAUD1   | BAUD0   |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:          |                  |                                    |
|------------------|------------------|------------------------------------|
| R = Readable bit | W = Writable bit | U = Unimplemented bit, read as '0' |

bit 7-0 BAUD<7:0>: Baud Clock Prescaler Select bits

SCK high or low time: TSC=SPI Clock Period\*(BAUD+1)

SCK toggle frequency: FSCK=FBAUD= SPI Clock Frequency/(2\*(BAUD+1))

**Note:** This register should not be written while the SPI is enabled (EN bit of SPIxCON0 = 1)

### REGISTER 32-7: SPIxCON0: SPI CONFIGURATION REGISTER 0

| R/W-0/0 | U-0 | U-0 | U-0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0 |
|---------|-----|-----|-----|-----|---------|---------|---------|
| EN      | —   | —   | —   | —   | LSBF    | MST     | BMODE   |
| bit 7   |     |     |     |     |         |         | bit 0   |

| Legend:      |                                                                                                                                    |     |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|-----|
| R = Readable | bit W = Writable bit U = Unimplemented bit, read as '0'                                                                            |     |
|              |                                                                                                                                    |     |
| bit 7        | EN: SPI Module Enable Control bit                                                                                                  |     |
|              | 1 =SPI is enabled                                                                                                                  |     |
|              | 0 = SPI is disabled,                                                                                                               |     |
| bit 6-3      | Unimplemented: Read as '0'                                                                                                         |     |
| bit 2        | LSBF: LSb-First Data Exchange bit                                                                                                  |     |
|              | 1 = Data is exchanged LSb first                                                                                                    |     |
|              | 0 = Data is exchanged MSb first (traditional SPI operation)                                                                        |     |
| bit 1        | MST: SPI Operating Mode Master Select bit                                                                                          |     |
|              | 1 = SPI module operates as the bus master                                                                                          |     |
|              | 0 = SPI module operates as a bus slave                                                                                             |     |
| bit 0        | BMODE: Bit-Length Mode Select bit                                                                                                  |     |
|              | 1 = SPIxTWIDTH setting applies to every byte: total bits sent is SPIxTWIDTH*SPIxTCNT, end-packet occurs when SPIxTCNT = $0$        | of- |
|              | <ul> <li>0 = SPIxTWIDTH setting applies only to the last byte exchanged; total bits sent is SPIxTWIDTH<br/>(SPIxTCNT*8)</li> </ul> | +   |

**Note:** This register should only be written when the EN bit is cleared, or to clear the EN bit.

### REGISTER 36-2: ADCON1: ADC CONTROL REGISTER 1

| R/W-0/0     | R/W-0/0 | R/W-0/0 | U-0 | U-0 | U-0 | U-0 | R/W-0/0 |
|-------------|---------|---------|-----|-----|-----|-----|---------|
| PPOL        | IPEN    | GPOL    | -   | -   | -   | -   | DSEN    |
| bit 7 bit 0 |         |         |     |     |     |     |         |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

### bit 7 **PPOL:** Precharge Polarity bit If PRE>0x00:

|      | Action During 1st Precharge Stage  |                                    |  |  |  |  |
|------|------------------------------------|------------------------------------|--|--|--|--|
| FFUL | External (selected analog I/O pin) | Internal (AD sampling capacitor)   |  |  |  |  |
| 1    | Connected to VDD                   | C <sub>HOLD</sub> connected to Vss |  |  |  |  |
| 0    | Connected to Vss                   | C <sub>HOLD</sub> connected to VDD |  |  |  |  |

Otherwise:

The bit is ignored

bit 6 IPEN: A/D Inverted Precharge Enable bit

#### If DSEN = 1

- 1 = The precharge and guard signals in the second conversion cycle are the opposite polarity of the first cycle
- 0 = Both Conversion cycles use the precharge and guards specified by ADPPOL and ADGPOL

### Otherwise:

The bit is ignored

#### bit 5 **GPOL:** Guard Ring Polarity Selection bit

- 1 = ADC guard Ring outputs start as digital high during Precharge stage
- 0 = ADC guard Ring outputs start as digital low during Precharge stage

### bit 4-1 Unimplemented: Read as '0'

### bit 0 DSEN: Double-sample enable bit

- 1 = Two conversions are performed on each trigger. Data from the first conversion appears in PREV
- 0 = One conversion is performed for each trigger

| U-0              | U-0                                                                                                                                                                            | U-0               | R/W-0/0 | R/W-0/0                                    | R/W-0/0          | R/W-0/0  | R/W-0/0 |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|--------------------------------------------|------------------|----------|---------|--|
| —                | —                                                                                                                                                                              | —                 |         |                                            | ADCAP<4:0>       |          |         |  |
| bit 7            |                                                                                                                                                                                |                   |         |                                            |                  |          | bit 0   |  |
|                  |                                                                                                                                                                                |                   |         |                                            |                  |          |         |  |
| Legend:          |                                                                                                                                                                                |                   |         |                                            |                  |          |         |  |
| R = Readable     | bit                                                                                                                                                                            | W = Writable      | bit     | U = Unimplen                               | nented bit, read | d as '0' |         |  |
| u = Bit is unch  | anged                                                                                                                                                                          | x = Bit is unkr   | nown    | -n/n = Value at POR and BOR/Value at all o |                  |          |         |  |
| '1' = Bit is set |                                                                                                                                                                                | '0' = Bit is clea | ared    |                                            |                  |          |         |  |
|                  |                                                                                                                                                                                |                   |         |                                            |                  |          |         |  |
| bit 7-5          | Unimplemen                                                                                                                                                                     | ted: Read as '    | 0'      |                                            |                  |          |         |  |
| bit 4-0          | ADCAP<4:0>: ADC Additional Sample Capacitor Selection bits<br>11111 = 31 pF<br>11101 = 30 pF<br>11101 = 29 pF<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• |                   |         |                                            |                  |          |         |  |

### REGISTER 36-13: ADCAP: ADC ADDITIONAL SAMPLE CAPACITOR SELECTION REGISTER

### REGISTER 36-14: ADRPT: ADC REPEAT SETTING REGISTER

|          | • • • • • • • • • • • • • • • • • • • • |         |         |         |         |         |         |
|----------|-----------------------------------------|---------|---------|---------|---------|---------|---------|
| R/W-0/0  | R/W-0/0                                 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 |
| RPT<7:0> |                                         |         |         |         |         |         |         |
| bit 7    |                                         |         |         |         |         |         | bit 0   |
|          |                                         |         |         |         |         |         |         |
| Legend:  |                                         |         |         |         |         |         |         |

| Logona.              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

### bit 7-0 **RPT<7:0>:** ADC Repeat Threshold bits

Determines the number of times that the ADC is triggered before the threshold is checked when the computation is Low-pass Filter, Burst Average, or Average modes. See Table 36-2 for more details.

| Mnemonic,  |                    | Description                             | Cueles | 16-Bit Instruction Word |      |      |      | Status          | Notos |
|------------|--------------------|-----------------------------------------|--------|-------------------------|------|------|------|-----------------|-------|
| Opera      | ands               | Description                             | Cycles | MSb                     |      |      | LSb  | Affected        | Notes |
| LITERAL II | NSTRUC             | TIONS                                   |        |                         |      |      |      |                 |       |
| ADDLW      | k                  | Add literal and WREG                    | 1      | 0000                    | 1111 | kkkk | kkkk | C, DC, Z, OV, N |       |
| ANDLW      | k                  | AND literal with WREG                   | 1      | 0000                    | 1011 | kkkk | kkkk | Z, N            |       |
| IORLW      | k                  | Inclusive OR literal with WREG          | 1      | 0000                    | 1001 | kkkk | kkkk | Z, N            |       |
| LFSR       | f <sub>n</sub> , k | Load FSR(f <sub>n</sub> ) with a 14-bit | 2      | 1110                    | 1110 | 00ff | kkkk | None            |       |
|            |                    | literal (k)                             |        | 1111                    | 00kk | kkkk | kkkk |                 |       |
| ADDFSR     | f <sub>n</sub> , k | Add FSR(f <sub>n</sub> ) with (k)       | 1      | 1110                    | 1000 | ffkk | kkkk | None            |       |
| SUBFSR     | f <sub>n</sub> , k | Subtract (k) from FSR(f <sub>n</sub> )  | 1      | 1110                    | 1001 | ffkk | kkkk | None            |       |
| MOVLB      | k                  | Move literal to BSR<5:0>                | 1      | 0000                    | 0001 | 00kk | kkkk | None            |       |
| MOVLW      | k                  | Move literal to WREG                    | 1      | 0000                    | 1110 | kkkk | kkkk | None            |       |
| MULLW      | k                  | Multiply literal with WREG              | 1      | 0000                    | 1101 | kkkk | kkkk | None            |       |
| RETLW      | k                  | Return with literal in WREG             | 2      | 0000                    | 1100 | kkkk | kkkk | None            |       |
| SUBLW      | k                  | Subtract WREG from literal              | 1      | 0000                    | 1000 | kkkk | kkkk | C, DC, Z, OV, N |       |
| XORLW      | k                  | Exclusive OR literal with WREG          | 1      | 0000                    | 1010 | kkkk | kkkk | Z, N            |       |
| DATA MEN   | IORY – P           | ROGRAM MEMORY INSTRUCTIONS              |        |                         |      |      |      |                 |       |
| TBLRD*     |                    | Table Read                              | 2 - 5  | 0000                    | 0000 | 0000 | 1000 | None            |       |
| TBLRD*+    |                    | Table Read with post-increment          |        | 0000                    | 0000 | 0000 | 1001 | None            |       |
| TBLRD*-    |                    | Table Read with post-decrement          |        | 0000                    | 0000 | 0000 | 1010 | None            |       |
| TBLRD+*    |                    | Table Read with pre-increment           |        | 0000                    | 0000 | 0000 | 1011 | None            |       |
| TBLWT*     |                    | Table Write                             | 2 - 5  | 0000                    | 0000 | 0000 | 1100 | None            |       |
| TBLWT*+    |                    | Table Write with post-increment         |        | 0000                    | 0000 | 0000 | 1101 | None            |       |
| TBLWT*-    |                    | Table Write with post-decrement         |        | 0000                    | 0000 | 0000 | 1110 | None            |       |
| TBLWT+*    |                    | Table Write with pre-increment          |        | 0000                    | 0000 | 0000 | 1111 | None            |       |

### TABLE 41-2: INSTRUCTION SET (CONTINUED)

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3:  $f_s$  and  $f_d$  do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.

### 41.1.1 STANDARD INSTRUCTION SET

| ADD    | FSR                      | Add Lite                | Add Literal to FSR            |                |                 |                    |  |  |  |
|--------|--------------------------|-------------------------|-------------------------------|----------------|-----------------|--------------------|--|--|--|
| Synta  | ax:                      | ADDFSR                  | f, k                          |                |                 |                    |  |  |  |
| Oper   | ands:                    | $0 \le k \le 63$        | 3                             |                |                 |                    |  |  |  |
|        |                          | f ∈ [ 0, 1,             | 2]                            |                |                 |                    |  |  |  |
| Oper   | ation:                   | FSR(f) +                | $k \rightarrow FSR$           | (f)            |                 |                    |  |  |  |
| Statu  | s Affected:              | None                    | 1                             |                |                 |                    |  |  |  |
| Enco   | ding:                    | 1110                    | 1000                          | ffk            | k               | kkkk               |  |  |  |
| Desc   | ription:                 | The 6-bit<br>contents   | literal 'k' i<br>of the FSI   | s add<br>R spe | ed to<br>cifieo | o the<br>d by 'f'. |  |  |  |
| Word   | ls:                      | 1                       |                               |                |                 |                    |  |  |  |
| Cycle  | es:                      | 1                       |                               |                |                 |                    |  |  |  |
| QCy    | cle Activity:            |                         |                               |                |                 |                    |  |  |  |
| -      | -                        | Q1                      | Q2                            | Q3             |                 | Q4                 |  |  |  |
|        |                          | Decod                   | Read                          | Pro            | -               | Write to           |  |  |  |
|        |                          | е                       | literal                       | ces            | s               | FSR                |  |  |  |
|        |                          |                         | ʻk'                           | Dat            | а               |                    |  |  |  |
|        |                          | Decod                   | Read                          | Pro            | -               | Write to           |  |  |  |
|        |                          | e                       | literal                       | Ces            | s               | FSR                |  |  |  |
|        |                          |                         |                               |                |                 |                    |  |  |  |
| ADD    | After Instructio<br>FSR2 | on<br>= 0422h           | ral to W                      |                |                 |                    |  |  |  |
| Synt   | av.                      |                         | k                             |                |                 |                    |  |  |  |
| Oner   | ands:                    | $\int dx = k < 25^{10}$ | 5                             |                |                 |                    |  |  |  |
| Oper   | ation:                   | (W) + k →               | $(\Lambda) + k \rightarrow M$ |                |                 |                    |  |  |  |
| Statu  | s Affected               |                         | N OV C DC Z                   |                |                 |                    |  |  |  |
| Enco   | dina:                    | 0000                    | 1111                          | kkl            | c k             | kkkk               |  |  |  |
| Doco   | rintion:                 | The contor              |                               |                |                 |                    |  |  |  |
| Desc   | aipuon.                  | 8-bit literal<br>W.     | 'k' and th                    | e resi         | ult is          | placed in          |  |  |  |
| Words: |                          | 1                       |                               |                |                 |                    |  |  |  |
| Cycle  | es:                      | 1                       |                               |                |                 |                    |  |  |  |
| 0 C    | vcle Activity            |                         |                               |                |                 |                    |  |  |  |
| 30     | , old 7 loll vity.       | 02                      | 03                            |                |                 | 04                 |  |  |  |
|        | Doceda                   | Dood                    | Broco                         |                |                 |                    |  |  |  |
|        | Decode                   | literal 'k'             | Data                          | 35<br>3        | vvr             |                    |  |  |  |

| Example:          |       |        | ADDLW | 15h |  |
|-------------------|-------|--------|-------|-----|--|
| Befor             | e Ins | struct | ion   |     |  |
|                   | W     | =      | 10h   |     |  |
| After Instruction |       |        |       |     |  |
| ,                 | W     | =      | 25h   |     |  |
|                   |       |        |       |     |  |

| ADDWF            | ADD W to f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Syntax:          | ADDWF f {,d {,a}}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Operation:       | (W) + (f) $\rightarrow$ dest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Status Affected: | N, OV, C, DC, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Encoding:        | 0010 01da ffff ffff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Description.     | Add W to register 'f'. If 'd' is '0', the<br>result is stored in W. If 'd' is '1', the<br>result is stored back in register 'f'<br>(default).<br>If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the<br>GPR bank.<br>If 'a' is '0' and the extended instruction<br>set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever $f \le 95$ (5Fh). See Sec-<br>tion 41.2.3 "Byte-Oriented and Bit-<br>Oriented Instructions in Indexed Lit-<br>orel Offset Mode" for details |  |  |  |  |
| Words:           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Cycles:          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

#### Q Cycle Activity:

| Q1     | Q2           | Q3      | Q4          |
|--------|--------------|---------|-------------|
| Decode | Read         | Process | Write to    |
|        | register 'f' | Data    | destination |
|        |              |         |             |

Example: ADDWF REG, 0, 0

Before Instruction

| W              | =   | 17h  |
|----------------|-----|------|
| REG            | =   | 0C2h |
| After Instruct | ion |      |
| W              | =   | 0D9h |
| REG            | =   | 0C2h |

**Note:** All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

| BNC                           |                                                    | Branch if Not Carry                                                                                                      |                                                                                                                          |                                                                                        | BNN                                               | Branch if Not Negative                                                                                                                                                                                                                                                    |                 |             |  |  |  |  |
|-------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|--|--|--|--|
| Syntax:                       |                                                    | BNC n                                                                                                                    |                                                                                                                          |                                                                                        | Syntax:                                           | BNN n                                                                                                                                                                                                                                                                     |                 |             |  |  |  |  |
| Operands:                     |                                                    | -128 ≤ n ≤ 127                                                                                                           |                                                                                                                          |                                                                                        | Operands:                                         | -128 ≤ n ≤ 127                                                                                                                                                                                                                                                            |                 |             |  |  |  |  |
| Operation:                    |                                                    | if CARRY b<br>(PC) + 2 + 2                                                                                               | it is '0'<br>2n → PC                                                                                                     |                                                                                        | Operation:                                        | if NEGATIVE bit is '0'<br>(PC) + 2 + 2n $\rightarrow$ PC                                                                                                                                                                                                                  |                 |             |  |  |  |  |
| Status Affected:              |                                                    | None                                                                                                                     |                                                                                                                          |                                                                                        | Status Affected:                                  | None                                                                                                                                                                                                                                                                      |                 |             |  |  |  |  |
| Encoding:                     |                                                    | 1110                                                                                                                     | 0011 nn                                                                                                                  | nn nnnn                                                                                | Encoding:                                         | 1110                                                                                                                                                                                                                                                                      | 0111 nn         | nn nnnn     |  |  |  |  |
| Description:                  |                                                    | If the CARR<br>will branch.<br>The 2's con<br>added to the<br>incrementer<br>instruction,<br>PC + 2 + 2r<br>2-cycle inst | Y bit is '0', the<br>pplement num<br>e PC. Since th<br>d to fetch the r<br>the new addre<br>n. This instruct<br>ruction. | n the program<br>ber '2n' is<br>e PC will have<br>next<br>ess will be<br>ion is then a | Description:                                      | If the NEGATIVE bit is '0', then the program will branch.<br>The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be $PC + 2 + 2n$ . This instruction is then a 2-cycle instruction. |                 |             |  |  |  |  |
| Words:                        |                                                    | 1                                                                                                                        |                                                                                                                          |                                                                                        | Words:                                            | 1                                                                                                                                                                                                                                                                         |                 |             |  |  |  |  |
| Cycles:                       |                                                    | 1(2)                                                                                                                     |                                                                                                                          |                                                                                        | Cycles:                                           | 1(2)                                                                                                                                                                                                                                                                      |                 |             |  |  |  |  |
| Q Cycle Activity:<br>If Jump: |                                                    |                                                                                                                          |                                                                                                                          |                                                                                        | Q Cycle Activity:<br>If Jump:                     |                                                                                                                                                                                                                                                                           |                 |             |  |  |  |  |
|                               | Q1                                                 | Q2                                                                                                                       | Q3                                                                                                                       | Q4                                                                                     | Q1                                                | Q2                                                                                                                                                                                                                                                                        | Q3              | Q4          |  |  |  |  |
|                               | Decode                                             | Read literal<br>'n'                                                                                                      | Process<br>Data                                                                                                          | Write to PC                                                                            | Decode                                            | Read literal<br>'n'                                                                                                                                                                                                                                                       | Process<br>Data | Write to PC |  |  |  |  |
|                               | No                                                 | No                                                                                                                       | No                                                                                                                       | No                                                                                     | No                                                | No                                                                                                                                                                                                                                                                        | No              | No          |  |  |  |  |
|                               | operation                                          | operation                                                                                                                | operation                                                                                                                | operation                                                                              | operation                                         | operation                                                                                                                                                                                                                                                                 | operation       | operation   |  |  |  |  |
| lf No                         | o Jump:                                            |                                                                                                                          | ~~                                                                                                                       | <u>.</u>                                                                               | If No Jump:                                       |                                                                                                                                                                                                                                                                           |                 | <u>.</u>    |  |  |  |  |
|                               | Q1                                                 | Q2                                                                                                                       | Q3                                                                                                                       | Q4                                                                                     | Q1                                                | Q2                                                                                                                                                                                                                                                                        | Q3              | Q4          |  |  |  |  |
|                               | Decode                                             | read literal                                                                                                             | Process<br>Data                                                                                                          | operation                                                                              | Decode                                            | read literal                                                                                                                                                                                                                                                              | Data            | operation   |  |  |  |  |
| <u>Exan</u>                   | <u>nple</u> :                                      | HERE                                                                                                                     | BNC Jump                                                                                                                 |                                                                                        | Example:                                          | HERE                                                                                                                                                                                                                                                                      | BNN Jump        | 390.0001    |  |  |  |  |
|                               | Before Instruc                                     | tion                                                                                                                     |                                                                                                                          |                                                                                        | Before Instruc                                    | Before Instruction                                                                                                                                                                                                                                                        |                 |             |  |  |  |  |
|                               | PC<br>After Instructio<br>If CARR<br>PC<br>If CARR | = ade<br>on<br>7 = 0;<br>8 = ade<br>7 = 1;                                                                               | dress (HERE)                                                                                                             |                                                                                        | PC<br>After Instructi<br>If NEGA<br>PC<br>If NEGA | PC = address (HERE)<br>After Instruction<br>If NEGATIVE = 0;<br>PC = address (Jump)<br>If NEGATIVE = 1;                                                                                                                                                                   |                 |             |  |  |  |  |

### TABLE 44-3: SUPPLY CURRENT (IDD)<sup>(1,2,4)</sup>

| PIC18LF | Standard Operating Conditions (unless otherwise stated) |                                               |                     |       |                               |       |            |               |
|---------|---------------------------------------------------------|-----------------------------------------------|---------------------|-------|-------------------------------|-------|------------|---------------|
| PIC18F2 | 7/47/57K42                                              |                                               |                     |       |                               |       |            |               |
| Param.  | 0h.e.l                                                  | Device Characteristics                        |                     | Тур.† | Max.                          | Units | Conditions |               |
| No.     | Symbol                                                  |                                               |                     |       |                               |       | VDD        | Note          |
| D100    | IDD <sub>XT4</sub>                                      | XT = 4 MHz                                    | —                   | 625   | 1200                          | μΑ    | 3.0V       | $\wedge$      |
| D100    | IDD <sub>XT4</sub>                                      | XT = 4 MHz                                    |                     | 825   | 1400                          | μΑ    | 3.0V       |               |
| D100A   | IDD <sub>XT4</sub>                                      | XT = 4 MHz                                    |                     | 425   | _                             | μΑ    | 3.0V       | PMD's all 1's |
| D100A   | IDD <sub>XT4</sub>                                      | XT = 4 MHz                                    | _                   | 665   | _                             | μΑ    | 3.0V       | PMD's all 1's |
| D101    | IDD <sub>HFO16</sub>                                    | HFINTOSC = 16 MHz                             |                     | 2.9   | 5                             | mA    | 3.0V       |               |
| D101    | IDD <sub>HFO16</sub>                                    | HFINTOSC = 16 MHz                             | _                   | 3     | 5.1                           | mA    | 3.0V       |               |
| D101A   | IDD <sub>HFO16</sub>                                    | HFINTOSC = 16 MHz                             | -                   | 2.0   | —                             | mA    | 3.0V       | PMD's)all ⊥'s |
| D101A   | IDD <sub>HFO16</sub>                                    | HFINTOSC = 16 MHz                             | _                   | 2.1   | _                             | mA    | 3.0V       | RMD's all 1's |
| D102    | IDD <sub>HFOPLL</sub>                                   | HFINTOSC = 64 MHz                             | —                   | 10.7  | 17.5                          | mA    | 3.0V       |               |
| D102    | IDD <sub>HFOPLL</sub>                                   | HFINTOSC = 64 MHz                             | _                   | 11    | 18                            | mA    | 3.0V       |               |
| D102A   | IDD <sub>HFOPLL</sub>                                   | HFINTOSC = 64 MHz                             | -                   | 6.7   | —                             | mA    | 3.0√       | PMD's all 1's |
| D102A   | IDD <sub>HFOPLL</sub>                                   | HFINTOSC = 64 MHz                             | _                   | 6.9   | _                             | mA    | 3.0        | PMD's all 1's |
| D103    | IDD <sub>HSPLL64</sub>                                  | HS+PLL = 64 MHz                               | _                   | 10.7  | 17.5                          | mA    | 3.0V       | $\sim$        |
| D103    | IDD <sub>HSPLL64</sub>                                  | HS+PLL = 64 MHz                               | _                   | 11 <  | 18                            | mA    | 3.€∨       |               |
| D103A   | IDD <sub>HSPLL64</sub>                                  | HS+PLL = 64 MHz                               | _                   | 6.7   | $\mathcal{F}$                 | mA    | 3.0        | PMD's all 1's |
| D103A   | IDD <sub>HSPLL64</sub>                                  | HS+PLL = 64 MHz                               |                     | 6.9   |                               | mÀ    | 3.0V       | PMD's all 1's |
| D104    | Idd <sub>idle</sub>                                     | IDLE mode, HFINTOSC = 16 MHz                  |                     | 2.0 T |                               | mA    | 3.0V       |               |
| D104    | IDDIDLE                                                 | IDLE mode, HFINTOSC = 16 MHz                  | $\langle - \rangle$ | 2.1   | $\left[ \mathcal{I} \right]$  | mA    | 3.0V       |               |
| D105    | IDD <sub>DOZE</sub> (3)                                 | DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16 | $\geq$              | 2.Q   | Ź                             | ∕mA   | 3.0V       |               |
| D105    | IDD <sub>DOZE</sub> (3)                                 | DOZE mode, HFINTOSC = 16 MHz, Doze Ratio ≠ 16 | <u> </u>            | 2.1   | $\left\langle -\right\rangle$ | mA    | 3.0V       |               |

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins are outputs driven low; MCLR = VDD; WDT disabled

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: IDD<sub>DOZE</sub> = [IDD<sub>IDLE</sub>\*(N-1)/N] + IDD<sub>HFO</sub>16/N where N = DOZE Ratio (Register 10-2).

4: PMD bits are all in the default state, no modules are disabled.