

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 43x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f57k42t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<5:0>) to the registers of the Access Bank.

REGISTER 5	-3: CONFIG	URATION W	ORD 2L (30	0002h)			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
BORE	EN<1:0>	LPBOREN	IVT1WAY	MVECEN	PWRT	⁻ S<1:0>	MCLRE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '1'	
-n = Value for	blank device	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7-6 bit 5 bit 4	BOREN<1:0>: When enabled 11 = Brown-ou 01 = Brown-ou 00 = Brown-ou LPBOREN : Lo 1 = Low-Powe 0 = Low-Powe IVT1WAY : IVTI 1 = IVTLOCK cycle 0 = IVTLOCK	Brown-out Res , Brown-out Rest at Reset is enabled at Reset is enabled at Reset is enabled at Reset is disabled at Reset is disabled aw-Power BOR ar BOR is disabled ar BOR is enabled LOCK bit One-1 ED bit can be s	set Enable bit set Voltage (\ bled, SBOREI bled while run bled according bled Enable bit led ed Way Set Enat leared and se et and cleared	s /BOR) is set by N bit is ignored ning, disabled g to SBOREN ble bit t only once; IV ⁻ multiple times	the BORV bit in Sleep; SBC Γ registers ren (subject to the	DREN is ignore nain locked afte unlock sequen	er one clear/set
bit 3	MVECEN: Mul 1 = Multi-vecto 0 = Legacy int	ti-vector Enable or enabled; Vec errupt behavior	e bit stor table used r	d for interrupts			
bit 2-1 bit 0	PWRTS<1:0>: 11 = PWRT is 10 = PWRT se 01 = PWRT se 00 = PWRT se MCLRE: Maste If LVP = 1: RE3 pin function If LVP = 0: 1 = MCLR pin 0 = MCLR pin	Power-up Time disabled et at 64 ms (204 et at 16 ms (512 et at 1 ms (32 Li er Clear (MCLR on is MCLR is MCLR function is a po	er Selection b 8 LFINTOSC 2 LFINTOSC (FINTOSC Cyc 7) Enable bit	its Cycles) Cycles) cles) nction			

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0	U-0
TMR5GIE	TMR5IE	_	—	_	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	TMR5GIE: TN	MR5 Gate Inter	rupt Enable bi	it			
	1 = Enabled						
	0 = Disabled						
bit 6	TMR5IE: TMR5 Interrupt Enable bit						
	1 = Enabled						
	0 = Disabled						
bit 5-0	Unimplemen	ted: Read as ') '				

REGISTER 9-22: PIE8: PERIPHERAL INTERRUPT ENABLE REGISTER 8

REGISTER 9-23: PIE9: PERIPHERAL INTERRUPT ENABLE REGISTER 9

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	CLC3IE	CWG3IE	CCP3IE	TMR6IE
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	CLC3IE: CLC3 Interrupt Enable bit
	1 = Enabled 0 = Disabled
bit 2	CWG3IE: CWG3 Interrupt Enable bit
	1 = Enabled 0 = Disabled
bit 1	CCP3IE: CCP3 Interrupt Enable bit
	1 = Enabled 0 = Disabled
bit 0	TMR6IE: TMR6 Interrupt Enable bit
	1 = Enabled
	U = Disabled

REGISTER 13-2: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	NVMCON2<7:0>									
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable bit	t	U = Unimpler	nented bit, read	d as '0'				
x = Bit is unkno	own	'0' = Bit is cleare	ed	'1' = Bit is set						
-n = Value at F	POR									

bit 7-0 NVMCON2<7:0>:

Refer to Section 13.1.4 "NVM Unlock Sequence".

Note 1: This register always reads zeros, regardless of data written.

Register 13-3: NVMADRL: Data EEPROM Memory Address Low

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
ADR<7:0>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set	
-n = Value at POR			

bit 7-0 ADR<7:0>: EEPROM Read Address bits

REGISTER 13-4: NVMADRH: DATA EEPROM MEMORY ADDRESS HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	—	—	ADR<9:8>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set	
-n = Value at POR			

bit 7-2 Unimplemented: Read as '0'

bit 1-0 ADR<9:8>: EEPROM Read Address bits

Note 1: The NVMADRH register is not implemented on PIC18(L)F45/55K42.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_		_	_		TSEL	<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-4	Unimplen	nented: Read as '	כי				
bit 3-0	TSEL<3:0	>: Scanner Data T	rigger Input S	Selection bits			
	1111 = R e	eserved					
	•						
	•						
	•						
	1010 =	Reserved					
	1001 =	SMT1_output					
	1000 = -	TMR6_postscaled					
	0111 =	TMR5_output					
	0110 =	TMR4_postscaled					
	0101 =	TMR3_output					
	0100 -	TMR2_posiscaled					
	0011 -	TMR1_0utput					
	0001 =	CLKREF output					
	0000 =	LFINTOSC					

REGISTER 14-18: SCANTRIG: SCAN TRIGGER SELECTION REGISTER

20.8 Register Definitions: Timer0 Control

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN		OUT	MD16		OUTP	S<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	EN: TMR0 En 1 = The mod 0 = The mod	nable bit ule is enabled ule is disabled	and operating and in the lov	y vest power mo	de		
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	OUT: TMR0 C TMR0 output	Dutput bit (reac bit	l-only)				
bit 4	MD16: TMR0 1 = TMR0 is 0 = TMR0 is	Operating as a 16-bit timer an 8-bit timer	16-Bit Timer S	Select bit			
bit 3-0	OUTPS<3:0> 1111 = 1:16 F 1110 = 1:15 F 1101 = 1:14 F 1100 = 1:13 F 1011 = 1:12 F 1010 = 1:11 F 1001 = 1:10 F 1000 = 1:9 P 0111 = 1:8 P 0110 = 1:7 P 0111 = 1:8 P 0110 = 1:7 P 0101 = 1:4 P 0010 = 1:3 P 0001 = 1:2 P 0000 = 1:1 P	: TMR0 Outpu Postscaler	t Postscaler (Divider) Select	bits		

REGISTER 20-1: T0CON0: TIMER0 CONTROL REGISTER 0

22.6 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the T2TMR and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			RH<	<7:0>			
bit 7							bit 0
I a manuale							

REGISTER 23-5: CCPRxH: CCPx REGISTER HIGH BYTE

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0	MODE = Capture Mode:
	RH<7:0>: MSB of captured TMR1 value
	MODE = Compare Mode:
	RH<7:0>: MSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	RH<7:2>: Not used
	RH<1:0>: CCPW<9:8> - Pulse-Width MS 2 bits
	MODE = PWM Mode && FMT = 1:
	RH<7:0>: CCPW<9:2> - Pulse-Width MS 8 bits

TABLE 23-4: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPxCON	EN	-	OUT	FMT		MODE	=<3:0>		350
CCPxCAP	_	_	_	_	—	—	CTS<	<1:0>	352
CCPRxL	CCPRx<7:0>								352
CCPRxH		CCPRx<15:8>							353
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	351

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

R/W-0/0

R/W-0/0

R/W-0/0

R/W-0/0

—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	
bit 7	bit 7 bit							
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion		
bit 7 bit 6	Unimplement AS6E: CWG J 1 = Auto-shu	ted Read as '0 Auto-shutdown utdown for Sou	, Source 6 Ena rce 6 is enable	able bit ed				
	CV	VG Module		CWG1	CWG2	CV	VG3	
	Auto-sh	utdown Source	e 6 🛛 🔿	LC2 OUT	CLC3 OUT	- CLC	4 OUT	
bit 5	0 = Auto-shu AS5E: CWG A 1 = Auto-shu 0 = Auto-shu	utdown for Sou Auto-shutdown utdown for CMI utdown for CMI	rce 6 is disabl Source 5 (CN P2 OUT is ena P2 OUT is disa	ed IP2 OUT) Ena ibled abled	ble bit			
bit 4	AS4E: CWG 1 = Auto-shu 0 = Auto-shu	Auto-shutdown utdown for CMI utdown for CMI	Source 4 (CN P1 OUT is ena P1 OUT is disa	IP1 OUT) Ena abled abled	ble bit			
bit 3	AS3E: CWG Auto-shutdown Source 3 (TMR6_Postscaled) Enable bit 1 = Auto-shutdown for TMR6_Postscaled is enabled 0 = Auto-shutdown for TMR6_Postscaled is disabled							
bit 2	AS2E: CWG 1 = Auto-shu 0 = Auto-shu	Auto-shutdown utdown for TMF utdown for TMF	Source 2 (TM R4_Postscaled R4_Postscaled	IR4_Postscale I is enabled I is disabled	d) Enable bit			
bit 1	AS1E: CWG	Auto-shutdown	Source 1 (TM	IR2_Postscale	d) Enable bit			

REGISTER 26-7: CWGxAS1: CWG AUTO-SHUTDOWN CONTROL REGISTER 1

1 = Auto-shutdown for TMR2_Postscaled is enabled0 = Auto-shutdown for TMR2_Postscaled is disabled

1 = Auto-shutdown for CWGxPPS Pin is enabled0 = Auto-shutdown for CWGxPPS Pin is disabled

AS0E: CWG Auto-shutdown Source 0 (Pin selected by CWGxPPS) Enable bit

R/W-0/0

R/W-0/0

R/W-0/0

U-0

bit 0

FIGURE 31-2: UART RECEIVE BLOCK DIAGRAM

The operation of the UART module is controlled through nineteen registers:

- Three control registers (UxCON0-UxCON2)
- Error enable and status (UxERRIE, UxERRIR, UxUIR)
- UART buffer status and control (UxFIFO)
- Three 9-bit protocol parameters (UxP1-UxP3)
- 16-bit baud rate generator (UxBRGH:L)
- Transmit buffer write (UxTXB)
- Receive buffer read (UxRXB)
- Receive checksum (UxRXCHK)
- Transmit checksum (UxTXCHK)

These registers are detailed in Section 31.21 "Register Definitions: UART Control".

31.1 UART I/O Pin Configuration

The RX input pin is selected with the UxRPPS register. The TX output pin is selected with each pin's RxyPPS register. When the TRIS control for the pin corresponding to the TX output is cleared, then the UART will maintain control and the logic level on the TX pin. Changing the TXPOL bit in UxCON2 will immediately change the TX pin logic level regardless of the value of EN or TXEN.

31.2 UART Asynchronous Modes

The UART has five asynchronous modes:

- 7-bit
- 8-bit
- 8-bit with even parity in the 9th bit
- 8-bit with odd parity in the 9th bit
- 8-bit with address indicator in the 9th bit

The UART transmits and receives data using the standard Non-Return-to-Zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state, which

represents a '1' data bit, and a VOL space state, which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by seven or eight data bits, one optional parity or address bit, and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits with no parity. Each transmitted bit persists for a period of 1/ (Baud Rate). An on-chip dedicated 16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Section 31.17 "UART Baud Rate Generator (BRG)" for more information.

In all the asynchronous modes, the UART transmits and receives the LSb first. The UART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is supported by the hardware by even and odd parity modes.

31.2.1 UART ASYNCHRONOUS TRANSMITTER

The UART transmitter block diagram is shown in Figure 31-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the UxTXB register.

31.17.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit in the UxERRIR register will be set if the baud rate counter overflows before the fifth falling edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the UxBRGH:UxBRGL register pair. After the ABDOVF bit has been set, the state machine continues to search until the fifth falling edge is detected on the RX pin. Upon detecting the fifth falling RX edge, the hardware will set the ABDIF interrupt flag and clear the ABDEN bit in the UxCON0 register. The UxBRGH and UxBRGL register values retain their previous value. The ABDIF flag in the UxUIR register and ABDOVF flag in the UxERRIR register can be cleared by software directly. To generate an interrupt on an auto-baud overflow condition, all the following bits must be set:

- ABDOVE bit in the UxERRIE register
- UxEIE bit in the PIEx register
- PIE and GIE bits in the INTCON register

To terminate the auto-baud process before the ABDIF flag is set, clear the ABDEN bit, then clear the ABDOVF bit in the UxERRIR register.

31.17.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the UART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX line.

The Auto-Wake-up feature is enabled by setting both the WUE bit in the UxCON1 register and the UxIE bit in the PIEx register. Once set, the normal receive sequence on RX is disabled, and the UART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a transition out of the Idle state on the RX line. (This coincides with the start of a Break or a wake-up signal character for the LIN protocol.)

The UART module generates a WUIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 31-13), and asynchronously, if the device is in Sleep mode (Figure 31-14). The interrupt condition is cleared by clearing the WUIF bit in the UxUIR register. To generate an interrupt on a wake-up event, all the following bits must be set:

- UxIE bit in the PIEx register
- PIE and GIE bits in the INTCON register

The WUE bit is automatically cleared by the transition to the Idle state on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the UART module is in Idle mode, waiting to receive the next character.

31.17.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled, the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits of the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character of the transmission must be all zeros. This must be eleven or more bit times, 13bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL modes). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the UART.

WUE Bit

To ensure that no actual data is lost, check the RXIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

REGISTE	R 32-9: SPIxC	ON2: SPI CO	ONFIGURAT	ION REGIST	ER 2		
R-0/0	R-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
BUSY	SSFLT		—	_	SSET	TXR ⁽¹⁾	RXR ⁽¹⁾
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	e bit	U = Unimple	mented bit, read	l as '0'	
bit /	BUSY: SPI M	odule Busy Si	atus bit				
	1 = Data exch	ange is busy					
	0 = Data exch	ange is not ta	king place				
bit 6	SSFLT: SS(in) Fault Status	bit				
	<u>If SSET = 0</u>						
	1 = SS(in) end	ded the transa	action unexpec	tedly, and the	data byte being	received was l	ost
	0 = SS(in) end	ded normally					
	If SSET = 1						
	This bit is unc	hanged.					
bit 5-3	Unimplemen	ted: Read as	'0'				
bit 2	SSET: Slave S	Select Enable	bit				
	Master mode:						
	1 = SS(out) is	driven to the	active state co	ontinuously			
	0 = SS(out) is	driven to the	active state wl	hile the transm	it counter is not	zero	
	Slave mode:						
	1 = SS(in) is i	gnored and d	ata is clocked	on all SCK(in)	(as though SS =	TRUE at all ti	mes)
	0 = SS(in) ena is set (see Tal	ables/disables	s data input and etails)	d tri-states SD0	O if the TRIS bit	associated wit	h the SDO pin
bit 1	TXR: Transmi	t Data-Requir	ed Control bit ⁽	1)			
	1 = TxFIFO da	ata is required	for a transfer				
	0 = TxFIFO da	ata is not requ	uired for a trans	sfer			
bit 0	RXR: Receive	e FIFO Space	Required Con	trol bit ⁽¹⁾			
	1 = Data trans	sfers are susp	ended if the R	xFIFO is full			
	0 = Received	data is not sto	ored in the FIF	0			
Note 1:	See Table 32-1 as pertaining to TXR	well as <mark>Secti</mark> and RXR fun	on 32.5 "Mast ction.	er mode" and	Section 32.6 "S	Slave Mode" fo	or more details

2: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

REGISTER 33-5: I2CxBTO: I²C BUS TIMEOUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	—	—	_		BTO<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set HC = Hardware clear

bit 7-3	Unimplemented: Read as '0'

bit 2-0

Г

BTO<2:0>: I²C Bus Timeout Selection bits

BTO<2:0>	I ² Cx Bus Timeout Selection
111	CLC4OUT
110	CLC3OUT
101	CLC2OUT
100	CLC1OUT
011	TMR6 post scaled output
010	TMR4 post scaled output
001	TMR2 post scaled output
000	Reserved

39.1 Operation

When the HLVD module is enabled, a comparator uses an internally generated voltage reference as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module.

When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any of SEL<3:0> bits (HLVDCON1<3:0>).

41.1.1 STANDARD INSTRUCTION SET

ADD	ADDFSR Add Literal to FSR								
Synta	ax:	ADDFSR	f, k						
Oper	ands:	$0 \le k \le 63$	3						
		f ∈ [0, 1,	2]						
Oper	ation:	FSR(f) +	$k \rightarrow FSR$	(f)					
Statu	s Affected:	None	1						
Enco	ding:	1110	1000	ffk	k	kkkk			
Desc	ription:	The 6-bit contents	literal 'k' i of the FSI	s add R spe	ed to cifieo	o the d by 'f'.			
Word	ls:	1							
Cycle	es:	1							
QCy	cle Activity:								
-	-	Q1	Q2	Q3		Q4			
		Decod	Read	Pro	-	Write to			
		е	literal	ces	s	FSR			
			ʻk'	Dat	а				
		Decod	Read	Pro	-	Write to			
		е	literal	Ces	s	FSR			
ADD	After Instructio FSR2	on = 0422h	ral to W						
Synt	av.		k						
Oner	ands:	$\int \frac{1}{2} \mathbf{k} < 25^{1}$	5						
Oper	ation:	(W) + k →	(M) + k > M						
Statu	s Affected		$(\mathbf{v}) \cdot \mathbf{k} \rightarrow \mathbf{v}$						
Enco	dina:	0000	1111	kkl	c k	kkkk			
Doco	rintion:	The contor							
Desc	aipuon.	8-bit literal W.	8-bit literal 'k' and the result is placed in W.						
Word	ls:	1							
Cycle	es:	1							
0 C	vcle Activity								
30	, old 7 loll vity.	02	03			04			
	Doceda	Dood	Broco						
	Decode	literal 'k'	Data	35 3	vvr				

Example:			ADDLW	15h			
Befor	e Ins	ion					
	W	=	10h				
After Instruction							
,	W	=	25h				

ADDWF	ADD W to f					
Syntax:	ADDWF f {,d {,a}}					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]					
Operation:	(W) + (f) \rightarrow dest					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0010 01da ffff ffff					
Description.	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- aral Offset Mode" for details					
Words:	1					
Cycles:	1					

Q Cycle Activity:

Decode Read Process Write to register 'f' Data destination	Q1	Q2	Q3	Q4
register 'f' Data destination	Decode	Read	Process	Write to
0		register 'f'	Data	destination

Example: ADDWF REG, 0, 0

Before Instruction

W	=	17h
REG	=	0C2h
After Instruct	ion	
W	=	0D9h
REG	=	0C2h

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

ΒZ		Branch i	Branch if Zero						
Synta	ax:	BZ n							
Oper	ands:	-128 ≤ n ≤	$-128 \le n \le 127$						
Oper	ation:	if ZERO bi (PC) + 2 +	t is '1' $2n \rightarrow P0$	С					
Statu	is Affected:	None							
Enco	oding:	1110	0000	nnr	nn nnnn				
Desc	Description: If the ZERO bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.								
Word	ls:	1	1						
Cycle	es:	1(2)	1(2)						
Q Cycle Activity:									
	Q1	Q2	Q	3	Q4				
	Decode	Read literal 'n'	Proc Da	ess ta	Write to PC				
	No operation	No operation	N opera	o ation	No operation				
lf No	o Jump:								
	Q1	Q2	Q	3	Q4				
Decode		Read literal 'n'	Proc Da	ess ta	No operation				
Example:		HERE	BZ	Jump					
	Before Instruc PC After Instructio If ZERO PC If ZERO	tion = a on = 1; = a = 0;	ddress ddress	(HERE)					
	PC	= a	Juless	HERE	+ 2)				

CAL	.L	Subrouti	ne Call					
Synta	ax:							
Oper	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Oper	ation:	$\begin{array}{l} (PC) + 4 \rightarrow TOS, \\ k \rightarrow PC < 20:1 >, \\ \text{if s = 1} \\ (W) \rightarrow WS, \\ (Status) \rightarrow STATUSS, \\ (BSR) \rightarrow BSRS \end{array}$						
Statu	is Affected:	None						
Enco 1st w 2nd v	oding: /ord (k<7:0>) word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kk kkkl	.k kkkk ₀ k kkkk ₈			
memory range. First, return address (PC + 4) is pushed onto the return stack. If 's' = 1, the W, Status and E registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20 CDLL is a 2-cycle instruction					n address e return us and BSR nto their 's, WS, = 0, no hen, the to PC<20:1> on.			
Word	ls:	2	2					
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'k'<7:0>,	PUSH F stac	PC to k	Read literal 'k'<19:8>, Write to PC			
	No	No	No)	No			
	operation	operation	opera	tion	operation			
Example: HERE CALL THERE, 1								

Before Instruction PC

After Instruction

PC TOS WS BSRS

=

=

=

= = STATUSS = address (HERE)

address (THERE)

Status

address (HERE + 4) W BSR

© 2017 Microchip Technology Inc.

SUBWF Subtract W from f									
Synta	ax:	S	UBWF	f {,d {,a}]	}				
Operands: $\begin{array}{ll} 0\leq f\leq 255\\ d\in [0,1]\\ a\in [0,1] \end{array}$									
Oper	ation:	(f	$(f) - (W) \rightarrow dest$						
Statu	s Affected:	N	N, OV, C, DC, Z						
Enco	ding:		0101	11da	ffff	ffff			
Description: Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 41.2.3 "Byte-Oriented and Bit-Ori- ented Instructions in Indexed Literal Offset Mode" for details.									
Word	s:	1							
Cycle	es:	1							
Q Cycle Activity:									
	Q1		Q2	Q3		Q4			
	Decode	F reg	Read Jister 'f'	Proce Data	ess a (Write to destination			
<u>Exam</u>	nple 1: Before Instruc REG W C	s tion = = =	UBWF 3 2 2	REG, 1	, 0				
Fxam	After Instructio REG W C Z N nole 2 [.]	on = = = = = = = = = = = = = = = = = = =	esult is po	ositive					
<u>enan</u>	Before Instruc	tion	obm	100, 0	, .				
	REG W C	= = =	2 2 ?						
	After Instructio REG W C Z N	on = = = = =	2 0 1 ; r 1 0	esult is ze	ero				
Example 3:			UBWF	REG, 1	, 0				
	Before Instruc REG W C	tion = = =	1 2 ?						
	After Instructio REG W C	on = = =	FFh ;(2 2 0 ; r	2's comple esult is ne	ement) egative				
	Z N	= =	0 1						

SUBWFB	Su	btract \	N from	f with	n Borrow			
Syntax:	SL	JBWFB	f {,d {,a	a}}				
Operands:	0 ≤	≦ f ≤ 255						
	d ∈ a ∈	፤ [0,1] = [0,1]						
Operation:	a ∈ (f)	= [0, 1] (\\\) (<u>_</u> da	et				
Status Affected	$(1) - (W) - (C) \rightarrow dest$							
Encoding:	IN,	0V, C, D	10da	fff	f ffff			
Description:		htract W	and the		Y flag			
(borrow) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected if 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operation in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Set tion 41.2.3 "Byte-Oriented and Bite Oriented Instructions in Indexed L								
Words:	1	il Oliset	Noue		ano.			
Cycles:	1							
O Cycle Activity:								
Q1		Q2	Q	3	Q4			
Decode	I	Read	Proc	ess	Write to			
	reç	gister 'f'	Da	ta	destination			
Example 1:	. S	UBWFB	REG,	L, O				
Before Instruct REG	ion =	19h	(000	1 100)1)			
W	=	0Dh	(000	0 110	1)			
After Instructio	n n	I						
REG	=	0Ch	(000	0 110	0)			
Č	=	1	(000	0 110	11)			
Z	=	0	· resu	lt is no	sitive			
Example 2:	SUBWEB REC 0 0				Silve			
Before Instruct	ion		-, -					
REG	=	1Bh 1Ab	(000	1 101	.1)			
č	=	0	(000	1 101	.0)			
After Instructio	n_	1Ph	(000	1 1 1 1	1)			
W	=	00h	(0001 1011)					
C Z	=	1 1	· resu	· result is zero				
N	=	Ó	,					
Example 3:	S	UBWFB	REG, 1	L, O				
Before Instruct	ion =	03h	(000	0 001	1)			
W	=	0Eh	(000	0 111	.0)			
C After Instructio	= n	1						
REG	=	F5h	(111	1 010	1)			
W	=	0Eh	, [∠'S (000	compj 0 111	0)			
C 7	=	0						
<u> </u>	=	ĭ	: resu	lt is ne	gative			

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
Ľ.	388Dh	FSR2L_SHAD				FSF	R2L				125
Ľ.	388Ch	FSR1H_SHAD	_	_	FSR1H						125
Ľ.	388Bh	FSR1L_SHAD			FSR1L						125
Ľ.	388Ah	FSR0H_SHAD	_	_			F	SR0H			125
Ľ.	3889h	FSR0L_SHAD				FSF	ROL				125
Ľ.	3888h	PCLATU_SHAD	_	_	_	- PCU					
Ľ.	3887h	PCLATH_SHAD			PCH						125
Ľ.	3886h	BSR_SHAD	_	_	BSR						125
Ľ.	3885h	WREG_SHAD				WR	EG				125
Ľ.	3884h	STATUS_SHAD	_	TO	PD	Ν	OV	Z	DC	С	125
	3883h	SHADCON	_	_	_	_	_	—	—	SHADLO	168
Ľ.	3882h	BSR_CSHAD	_	_	BSR					57	
Ľ.	3881h	WREG_CSHAD			WREG						57
I	3880h	STATUS_C- SHAD	_	TO	PD	Ν	OV	Z	DC	С	57
	387Fh - 3800h	_		Unimplementeds							

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

TABLE 44-23: SPI MODE REQUIREMENTS (MASTER MODE)

Standard Operating Conditions (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions		
			61	_	_	ns	Transmit only mode		
	_		_	16 ⁽¹⁾	_	MHz	$\langle \rangle$		
	TSCK	SCK Cycle Time (2x Prescaled)	95		_	ns	Eull duplex mode		
				10 ⁽¹⁾	_	MHz			
SP70*	TssL2scH,	SDO to SCK↓ or SCK↑ input	Тѕск	_	—	ns	FST = 0		
	TssL2scL		0	_	_ /	ns) FST = 1		
SP71*	TscH	SCK output high time	0.5 Тѕск - 12	_	0.5 Тscк 🛃 12	ns			
SP72*	TscL	SCK output low time	0.5 Тѕск - 12	_	0.5 Тѕск + 12	ns			
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	85	_		ns			
SP74*	TscH2DIL,	Hold time of SDI data input to SCK edge	0			_195_	×		
	TscL2DIL	Hold time of SDI data input to final SCK	0.5 Tscк		$[\setminus \forall / /$	RS	CKE = 0, SMP = 1		
SP75*	TDOR	SDO data output rise time	— /	70	25	ns	C∟ = 50 pF		
SP76*	TDOF	SDO data output fall time	_ `	10	25 >	ns	C∟ = 50 pF		
SP78*	TscR	SCK output rise time	7	10	25	ns	C∟ = 50 pF		
SP79*	TscF	SCK output fall time	\downarrow \downarrow	10	25	ns	C∟ = 50 pF		
SP80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	- 15	\swarrow	15	ns	CL = 20 pF		
SP81*	TDOV2scH, TDOV2scL	SDO data output valid to first SCK edge	Тѕск - 10		—	ns	C∟ = 20 pF CKE = 1		
SP82*	TssL2doV	SDO data output valid after SS↓ edge	$\langle \mathcal{F} \rangle$	_	50	ns	CL = 20 pF		
SP83*	TscH2ssH, TscL2ssH	SS ↑ after last SCK edge	0.5 Теск- 10	_	—	ns			
SP84*	TssH2ss∟	SS↑ to SS↓ edge	0:5 /Тscк - 10	_	_	ns			

These parameters are characterized but not tested. \checkmark

- † Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: SPIxCON1.SMP bit must be set and the slew rate control must be disabled on the clock and data pins (clear the corresponding bits in \$LRCONx register) for SPI to operate over 4 MHz.

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-153A Sheet 1 of 2