

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 43x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f57k42-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3 Register Definitions: Stack Pointer

REGISTER 4-1: TOSU: TOP OF STACK UPPER BYTE

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			TOS<20:16>								
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			bit	U = Unimplemented C = Clearable only bit							
-n = Value at POR '1' = Bit is set				'0' = Bit is clearedx = Bit is unknown							

bit 7-5 Unimplemented: Read as '0'

bit 4-0 TOS<20:16>: Top of Stack Location bits

REGISTER 4-2: TOSH: TOP OF STACK HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
TOS<15:8>											
bit 7							bit 0				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	C = Clearable only bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TOS<15:8>: Top of Stack Location bits

REGISTER 4-3: TOSL: TOP OF STACK LOW BYTE

R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0					
	TOS<7:0>											
bit 7							bit 0					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	C = Clearable only bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **TOS<7:0>:** Top of Stack Location bits

Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<5:0>) to the registers of the Access Bank.

TABLE 4-7: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES BANK 60

_				_											
3CFFh	—	3CDFh	—	3CBFh	—	3C9Fh	—	3C7Fh	—	3C5Fh	CLC4GLS3	3C3Fh	—	3C1Fh	—
3CFEh	MD1CARH	3CDEh	_	3CBEh	_	3C9Eh	_	3C7Eh	CLCDATA0	3C5Eh	CLC4GLS2	3C3Eh	_	3C1Eh	_
3CFDh	MD1CARL	3CDDh	—	3CBDh	—	3C9Dh	—	3C7Dh	CLC1GLS3	3C5Dh	CLC4GLS1	3C3Dh	—	3C1Dh	_
3CFCh	MD1SRC	3CDCh	—	3CBCh	—	3C9Ch	—	3C7Ch	CLC1GLS2	3C5Ch	CLC4GLS0	3C3Ch	—	3C1Ch	—
3CFBh	MD1CON1	3CDBh	—	3CBBh	—	3C9Bh	—	3C7Bh	CLC1GLS1	3C5Bh	CLC4SEL3	3C3Bh	—	3C1Bh	—
3CFAh	MD1CON0	3CDAh	—	3CBAh	—	3C9Ah	—	3C7Ah	CLC1GLS0	3C5Ah	CLC4SEL2	3C3Ah	—	3C1Ah	—
3CF9h	—	3CD9h	—	3CB9h	_	3C99h	_	3C79h	CLC1SEL3	3C59h	CLC4SEL1	3C39h	—	3C19h	_
3CF8h	—	3CD8h	—	3CB8h	_	3C98h	_	3C78h	CLC1SEL2	3C58h	CLC4SEL0	3C38h	—	3C18h	_
3CF7h	_	3CD7h	_	3CB7h	_	3C97h	—	3C77h	CLC1SEL1	3C57h	CLC4POL	3C37h	_	3C17h	_
3CF6h	—	3CD6h		3CB6h	—	3C96h	—	3C76h	CLC1SEL0	3C56h	CLC4CON	3C36h	—	3C16h	_
3CF5h	—	3CD5h		3CB5h	—	3C95h	—	3C75h	CLC1POL	3C55h	_	3C35h	—	3C15h	_
3CF4h	—	3CD4h		3CB4h	—	3C94h	—	3C74h	CLC1CON	3C54h	—	3C34h	—	3C14h	
3CF3h	—	3CD3h	—	3CB3h	_	3C93h	_	3C73h	CLC2GLS3	3C53h	—	3C33h	—	3C13h	_
3CF2h	—	3CD2h	—	3CB2h	_	3C92h	_	3C72h	CLC2GLS2	3C52h	—	3C32h	—	3C12h	_
3CF1h	—	3CD1h	—	3CB1h	_	3C91h	_	3C71h	CLC2GLS1	3C51h	—	3C31h	—	3C11h	_
3CF0h	—	3CD0h	—	3CB0h	_	3C90h	_	3C70h	CLC2GLS0	3C50h	—	3C30h	—	3C10h	_
3CEFh	—	3CCFh	—	3CAFh	_	3C8Fh	_	3C6Fh	CLC2SEL3	3C4Fh	—	3C2Fh	—	3C0Fh	_
3CEEh	—	3CCEh	—	3CAEh	_	3C8Eh	_	3C6Eh	CLC2SEL2	3C4Eh	—	3C2Eh	—	3C0Eh	_
3CEDh	—	3CCDh	—	3CADh	_	3C8Dh	_	3C6Dh	CLC2SEL1	3C4Dh	—	3C2Dh	—	3C0Dh	_
3CECh	—	3CCCh	—	3CACh	_	3C8Ch	_	3C6Ch	CLC2SEL0	3C4Ch	—	3C2Ch	—	3C0Ch	_
3CEBh	—	3CCBh	—	3CABh	_	3C8Bh	_	3C6Bh	CLC2POL	3C4Bh	—	3C2Bh	—	3C0Bh	_
3CEAh	—	3CCAh	—	3CAAh	_	3C8Ah	_	3C6Ah	CLC2CON	3C4Ah	—	3C2Ah	—	3C0Ah	_
3CE9h	—	3CC9h	—	3CA9h	—	3C89h	—	3C69h	CLC3GLS3	3C49h	—	3C29h	—	3C09h	—
3CE8h	—	3CC8h	—	3CA8h	—	3C88h	—	3C68h	CLC3GLS2	3C48h	—	3C28h	—	3C08h	—
3CE7h	—	3CC7h	—	3CA7h	_	3C87h	_	3C67h	CLC3GLS1	3C47h	—	3C27h	—	3C07h	_
3CE6h	CLKRCLK	3CC6h	—	3CA6h	—	3C86h	—	3C66h	CLC3GLS0	3C46h	—	3C26h	—	3C06h	—
3CE5h	CLKRCON	3CC5h	—	3CA5h	_	3C85h	_	3C65h	CLC3SEL3	3C45h	—	3C25h	—	3C05h	_
3CE4h	—	3CC4h	—	3CA4h	_	3C84h	_	3C64h	CLC3SEL2	3C44h	—	3C24h	—	3C04h	_
3CE3h	_	3CC3h	_	3CA3h		3C83h		3C63h	CLC3SEL1	3C43h	_	3C23h	_	3C03h	
3CE2h	—	3CC2h		3CA2h	—	3C82h	—	3C62h	CLC3SEL0	3C42h	_	3C22h	—	3C02h	
3CE1h		3CC1h		3CA1h	_	3C81h	_	3C61h	CLC3POL	3C41h	_	3C21h		3C01h	
3CE0h	_	3CC0h	_	3CA0h	_	3C80h	_	3C60h	CLC3CON	3C40h	_	3C20h	_	3C00h	_

Legend: Unimplemented data memory locations and registers, read as '0'.

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

BODEN-1:05	SPOPEN	Dovico Modo	BOB Mode	Instruction Execution upon:			
BORENST.02	SBOREN	Device Mode	BOK WOUL	Release of POR	Wake-up from Sleep		
11	Х	х	Active	Wait for release of BOR (BORRDY = 1)	Begins immediately		
1.0	V	Awake	Active	Wait for release of BOR (BORRDY = 1)	N/A		
10	X	Sleep	Hibernate	N/A	Wait for release of BOR (BORRDY = 1)		
0.1	1	Х	Active	Wait for release of BOR	Pogina immodiately		
01	0	Х	Hibernate	(BORRDY = 1)			
00	Х	Х	Disabled	Begins in	imediately		

TABLE 6-1: BOR OPERATING MODES

FIGURE 6-3: BROWN-OUT SITUATIONS

TABLE 11-3: \$	SUMMARY OF REGISTERS ASSOCIATED WITH WINDOWED WATCHDOG TIMER
----------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
WDTCON0		_		PS<4:0> SEN							
WDTCON1			CS<2:0>		—	WINDOW<2:0>			183		
WDTPSL				PSC	NT<7:0>				184		
WDTPSH		PSCNT<15:8>									
WDTTMR		W	DTTMR<4:	0>		STATE	PSCNT	<17:16>	185		

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Windowed Watchdog Timer.

WRITE_BYTE	TO_HREGS		
	MOVF	POSTINCO, W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until holding registers are full
	BRA	WRITE WORD TO HREGS	
PROGRAM MEN	MORY		
—	BCF	NVMCON1, REG0	; point to Program Flash Memory
	BSF	NVMCON1, REG1	; point to Program Flash Memory
	BSF	NVMCON1, WREN	; enable write to memory
	BCF	NVMCON1, FREE	; enable write to memory
	BCF	INTCON0, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	NVMCON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	NVMCON2	; write OAAh
	BSF	NVMCON1, WR	; start program (CPU stall)
	DCFSZ	COUNTER2	; repeat for remaining write blocks
	BRA	WRITE BYTE TO HREGS	
	BSF	INTCONO, GIE	; re-enable interrupts
	BCF	NVMCON1, WREN	; disable write to memory

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY (CONTINUED)

The following sections describe with visual reference the sequence of events for different configurations of the DMA module

15.9.1 SOURCE STOP

When the Source Stop bit is set (SSTP = 1) and the DMAxSCNT register reloads, the DMA clears the SIRQEN bit to stop receiving new start interrupt request signals and sets the DMAxSCNTIF flag.

FIGURE 15-5: GPR-GPR TRANSACTIONS WITH HARDWARE TRIGGERS, SSTP = 1

Instruction	 2 3 3 	0 6 6 1000000000000000000000000000000000	Ø ⊗ חחחחחחח	9 9 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN		9 1000000	9 9 11111111	00 00 10000000	
EN_									
SIRQEN									
Source Hardware Trigger -]							
DGO_]		
DMAxSPTR	(0x100	χ ο	×101	0x102	X	0x103		0x100	
DMAxDPTR	(0x200	(0	x201	0x201	χ_	0x201	<	0x200	
DMAxSCNT	4	χ	3	2	χ	1	(4	
DMAxDCNT	2	X	1	2	X	1		2	
DMA STATE	IDLE	SR ⁽¹⁾ DW ⁽²⁾ SR ⁽¹⁾	I) DW ⁽²⁾	IDLE	SR ⁽¹⁾ DW ⁽²⁾ S	R ⁽¹⁾ DW ⁽²⁾		IDLE	
DMAxSCNTIF									
DMAxDCNTIF —									
	DMAxSSZ 0x4	DMAX	DSZ 0x2						
Note 1: S	SR - Source Rea	d							
2 : [OW - Destination	Write							

PIC18(L)F26/27/45/46/47/55/56/57K42

24.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when T2PR is 255. The resolution is a function of the T2PR register value as shown by Equation 24-4.

EQUATION 24-4: PWM RESOLUTION

Resolution = $\frac{\log[4(T2PR+1)]}{\log(2)}$ bits

Note: If the pulse-width value is greater than the period, the assigned PWM pin(s) will remain unchanged.

TABLE 24-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)	
-------------	--	----------------	--

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
T2PR Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
T2PR Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

24.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the T2TMR register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, T2TMR will continue from its previous state.

24.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 7.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

24.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

25.6.3 PERIOD AND DUTY CYCLE MODE

In Duty Cycle mode, either the duty cycle or period (depending on polarity) of the SMT1_signal can be acquired relative to the SMT clock. The CPW register is updated on a falling edge of the signal, and the CPR register is updated on a rising edge of the signal, along with the SMT1TMR resetting to 0x0001. In addition, the GO bit is reset on a rising edge when the SMT is in Single Acquisition mode. See Figure 25-6 and Figure 25-7.

FIGURE 25-7:

PIC18(L)F26/27/45/46/47/55/56/57K42

28.1 NCO Operation

The NCO operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 28-1.

The NCO output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCO output is then distributed internally to other peripherals and can be optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_overflow).

The NCO period changes in discrete steps to create an average frequency. This output depends on the ability of the receiving circuit (i.e., CWG or external resonant converter circuitry) to average the NCO output to reduce uncertainty.

EQUATION 28-1: NCO OVERFLOW FREQUENCY

 $FOVERFLOW = \frac{NCO \ Clock \ Frequency \times Increment \ Value}{2^{20}}$

28.1.1 NCO CLOCK SOURCES

Clock sources available to the NCO include:

- Fosc
- HFINTOSC
- LFINTOSC
- MFINTOSC/4 (32 kHz)
- MFINTOSC (500 kHz)
- CLC1/2/3/4_out
- CLKREF
- SOSC

The NCO clock source is selected by configuring the N1CKS<2:0> bits in the NCO1CLK register.

28.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCO1ACCL
- NCO1ACCH
- NCO1ACCU

28.1.3 ADDER

The NCO Adder is a full adder, which operates independently from the source clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

28.1.4 INCREMENT REGISTERS

The increment value is stored in three registers making up a 20-bit incrementer. In order of LSB to MSB they are:

- NCO1INCL
- NCO1INCH
- NCO1INCU

When the NCO module is enabled, the NCO1INCU and NCO1INCH registers should be written first, then the NCO1INCL register. Writing to the NCO1INCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO_clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not user-accessible.

28.8 NCO Control Registers

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	_	OUT	POL	_	_	_	PFM
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	EN: NCO1 Er	nable bit					
	1 = NCO1 mc	dule is enable	d				
L H 0			iu o'				
DIT 6	Unimplemen	ted: Read as	0				
bit 5	OUT: NCO1 (Displays the c	Output bit	value of the NO	CO1 module			
bit 4		Polarity					
	1 = NCO1 out	tput signal is in	verted				
	0 = NCO1 out	tput signal is n	ot inverted				
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	PFM: NCO1 F	Pulse Frequen	cy Mode bit				
	1 = NCO1 op	erates in Pulse	Frequency m	ode	<u> </u>		
	0 = NCO1 op	erates in Fixed	Duty Cycle m	ode, divide by 2	2		

REGISTER 28-1: NCO1CON: NCO CONTROL REGISTER

32.3.3 TRANSMIT AND RECEIVE FIFOS

The transmission and reception of data from the SPI module is handled by two FIFOs, one for reception and one for transmission (addressed by the SFRs SPIxRXB and SPIxTXB, respectively.). The TXFIFO is written by software and is read by the SPI module to shift the data onto the SDO pin. The RXFIFO is written by the SPI module as it shifts in the data from the SDI pin and is read by software. Setting the CLRBF bit of SPIxSTATUS resets the occupancy for both FIFOs, emptying both buffers. The FIFOs are also reset by disabling the SPI module.

Note: TXFIFO occupancy and RXFIFO occupancy simply refer to the number of bytes that are currently being stored in each FIFO. These values are used in this chapter to illustrate the function of these FIFOs and are not directly accessible through software.

The SPIxRXB register addresses the receive FIFO and is read-only. Reading from this register will read from the first FIFO location that was written to by hardware and decrease the RXFIFO occupancy. If the FIFO is empty, reading from this register will instead return a value of zero and set the RXRE (Receive Buffer Read Error) bit of the SPIxSTATUS register. The RXRE bit must then be cleared in software in order to properly reflect the status of the read error. When RXFIFO is full, the RXBF bit of the SPIxSTATUS register will be set. When the device receives data on the SDI pin, the receive FIFO may be written to by hardware and the occupancy increased, depending on the mode and receiver settings, as summarized in Table 32-1.

The SPIxTXB register addresses the transmit FIFO and is write-only. Writing to the register will write to the first empty FIFO location and increase the occupancy. If the FIFO is full, writing to this register will not affect the data and will set the TXWE bit of the SPIxSTATUS register. When the TXFIFO is empty, the TXBE bit of SPIxSTATUS will be set. When a data transfer occurs, data may be read from the first FIFO location written to and the occupancy decreases, depending on mode and transmitter settings, as summarized in Table 32-1 and Section 32.6.1 "Slave Mode Transmit options".

32.3.4 LSB VS. MSB-FIRST OPERATION

Typically, SPI communication is output Most-Significant bit first, but some devices/buses may not conform to this standard. In this case, the LSBF bit may be used to alter the order in which bits are shifted out during the data exchange. In both Master and Slave mode, the LSBF bit of SPIxCON0 controls if data is shifted MSb or LSb first. Clearing the bit (default) configures the data to transfer MSb first, which is traditional SPI operation, while setting the bit configures the data to transfer LSb first.

32.3.5 INPUT AND OUTPUT POLARITY BITS

SPIxCON1 has three bits that control the polarity of the SPI inputs and outputs. The SDIP bit controls the polarity of the SDI input, the SDOP bit controls the polarity of the SDO output, and the SSP bit controls the polarity of both the slave SS input and the master SS output. For all three bits, when the bit is clear, the input or output is active-high, and when the bit is set, the input or output is active-low. When the EN bit of SPIxCON0 is cleared, SS(out) and SCK(out) both revert to the inactive state dictated by their polarity bits. The SDO output state when the EN bit of SPIxCON0 is cleared is determined by several factors.

- When the associated TRIS bit for the SDO pin is cleared, and the SPI goes idle after a transmission, the SDO output will remain at the last bit level. The SDO pin will revert to the Idle state if EN is cleared.
- When the associated TRIS bit for the SDO pin is set, behavior varies in Slave and Master mode.
- In Slave mode, the SDO pin tri-states when:
- Slave Select is inactive,
- the EN bit of SPIxCON0 is cleared, or when
- the TXR bit of SPIxCON2 is cleared.
- In Master mode, the SDO pin tri-states when TXR = 0. When TXR = 1 and the SPI goes idle after a transmission, the SDO output will remain at the last bit level. The SDO pin will revert to the Idle state if EN is cleared.

36.6.5 BURST AVERAGE MODE

The Burst Average mode (ADMD = 011) acts the same as the Average mode in most respects. The one way it differs is that it continuously retriggers ADC sampling until the CNT value is greater than or equal to RPT, even if Continuous Sampling mode (see Section 36.6.8 "Continuous Sampling mode") is not enabled. This allows for a threshold comparison on the average of a short burst of ADC samples.

36.6.6 LOW-PASS FILTER MODE

The Low-pass Filter mode (ADMD = 100) acts similarly to the Average mode in how it handles samples (accumulates samples until CNT value greater than or equal to RPT, then triggers threshold comparison), but instead of a simple average, it performs a low-pass filter operation on all of the samples, reducing the effect of high-frequency noise on the average, then performs a threshold comparison on the results. (see Table 36-2 for a more detailed description of the mathematical operation). In this mode, the ADCRS bits determine the cut-off frequency of the low-pass filter (as demonstrated by Table 36-3).

36.6.7 THRESHOLD COMPARISON

At the end of each computation:

- The conversion results are latched and held stable at the end-of-conversion.
- The error is calculated based on a difference calculation which is selected by the ADCALC<2:0> bits in the ADCON3 register. The value can be one of the following calculations (see Register 36-4 for more details):
 - The first derivative of single measurements
 - The CVD result in CVD mode
 - The current result vs. a setpoint
 - The current result vs. the filtered/average result
 - The first derivative of the filtered/average value
 - Filtered/average value vs. a setpoint

The result of the calculation (ERR) is compared to the upper and lower thresholds, UTH<ADUTHH:ADUTHL> and LTH<ADLTHH:ADLTHL> registers, to set the

ADUTHR and ADLTHR flag bits. The threshold logic is selected by ADTMD<2:0> bits in the ADCON3 register. The threshold trigger option can be one of the following:

- Never interrupt
- Error is less than lower threshold
- Error is greater than or equal to lower threshold
- Error is between thresholds (inclusive)
- Error is outside of thresholds
- Error is less than or equal to upper threshold
- Error is greater than upper threshold

- Always interrupt regardless of threshold test results
- If the threshold condition is met, the threshold interrupt flag ADTIF is set.

Note 1:	The	threshold	tests	are	signed
	opera	tions.			
2:	If ADA	AOV is set,	a thresh	old int	errupt is
	signal	ed.			

36.6.8 CONTINUOUS SAMPLING MODE

Setting the CONT bit in the ADCON0 register automatically retriggers a new conversion cycle after updating the ADACC register. The GO bit remains set and re-triggering occurs automatically.

If ADSOI = 1, a threshold interrupt condition will clear GO and the conversions will stop.

36.6.9 DOUBLE SAMPLE CONVERSION

Double sampling is enabled by setting the ADDSEN bit of the ADCON1 register. When this bit is set, two conversions are required before the module will calculate threshold error (each conversion must still be triggered separately). The first conversion will set the ADMATH bit of the ADSTAT register and update ADACC, but will not calculate ERR or trigger ADTIF. When the second conversion completes, the first value is transferred to PREV (depending on the setting of ADPSIS) and the value of the second conversion is placed into ADRES. Only upon the completion of the second conversion is ERR calculated and ADTIF triggered (depending on the value of ADCALC).

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 36-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0		
PPOL	IPEN	GPOL	-	-	-	—	DSEN		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 **PPOL:** Precharge Polarity bit If PRE>0x00:

	Action During	1st Precharge Stage
FFUL	External (selected analog I/O pin)	Internal (AD sampling capacitor)
1	Connected to VDD	C _{HOLD} connected to Vss
0	Connected to Vss	C _{HOLD} connected to VDD

Otherwise:

The bit is ignored

bit 6 IPEN: A/D Inverted Precharge Enable bit

If DSEN = 1

- 1 = The precharge and guard signals in the second conversion cycle are the opposite polarity of the first cycle
- 0 = Both Conversion cycles use the precharge and guards specified by ADPPOL and ADGPOL

Otherwise:

The bit is ignored

bit 5 **GPOL:** Guard Ring Polarity Selection bit

- 1 = ADC guard Ring outputs start as digital high during Precharge stage
- 0 = ADC guard Ring outputs start as digital low during Precharge stage

bit 4-1 Unimplemented: Read as '0'

bit 0 DSEN: Double-sample enable bit

- 1 = Two conversions are performed on each trigger. Data from the first conversion appears in PREV
- 0 = One conversion is performed for each trigger

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_				ACT<4:0>		
bit 7		•					bit 0
-							
Legend:							
R = Readable b	it	W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
L							
bit 7-5	Unimplemente	d: Read as '0'					
bit 4-0	ADACT<4:0>:	Auto-Conversion	Trigger Select	Bits			
	11111 = Reser	ved, do not use					
	•						
	•						
	• 11110 = Reser	ved do not use					
	11110 = Nese	are write to ADP	сн				
	11100 = Reser	ved, do not use					
	11011 = Softwa	are read of ADR	ESH				
	11010 = Softwa	are read of ADEI	RH				
	11001 = CLC4	_out					
	11000 = CLC3	_out					
	10111 = CLC2	_out					
	10110 = CLC1	_out					
	10101 = Logica	al OR of all Interr	upt-on-change	Interrupt Flags			
	10100 = CMP2	2_out					
	10011 = CMP1	l_out					
	10010 = NCOT	1_OUL 8 OUT					
	10000 = PWM	7_out					
	01111 = PWM	6_out					
	01110 = PWM	5_out					
	01101 = CCP4 01100 = CCP3	trigger					
	01100 = CCP3 01011 = CCP2	trigger					
	01010 = CCP1	_trigger					
	01001 = SMT1	_trigger					
	01000 = TMR6	_postscaled					
	00111 = TMR3	_overnow					
	00110 = TMR3	overflow					
	00100 = TMR2	postscaled					
	00011 = TMR1	_overflow					
	00010 = TMR0)_overflow	TDDO				
	00001 = PIN Se	nected by ADAC	IPPS led				

REGISTER 36-35: ADACT: ADC AUTO CONVERSION TRIGGER CONTROL REGISTER

PIC18(L)F26/27/45/46/47/55/56/57K42

RRN	ICF	Rotate Right f (No Carry)							
Synta	ax:	RRNCF	f {,d {,a}}						
Oper	rands:	0 ≤ f ≤ 2 d ∈ [0,1] a ∈ [0,1]	:55]]						
Oper	ration:	(f <n>) — (f<0>) —</n>	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow dest < 7 >$						
Statu	is Affected:	N, Z							
Enco	oding:	0100	00da	fff	f fff				
Desc	pription:	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the resul is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected (default), overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.							
Word	ds:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q	3	Q4				
	Decode	Read	Proc	ess	Write to				
		register	t Da	la	destination				
<u>Exan</u>	nple 1:	RRNCF	REG, 1	, 0					
	Before Instruc REG After Instructio REG	tion = 110: on = 1110	1 0111 0 1011						
Exan	nple 2:	RRNCF	REG, 0	, 0					
	Before Instruc	tion							
	W	= ?							
	REG After Instructio	= 1103	1 0111						
	₩ REG	= 1110 = 1101	0 1011 1 0111						

SET	F	Set f						
Svnta	ax:	SETF f{	a}					
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	-,					
Oper	ation:	$FFh\tof$						
Statu	s Affected:	None						
Enco	ding:	0110	100a	fff	f	ffff		
Desc	escription: The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operated in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Literal Offset Addressing				egister selected. select the struction operates essing See Sec- nd Bit- exed Lit-			
Word	ls:	1						
Cycle	es:	1	1					
Q Cycle Activity:								
	Q1	Q2	Q3	3		Q4		
	Decode	Read register 'f'	Proce Dat	ess a	re	Write gister 'f'		

Example:	SETF		REG,	1
Before Instruction	on			
REG	=	5Ah		
After Instruction				
REG	=	FFh		

PIC18(L)F26/27/45/46/47/55/56/57K42

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
3D6Ch	I2C1CNT	CNT 5								586	
3D6Bh	I2C1TXB	ТХВ									
3D6Ah	I2C1RXB		RXB								
3D69h - 3D67h	-	Unimplemented									
3D66h	I2C2BTO	BTO						582			
3D65h	I2C2CLK				CL	_K				581	
3D64h	I2C2PIE	CNTIE	ACKTIE	—	WRIE	ADRIE	PCIE	RSCIE	SCIE	588	
3D63h	I2C2PIR	CNTIF	ACKTIF	—	WRIF	ADRIF	PCIF	RSCIF	SCIF	587	
3D62h	I2C2STAT1	TXWE	—	—	—	RXRE	CLRBF	—	RXBF	584	
3D61h	I2C2STAT0	BFRE	—	MMA	—	D	_	—	—	583	
3D60h	I2C2ERR	—	BTOIF	BCLIF	NACKIF	—	BTOIE	BCLIE	NACKIE	585	
3D5Fh	I2C2CON2	ACNT	GCEN	FME	ABD	SD	AHT	BI	FRET	580	
3D5Eh	I2C2CON1	ACKCNT	ACKDT	ACKSTAT	ACKT	—	RXO	TXU	CSD	579	
3D5Dh	I2C2CON0	EN	RSEN	S	CSTR	MDR		MODE		577	
3D5Ch	I2C2ADR3				ADR				—	592	
3D5Bh	I2C2ADR2	ADR						591			
3D5Ah	I2C2ADR1	ADR —						590			
3D59h	I2C2ADR0	ADR 5							589		
3D58h	I2C2ADB1	ADB 5								594	
3D57h	I2C2ADB0	ADB							593		
3D56h	I2C2CNT	CNT								586	
3D55h	I2C2TXB	ТХВ									
3D54h	I2C2RXB	RXB									
3D53h - 3D1Dh	—	Unimplemented									
3D1Ch	SPI1CLK	CLKSEL						542			
3D1Bh	SPI1INTE	SRMTIE	TCZIE	SOSIE	EOSIE		RXOIE	TXUIE	—	536	
3D1Ah	SPI1INTF	SRMTIF	TCZIF	SOSIF	EOSIF		RXOIF	TXUIF	—	535	
3D19h	SPI1BAUD				BA	UD		538			
3D18h	SPI1TWIDTH	—	—	—	—			TWIDTH		537	
3D17h	SPI1STATUS	TXWE	—	TXBE	—	RXRE	CLRBF	_	RXBF	541	
3D16h	SPI1CON2	BUSY	SSFLT	—	—	_	SSET	TXR	RXR	540	
3D15h	SPI1CON1	SMP	CKE	CKP	FST		SSP	SDIP	SDOP	539	
3D14h	SPI1CON0	EN	—	—	—		LSBF	MST	BMODE	538	
3D13h	SPI1TCNTH	—	—	—	—			TCNTH		537	
3D12h	SPI1TCNTL	TCNTL							536		
3D11h	SPI1TXB	ТХВ						542			
3D10h	SPI1RXB	RXB						541			
3D0Fh - 3CFFh	—	Unimplemented									
3CFEh	MD1CARH	—	—	—			CH			471	
3CFDh	MD1CARL	_	—	—			CL			471	
3CFCh	MD1SRC	_	_	—	MS					472	
3CFBh	MD1CON1	_	_	CHPOL	CHSYNC	_	_	CLPOL	CLSYNC	470	
3CFAh	MD1CON0	EN	_	OUT	OPOL	_	_	_	BIT	469	
3CF9h - 3CE7h	-	Unimplemented									

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	Ν	44				
Pitch	е	0.65 BSC				
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	К	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2