

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 43x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f57k42-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ρ
0
Ľ
∞
F
) F
Ň
6
12
7
4
ζī
4
Ō
4
7
5
হ
5
6
S
7
\mathbf{x}
5

0/1	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	I ² C	SPI	UART	WSD	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RC0	11	8	ANC0	_	_	_		—	_		I	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMTWIN1 ⁽¹⁾	_	I	_	_		IOCC0	SOSCO
RC1	12	9	ANC1	-	-	-	_	_	_	_	_	SMTSIG1 ⁽¹⁾	CCP2 ⁽¹⁾	_	-	_	_	IOCC1	SOSCI
RC2	13	10	ANC2	-	_	-	—	_	_	_	_	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	_	_	_	_	IOCC2	_
RC3	14	11	ANC3	-	_	-	_	SCL1 ^(3,4)	SCK1 ⁽¹⁾	_	_	T2IN ⁽¹⁾	-	_	_	_	-	IOCC3	-
RC4	15	12	ANC4	—	_	—	_	SDA1 ^(3,4)	SDI1 ⁽¹⁾	—	_	—	-	_	_	_	—	IOCC4	_
RC5	16	13	ANC5	—	—	—	_	—	—	—	_	T4IN ⁽¹⁾	—	_	_	—	_	IOCC5	_
RC6	17	14	ANC6	—	—	—	—	—	—	CTS1 ⁽¹⁾	_	—	—	_	_	—	—	IOCC6	—
RC7	18	15	ANC7	_	—	_	_	—	—	RX1 ⁽¹⁾	-		-	_	_	—	_	IOCC7	
RE3	1	26	-	-	-	-	—	-	—	—	—	—	—	-	—	-	—	IOCE3	MCLR VPP
Vdd	20	17	_	-	_	-	_	_	_	_	_	_	-	_	_	_	-	—	_
Vss	8, 19	5, 16	-	—	—	—		—	—	-	—	—	—	_	—	—	-	-	—
OUT ⁽²⁾	_		ADGRDA ADGRDB		_	C1OUT C2OUT	_	SDA1 SCL1 SDA2 SCL2	SS1 SCK1 SDO1	DTR1 RTS1 TX1 DTR2 RTS2 TX2	DSM	TMR0	CCP1 CCP2 CCP3 CCP4 PWM5OUT PWM6OUT PWM7OUT PWM8OUT	CWG1A CWG1B CWG1C CWG1D CWG2A CWG2B CWG2C CWG2D CWG3A CWG3B	CLC10UT CLC20UT CLC30UT CLC40UT	NCO	CLKR	_	_
Note	1:	This	s is a PPS rem	nappable inr	out signal. The i	input functio	on may	be moved fro	m the default	location show	vn to one of seve	eral other PORT	(pins			1			

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F2XK42) (CONTINUED)

1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All output signals shown in this row are PPS remappable.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. These pins can be configured for I²C and SMB™ 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUs input buffer thresholds. 4:

3:

6.4 Low-Power Brown-out Reset (LPBOR)

The Low-Power Brown-out Reset (LPBOR) provides an additional BOR circuit for low power operation. Refer to Figure 6-2 to see how the BOR interacts with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset.

6.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOREN bit of Configuration Word 2L. When the device is erased, the LPBOR module defaults to disabled.

6.4.1.1 LPBOR Module Output

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. This signal is OR'd together with the Reset signal of the BOR module to provide the generic BOR signal, which goes to the PCON0 register and to the power control block.

6.5 MCLR

The MCLR is an optional external input that can reset the device. The MCLR function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2). The RMCLR bit in the PCON0 register will be set to '0' if a MCLR Reset has occurred.

TABLE 6-2:MCLR CONFIGURATION

MCLRE	LVP	MCLR
Х	1	Enabled
1	0	Enabled
0	0	Disabled

6.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note:	An	internal	Reset	event	(RESET		
	instr	uction, BO	DR, WW	DT, POF	R stack),		
	does not drive the MCLR pin low.						

6.5.2 MCLR DISABLED

When MCLR is disabled, the MCLR pin becomes inputonly and pin functions such as internal weak pull-ups are under software control. See Section 16.1 "I/O Priorities" for more information.

6.6 Windowed Watchdog Timer (WWDT) Reset

The Windowed Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period or window set. The TO and PD bits in the STATUS register and the RWDT bit in the PCON0 register are changed to indicate a WWDT Reset. The WDTWV bit in the PCON0 register indicates if the WDT Reset has occurred due to a time out or a window violation. See Section 11.0 "Windowed Watchdog Timer (WWDT)" for more information.

6.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON0 register will be set to '0'. See Table 6-3 for default conditions after a RESET instruction has occurred.

6.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON0 register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See Section 4.2.5 "Return Address Stack" for more information.

6.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR occurred.

6.10 Power-up Timer (PWRT)

The Power-up Timer provides a selected time-out duration on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is selected by setting the PWRTS<1:0> Configuration bits, appropriately.

The Power-up Timer starts after the release of the POR and BOR/LPBOR if enabled, as shown in Figure 6-1.

13.1.5 ERASING PROGRAM FLASH MEMORY

The minimum erase block is 64 words (refer to Table 5-4). Only through the use of an external programmer, or through ICSP™ control, can larger blocks of program memory be bulk erased. Word erase in the program memory array is not supported.

For example, when initiating an erase sequence from a microcontroller with erase row size of 64 words, a block of 64 words (128 bytes) of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The NVMCON1 register commands the erase operation. The REG<1:0> bits must be set to point to the Program Flash Memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

The NVM unlock sequence described in **Section 13.1.4 "NVM Unlock Sequence**" should be used to guard against accidental writes. This is sometimes referred to as a long write.

A long write is necessary for erasing program memory. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer.

13.1.5.1 Program Flash Memory Erase Sequence

The sequence of events for erasing a block of internal program memory is:

- 1. REG bits of the NVMCON1 register point to PFM
- 2. Set the FREE and WREN bits of the NVMCON1 register
- 3. Perform the unlock sequence as described in Section 13.1.4 "NVM Unlock Sequence"

If the PFM address is write-protected, the WR bit will be cleared and the erase operation will not take place, WRERR is signaled in this scenario.

The operation erases the memory row indicated by masking the LSBs of the current TBLPTR.

While erasing PFM, CPU operation is suspended and it resumes when the operation is complete. Upon completion the WR bit is cleared in hardware, the NVMIF is set and an interrupt will occur if the NVMIE bit is also set.

Write latch data is not affected by erase operations and WREN will remain unchanged.

Note 1: If a write or erase operation is terminated by an unexpected event, WRERR bit will set which user can check to decide whether a rewrite of the location(s) is needed.

- 2: WRERR is set if WR is written to '1' while TBLPTR points to a write-protected address.
- **3:** WRERR is set if WR is written to '1' while TBLPTR points to an invalid address location (Table 13-1).

WRITE_BYTE	TO_HREGS		
	MOVF	POSTINCO, W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until holding registers are full
	BRA	WRITE WORD TO HREGS	
PROGRAM MEN	MORY		
—	BCF	NVMCON1, REG0	; point to Program Flash Memory
	BSF	NVMCON1, REG1	; point to Program Flash Memory
	BSF	NVMCON1, WREN	; enable write to memory
	BCF	NVMCON1, FREE	; enable write to memory
	BCF	INTCON0, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	NVMCON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	NVMCON2	; write OAAh
	BSF	NVMCON1, WR	; start program (CPU stall)
	DCFSZ	COUNTER2	; repeat for remaining write blocks
	BRA	WRITE BYTE TO HREGS	
	BSF	INTCONO, GIE	; re-enable interrupts
	BCF	NVMCON1, WREN	; disable write to memory

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY (CONTINUED)

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 15-3: DMAxBUF: DMAx DATA BUFFER REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
BUF7	BUF6	BUF5	BUF4	BUF3	BUF2	BUF1	BUF0
bit 7							bit 0

Legend: R = Readable bit

R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	is '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 BUF<7:0>: DMA Internal Data Buffer bits

DMABUF<7:0>

These bits reflect the content of the internal data buffer the DMA peripheral uses to hold the data being moved from the source to destination.

REGISTER 15-4: DMAxSSAL: DMAx SOURCE START ADDRESS LOW REGISTER

	-0/0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	SSA<7:0>								
bit 7						bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 SSA<7:0>: Source Start Address bits

REGISTER 15-5: DMAxSSAH: DMAx SOURCE START ADDRESS HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
SSA<15:8>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 SSA<15:8>: Source Start Address bits

TABLE 16-11: SUMMARY OF REGISTERS ASSOCIATED WITH I/O (CONTINUED)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INLVLC	INLVLC7	INLVLC6	INLVLC5 INLVLC4 ⁽⁵⁾ IN		INLVLC3 ⁽⁵⁾	INLVLC2	INLVLC1	INLVLC0	270
INLVLD ⁽⁶⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1 ⁽⁵⁾	INLVLD0 ⁽⁵⁾	270
INLVLF ⁽⁷⁾	INLVLF7	INLVLF6	INLVLF5	INLVLF5 INLVLF4 I		INLVLF2	INLVLF1	INLVLF0	270
INLVLE	_	_	_	_	INLVLE3	_	_	_	270
RB1I2C	_	SLEW	PU<	1:0>	_	_	TH<1:0>		271
RB2I2C	_	SLEW	PU<	1:0>	_	_	TH<1:0>		271
RC3I2C	_	SLEW	PU<	1:0>	_	_	TH<1:0>		271
RC4I2C	_	SLEW	PU<	PU<1:0>				TH<1:0>	
RD0I2C ⁽⁶⁾	_	SLEW	PU<1:0>				TH<1:0>		271
RD1I2C ⁽⁶⁾	_	SLEW	PU<	1:0>			TH<1:0>		271

Legend: - = unimplemented location, read as '0'. Shaded cells are not used by I/O Ports.

Note 1:

Bits RB6 and RB7 read '1' while in Debug mode. Bit PORTE3 is read-only, and will read '1' when MCLRE = 1 (Master Clear enabled). Bits RB6 and RB7 read '1' while in Debug mode. 2:

3:

4: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.

5: Any peripheral using the I²C pins read the I²C ST inputs when enabled via RxyI2C.

Unimplemented in PIC18(L)F26/27K42. 6:

7: Unimplemented in PIC18(L)F26/27/45/46/47K42 parts.

	PPS Input	Default Pin	Register					In	iput Avai	ilable from	n Selecte	ed POR	Тх				
Peripheral	Register	Selection at POR	Reset Value at POR	PIC18	PIC18(L)F26/27K42		PIC18(L)F45/46/47K42				PIC18(L)F55/56/57K42						
Interrupt 0	INTOPPS	RB0	0b0 1000	Α	В	—	A	В		_	_	Α	В	_	—	—	_
Interrupt 1	INT1PPS	RB1	0b0 1001	Α	В	_	А	В			_	_	В	_	D	_	_
Interrupt 2	INT2PPS	RB2	0b0 1010	Α	В	_	А	В			_	_	В	_	_	_	F
Timer0 Clock	TOCKIPPS	RA4	0b0 0100	Α	В	_	А	В				Α	_	_	—	_	F
Timer1 Clock	T1CKIPPS	RC0	0b1 0000	Α		С	А	_	С		_	_	_	С	_	E	_
Timer1 Gate	T1GPPS	RB5	0b0 1101	_	В	С	—	В	С		—	_	В	С	_		_
Timer3 Clock	T3CKIPPS	RC0	0b1 0000	_	В	С	—	В	С		—	-	_	С	_	E	_
Timer3 Gate	T3GPPS	RC0	0b1 0000	Α	_	С	Α		С	_	_	Α	_	С	-	_	_
Timer5 Clock	T5CKIPPS	RC2	0b1 0010	Α	—	С	А	-	С	_	—	-	_	С	-	E	—
Timer5 Gate	T5GPPS	RB4	0b0 1100	_	В	С	_	В	_	D	_	-	В	—	D	_	_
Timer2 Clock	T2INPPS	RC3	0b1 0011	А	—	С	А	-	С	—	—	Α		С	_	—	—
Timer4 Clock	T4INPPS	RC5	0b1 0101	—	В	С	—	В	С	—	—	-	В	С	_	—	—
Timer6 Clock	T6INPPS	RB7	0b0 1111	_	В	С	_	В	_	D	_	-	В	—	D	_	_
CCP1	CCP1PPS	RC2	0b1 0010	—	В	С	—	В	С	—	—	_		С	_	—	F
CCP2	CCP2PPS	RC1	0b1 0001	—	В	С	—	В	С	—	—	-	_	С	_	—	F
CCP3	CCP3PPS	RB5	0b0 1101	—	В	С	—	В	—	D	—	_	В	—	D	—	—
CCP4	CCP4PPS	RB0	0b0 1000	—	В	С	—	В		D	—	—	В	_	D	—	—
SMT1 Window	SMT1WINPPS	RC0	0b1 0000	—	В	С	—	В	С	—	—	-	_	С	_	—	F
SMT1 Signal	SMT1SIGPPS	RC1	0b1 0001	—	В	С	—	В	С	—	—	—		С	_	—	F
CWG1	CWG1PPS	RB0	0b0 1000	_	В	С	—	В		D		—	В	—	D	_	_
CWG2	CWG2PPS	RB1	0b0 1001	—	В	С	—	В		D	—	—	В	-	D	—	—
CWG3	CWG3PPS	RB2	0b0 1010	—	В	С	—	В		D	—	—	В	_	D	—	—
DSM1 Carrier Low	MD1CARLPPS	RA3	0b0 0011	A	_	С	A	_	—	D	—	Α		_	D	—	—
DSM1 Carrier High	MD1CARHPPS	RA4	0b0 0100	A	—	С	A	_	—	D	—	A	_	-	D	—	—
DSM1 Source	MD1SRCPPS	RA5	0b0 0101	Α	_	С	Α		_	D	_	Α	_	—	D	_	_
CLCx Input 1	CLCIN0PPS	RA0	0000 0000	Α		С	А	_	С			Α		С	_		
CLCx Input 2	CLCIN1PPS	RA1	0b0 0001	А	_	С	А	_	С	_	—	Α	_	С	_	—	—
CLCx Input 3	CLCIN2PPS	RB6	0b0 1110	_	В	С	_	В	_	D	_	—	В	_	D		_
CLCx Input 4	CLCIN3PPS	RB7	0b0 1111		В	С		В		D		_	В		D		

TABLE 17-1: PPS INPUT REGISTER DETAILS

21.6.2 TIMER1/3/5 GATE SOURCE SELECTION

The gate source for Timer1/3/5 can be selected using the GSS<4:0> bits of the TMRxGATE register (Register 21-4). The polarity selection for the gate source is controlled by the TxGPOL bit of the TxGCON register (Register 21-2).

Any of the above mentioned signals can be used to trigger the gate. The output of the CMPx can be synchronized to the Timer1/3/5 clock or left asynchronous. For more information see Section 38.3.1 "Comparator Output Synchronization".

21.6.3 TIMER1/3/5 GATE TOGGLE MODE

When Timer1/3/5 Gate Toggle mode is enabled, it is possible to measure the duration between every rising and falling edge of the gate signal.

The Timer1/3/5 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 21-5 for timing details.

Timer1/3/5 Gate Toggle mode is enabled by setting the GTM bit of the TxGCON register. When the GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

21.6.4 TIMER1/3/5 GATE SINGLE-PULSE MODE

When Timer1/3/5 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1/3/5 Gate Single-Pulse mode is first enabled by setting the GSPM bit in the TxGCON register. Next, the GGO/DONE bit in the TxGCON register must be set. The Timer1/3/5 will be fully enabled on the next incrementing edge of the gate signal. On the next trailing edge of the pulse, the GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1/3/5 until the GGO/DONE bit is once again set in software.

Clearing the TxGSPM bit of the TxGCON register will also clear the GGO/DONE bit. See Figure 21-6 for timing details.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the period on the Timer1/3/5 gate source to be measured. See Figure 21-7 for timing details.

21.6.5 TIMER1/3/5 GATE VALUE STATUS

When Timer1/3/5 Gate Value Status is utilized, it is possible to read the most current level of the gate signal. The value is stored in the GVAL bit in the TxGCON register. The GVAL bit is valid even when the Timer1/3/5 gate is not enabled (GE bit is cleared).

21.6.6 TIMER1/3/5 GATE EVENT INTERRUPT

When Timer1/3/5 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of GVAL occurs, the TMRxGIF flag bit in the respective PIR register will be set. If the TMRxGIE bit in the respective PIE register is set, then an interrupt will be recognized.

The TMRxGIF flag bit operates even when the Timer1/ 3/5 gate is not enabled (GE bit is cleared).

For more information on selecting high or low priority status for the Timer1/3/5 Gate Event Interrupt see **Section 9.0 "Interrupt Controller"**.

25.6.2 GATED TIMER MODE

Gated Timer mode uses the SMTSIGx input to control whether or not the SMT1TMR will increment. Upon a falling edge of the external signal, the SMT1CPW register will update to the current value of the SMT1TMR. Example waveforms for both repeated and single acquisitions are provided in Figure 25-4 and Figure 25-5.

25.6.10 GATED COUNTER MODE

This mode counts pulses on the SMT1_signal input, gated by the SMT1WIN input. It begins incrementing the timer upon seeing a rising edge of the SMT1WIN input and updates the SMT1CPW register upon a falling edge on the SMT1WIN input. See Figure 25-19 and Figure 25-20.

PIC18(L)F26/27/45/46/47/55/56/57K42

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
SMT1CON0	EN	—	STP	WPOL	SPOL	CPOL	SMT1PS	S<1:0>	394
SMT1CON1	GO	REPEAT	_	_		MODE	<3:0>		395
SMT1STAT	CPRUP	CPWUP	RST	—	—	TS	WS	AS	396
SMT1CLK	—	—	—	—	—	(CSEL<2:0>		397
SMT1SIG	_	_	_			SSEL<4:0>			399
SMT1WIN	—	—	_		١	NSEL<4:0>			398
SMT1TMRL	TMR<7:0>								400
SMT1TMRH		TMR<15:8>							
SMT1TMRU				TMR<2	23:16>				400
SMT1CPRL				CPR<	:7:0>				401
SMT1CPRH				CPR<	15:8>				401
SMT1CPRU				CPR<2	3:16>				401
SMT1CPWL				CPW<	<7:0>				402
SMT1CPWH				CPW<	15:8>				402
SMT1CPWU	CPW<23:16>							402	
SMT1PRL	PR<7:0>							403	
SMT1PRH	PR<15:8>							403	
SMT1PRU				PR<23	3:16>				403

TABLE 25-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMT1

Legend: -= unimplemented read as '0'. Shaded cells are not used for SMT1 module.

28.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for applications that require frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse-Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 28-1 is a simplified block diagram of the NCO module.

30.11 Register Definitions: Modulation Control

Long bit name prefixes for the Modulation peripheral is shown below. Refer to **Section 1.3.2.2 "Long Bit Names**" for more information.

Peripheral	Bit Name Prefix
MD1	MD1

REGISTER 30-1: MD1CON0: MODULATION CONTROL REGISTER 0

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	—	OUT OPOL		—	—	—	BIT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: Modulator Module Enable bit
	1 = Modulator module is enabled and mixing input signals
	0 = Modulator module is disabled and has no output
bit 6	Unimplemented: Read as '0'
bit 5	OUT: Modulator Output bit
	Displays the current output value of the Modulator module. ⁽¹⁾
bit 4	OPOL: Modulator Output Polarity Select bit
	1 = Modulator output signal is inverted; idle high output
	0 = Modulator output signal is not inverted; idle low output
bit 3-1	Unimplemented: Read as '0'
bit 0	BIT: Allows software to manually set modulation source input to module ⁽²⁾
	1 = Modulator selects Carrier High
	0 = Modulator selects Carrier Low
Note 1:	The modulated output frequency can be greater and asynchronous from the clock that updates this register bit, the bit value may not be valid for higher speed modulator or carrier signals.

2: BIT bit must be selected as the modulation source in the MD1SRC register for this operation.

The SPI transmit output (SDO_out) is available to the remappable PPS SDO pin and internally to the following peripherals:

- Configurable Logic Cell (CLC)
- Data Signal Modulator (DSM)

The SPI bus typically operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions typically involve shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new bit is shifted into the device. Unlike older Microchip devices, the SPI on the PIC18(L)F2X/4X/5XK42 contains two separate registers for incoming and outgoing data. Both registers also have 2-byte FIFO buffers and allow for DMA bus connections.

Figure 32-2 shows a typical connection between two PIC18F2X/4X/5XK42 devices configured as master and slave devices.

Data is shifted out of the transmit FIFO on the programmed clock edge and into the receive shift register on the opposite edge of the clock.

The master device transmits information on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

The master device sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its output register (on its SDO pin) and the slave device is reading this bit and saving as the LSb of its input register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its input register.

After eight bits have been shifted out, the master and slave have exchanged register values and stored the incoming data into the receiver FIFOs.

If there is more data to exchange, the registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data) depends on the application software. This leads to three scenarios for data transmission:

· Master sends useful data and slave sends dummy

data

- Master sends useful data and slave sends useful data
- Master sends dummy data and slave sends useful data

In this particular SPI module, dummy data may be sent without software involvement, by clearing either the RXR bit (for receiving dummy data) or the TXR bit (for sending dummy data) (see Table 32-1 as well as Section 32.5 "Master mode" and Section 32.6 "Slave Mode" for further TXR/RXR setting details). This SPI module can send transmissions of any number of bits, and can send information in segments of varying size (from 1-8 bits in width). As such, transmissions may involve any number of clock cycles, depending on the amount of data to be transmitted.

When there is no more data to be transmitted, the master stops sending the clock signal and deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line disregards the clock and transmission signals and does not transmit out any data of its own.

37.6 Register Definitions: DAC Control

Long bit name prefixes for the DAC peripheral is shown below. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

Peripheral	Bit Name Prefix
DAC1	DAC1

REGISTER 37-1: DAC1CON0: DAC CONTROL REGISTER

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
EN	_	OE1	OE2	PSS<1:0>		—	NSS
bit 7							bit 0

I

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 EN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled⁽¹⁾
bit 6	Unimplemented: Read as '0'
bit 5	 OE1: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT1 pin 0 = DAC voltage level is disconnected from the DAC1OUT1 pin
bit 4	 OE2: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT2 pin 0 = DAC voltage level is disconnected from the DAC1OUT2 pin
bit 3-2	<pre>PSS<1:0>: DAC Positive Source Select bit 11 = Reserved 10 = FVR buffer 2 01 = VREF+ 00 = VDD</pre>
bit 1	Unimplemented: Read as '0'
bit 0	NSS: DAC Negative Source Select bit 1 = VREF- 0 = Vss
Note 1:	DAC1OUTx output pins are still active.

Mnemo	onic,	Description	Civalaa	16-	Bit Inst	ruction V	Vord	Status	Notoo
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIE	INTED FI	LE REGISTER INSTRUCTIONS	•					•	•
ADDWF	f, d ,a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	
MOVF	f, d, a	Move f to WREG or f	1	0101	00da	ffff	ffff	Z, N	
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	2, 3
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVFFL	f _s , f _d	Move f _s (source) to	3	0000	0000	0110	ffff	None	2
		g (full destination)		1111	ffff	ffff	ffgg		
		f _d (full destination)3rd word		1111	dddd	dddd	gggg		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	
BYTE-ORIE	NTED S							I	
CPFSEQ	f.a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	1
CPFSGT	f. a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	1
CPFSLT	f. a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1
DECFSZ	f. d. a	Decrement f. Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1
DCFSNZ	f. d. a	Decrement f. Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1
INCFSZ	f. d. a	Increment f. Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	1
INFSNZ	f. d. a	Increment f. Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1
BIT-ORIEN		REGISTER INSTRUCTIONS	, ,						
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	
BTG	f. d. a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	
BIT-ORIEN		P INSTRUCTIONS	<u> </u>	L					I
BTESC	fha	Bit Test f. Skin if Clear	1 (2 or 3)	1011	hhh-	ffff	ffff	None	1
BTESS	fh 2	Bit Test f Skin if Set	1(2 or 3)	1010	bbba bbba	1 I I I F F F F	1111 ffff	None	
51100	i, b, a		1 (2 01 3)	1010	nnng				<u> </u>

TABLE 41-2: INSTRUCTION SET

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3: f_s and f_d do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.

PIC18(L)F26/27/45/46/47/55/56/57K42

BTG	Bit Toggle f		BOV	Branch if	Branch if Overflow			
Syntax:	BTG f, b {,a}		Syntax:	BOV n	BOV n			
Operands:	$0 \le f \le 255$		Operands:	-128 ≤ n ≤ ⁻	$-128 \le n \le 127$			
	0 ≤ b < 7 a ∈ [0,1]		Operation:	if OVERFL((PC) + 2 + 2	if OVERFLOW bit is '1' (PC) + 2 + 2n \rightarrow PC			
Operation:	$(\overline{f} \overline{b}) \to f \overline{b}$		Status Affected:	None				
Status Affected:	atus Affected: None		Encoding:	1110	0100 nni	nn nnnn		
Encoding: Description:	0111bbbaf:Bit 'b' in data memory low inverted.If 'a' is '0', the Access BaIf 'a' is '0', the BSR is use GPR bank.GPR bank.If 'a' is '0' and the extend set is enabled, this instru- in Indexed Literal Offset mode whenever $f \le 95$ (5tion 41.2.3 "Byte-Orien Oriented Instructions in eral Offset Mode" for data	fff ffff cation 'f' is ank is selected. ed to select the ded instruction uction operates Addressing oFh). See Sec- ted and Bit- n Indexed Lit- tealis	Words: Cycles: Q Cycle Activity	If the OVEF program wi The 2's cor added to th incremente instruction, PC + 2 + 2 2-cycle inst 1 1(2)	If the OVERFLOW bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2)			
Words [.]	1		ir Jump: O1	02	03	04		
Cycles:	1		Decode	Read literal 'n'	Process Data	Write to PC		
Q Cycle Activit	y:	04	No	No	No	No		
Q1	Q2 Q3	Q4 Write	operation	operation	operation	operation		
Decode	register 'f' Data	register 'f'	If No Jump:					
		<u> </u>	Q1	Q2	Q3	Q4		
Example:	BTG PORTC, 4,	0	Decode	'n'	Data	operation		
Before Inst POR After Instru POR	truction: IC = 0111 0101 [75h] Iction: IC = 0110 0101 [65h]		Example: Before Instr PC After Instruc If OVE F If OVE	HERE uction = ad ction CRFLOW = 1; C = ad RFLOW = 0; C = ad	BOV Jump dress (HERE) dress (Jump dress (HERE))) + 2)		

PIC18(L)F26/27/45/46/47/55/56/57K42

MOVS	F	Move Indexed to f						
Syntax:	:	MOVSF [z	MOVSF [z _s], f _d					
Operan	nds:	$0 \le z_s \le 12$ $0 \le f_d \le 409$	$0 \le z_s \le 127$ $0 \le f_d \le 4095$					
Operati	ion:	((FSR2) + z	$(z_s) \rightarrow f_d$					
Status /	Affected:	None						
Encodiı 1st wor 2nd wo	ng: d (source) ord (destin.)	1110 1111	1110 1011 Ozzz zzzz _s 1111 ffff ffff ffff _d					
		moved to d actual addr determined offset 'z _s ' in FSR2. The register is s 'f _d ' in the se can be any space (000 MOVSF has range to the memory (B everything	moved to destination register ' f_d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal ' f_d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). MOVSF has curtailed the destination range to the lower 4 Kbyte space in memory (Banks 1 through 15). For everything else, use MOVSFL.					
Words:		2						
Cycles:		2						
Q Cyc	le Activity:			_				
_	Q1	Q2	Q3	Q4				
	Decode	source addr	source addr	source reg				
	Decode	No operation No dummy read	No operation	Write register 'f' (dest)				
Exampl	<u>le</u> :	MOVSF	[05h], REG2	2				
Be	efore Instruc FSR2 Contents of 85h REG2 ter Instructic FSR2 Contents of 85h	tion = 80 = 33 = 11 on = 80 = 33	h h h					

$\begin{array}{l} \text{DVSFL} \\ z_s \leq 12 \\ f_d \leq 16 \\ \text{SR2} + ne \\ \hline \\ 0000 \\ 1111 \\ 1111 \\ e conterved to ual adcermine set 'z_s' i \\ R2 (14 \\ \text{stination bit liter th addre th addre th addre th addre th addre the the th addre th addre the the th addre the the the th addre the the the the the the the the the th$	$[z_s], f_d$ $[z_s], f_d$ $[z_7]$ [383] $z_s) \rightarrow f_d$ 0000 xxzz ffff nts of the destinatio ress of th d by addin n the first bits). The n register al 'f_d' in the esses can lata space FL instruct U, TOSH n register, n,	0110 zzzz ffff source reg n register e source r ng the 7-bi word to the address c is specifie- te second be anywh e (0000h to to canno or TOSL a If the resu ts to an in the value	0010 zz_sff $ffff_d$ gister are f_d '. The egister is t literal e value of of the d by the word. ere in the o 3FFFh). bt use the as the altant iddirect returned
$z_s \le 12$ $f_d \le 16$ SR2) + ne 0000 1111 1111 e conterved to ual adore ved to ual adore set 'z_s' i R2 (14 stination bit liter th addre Kbyte co e MOVS stination urce ad dressing be 00f	27 383 $z_s) \rightarrow f_d$ 0000 xxzz ffff ints of the destination ress of the destination ress of the d by addin n the first bits). The n register al 'f_d' in the esses can data space FL instruct U, TOSH n register, dress poir g register, h.	0110 zzzz ffff source reg n register 7- bi word to the address c is specifie e second to be anywh e (0000h to to canno or TOSL a If the resu to a in the value	0010 zz_sff $ffff_d$ gister are egister is t literal e value of of the d by the word. ere in the o 3FFFh). ot use the as the ultant direct returned
SR2) + ne 0000 1111 1111 e conte ved to ual ador set 'z _s ' i R2 (14 stination bit liter th addro Kbyte c e MOVS stination urce ad dressing be 00f	$z_s) \rightarrow f_d$ 0000 xxxz ffff Ints of the destination ress of the destination ress of the d by addin n the first bits). The n register al 'f_d' in the esses can data space FL instruct U, TOSH n register, dress poin g register, h.	0110 zzzz ffff source reg n register e source r ng the 7-bi word to the address c is specifient the second be anywh e (0000h to to canno or TOSL a If the resunts to an int the value	$\begin{array}{c} 0010\\ zz_sff\\ ffff_d\\ \end{array}$
ne 0000 1111 1111 e conte ved to ual ado set 'z _s ' i R2 (14 stination bit liter th addr Kbyte c E L, TOS stination urce ad dressing be 00f	0000 xxxz ffff ints of the destinatio ress of th d by addin in the first bits). The in register al 'f _d ' in the esses can data space FL instruct U, TOSH in register, dress point g register, h.	0110 zzzz ffff source reg n register e source r ng the 7-bi word to the address c is specifie e second be anywh e (0000h to to concerno or TOSL a If the resu ts to an in the value	0010 zz_sff $ffff_d$ gister are f_d '. The egister is t literal e value of of the d by the word. ere in the o 3FFFh). ot use the as the ultant idirect returned
20000 1111 1111 e conte ved to ual ado termine set 'z _s ' i R2 (14 stination bit liter th addre Kbyte o e MOVS stination urce ad dressing be 00f	0000 xxxz ffff nts of the destinatio ress of th d by addin n the first bits). The the register al 'f _d ' in th esses can data space FL instruc U, TOSH n register, dress poir g register, h.	0110 zzzz ffff source reg n register e source r ng the 7-bi word to the address c is specifies e second be anywh e (0000h to ction canno or TOSL a If the resu the value	0010 zz_sff $ffff_d$ gister are egister is t literal e value of of the d by the word. ere in the o 3FFFh). ot use the as the ultant odirect returned
e conte ved to ual adc termine set 'z _s ' i R2 (14 stination bit liter th addro Kbyte c e MOVS stination urce ad dressin be 00f	nts of the destinatio ress of th d by addin n the first bits). The n register al 'f _d ' in th esses can data space FL instruc U, TOSH n register, dress poir g register, h.	source reg n register e source r ng the 7-bi word to the address c is specifie e second be anywh e (0000h to tion canno or TOSL a If the resu to an in the value	gister are f_d '. The egister is t literal e value of of the d by the word. ere in the o 3FFFh). ot use the as the ultant idirect returned
be 00h	1.		
Q1	Q2	Q3	Q4
ecode	No opera- tion	No operation	No operatior
ecode	Read register "z" (src.)	Process data	No operatior
ecode	No opera- tion No	No operation	Write register "f" (dest.)
	dummy read		
VSFL	[05h],	, REG2	
	ecode ecode	ecode Read register "z" (src.) ecode No opera- tion No dummy read	ecode Read register "z" (src.) Process data ecode No opera- tion No operation No dummy read No

Boloro motraotion	
FSR2 =	80h
Contents of 85h =	33h
REG2 =	11h
After Instruction	
FSR2 =	80h
Contents of 85h =	33h

TABLE 44-26: I²C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic		Min. Max.		Units	Conditions	
SP100*	Тнідн	Clock high time	100 kHz mode	4000	-	ns	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	600	—	ns	Device must operate at a minimum of 10 MHz	
			1 MHz module	260	—	ns	Device must operate at a minimum of 10 MHz	
SP101*	TLOW	Clock low time	100 kHz mode	4700	-	ns	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1300	—	ns	Device must operate at a minimum of 10 MHz	
			1 MHz module	500	—	_	Device must operate at a minimum of 10 MHz	
SP102*	TR	SDA and SCL rise	100 kHz mode	_	1000	ns		
		time	400 kHz mode	20	300	ns	CB is specified to be from 10-400 pF	
			1 MHz module	_	120	ns		
SP103*	TF	SDA and SCL fall time	100 kHz mode	_	250	ns		
			400 kHz mode	20 X (VDD/ 5.5V)	250	ns	CB is specified to be from 10-400 pF	
			1 MHz module	20 X (VDD/ 5.5V)	120	ns		
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns		
			400 kHz mode	0	_	ns		
			1 MHz module	0	_	ns		
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(2)	
			400 kHz mode	100	—	ns		
			1 MHz module	50	_	ns		
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3450	ns	(1)	
		clock	400 kHz mode	—	900	ns		
			1 MHz module	—	450	ns		
SP110*	TBUF	Bus free time	100 kHz mode	4700	_	ns	Time the bus must be free	
			400 kHz mode	1300	—	ns	before a new transmission can start	
			1 MHz module	500	_	ns		
SP111	Св	Bus capacitive loading		—	400	pF		

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

46.1 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch		.100 BSC		
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	—
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B