

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

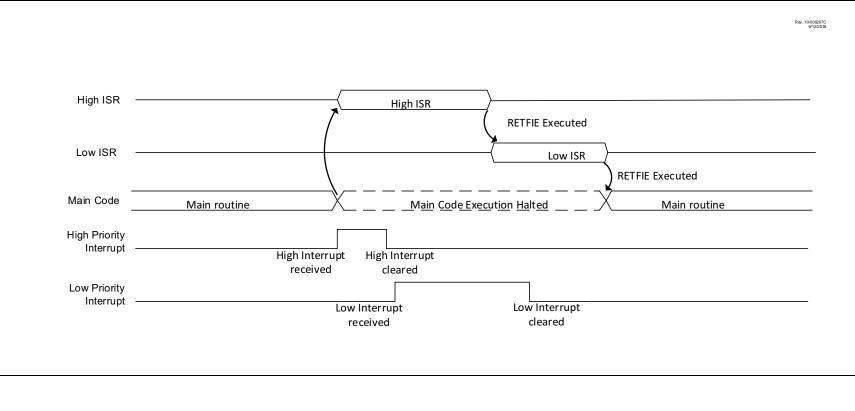
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k42-e-ml

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.4.2 SERVING A HIGH PRIORITY INTERRUPT WHILE A LOW PRIORITY INTERRUPT PENDING

A high priority interrupt request will always take precedence over any interrupt of a lower priority. The high priority interrupt is acknowledged first, then the low-priority interrupt is acknowledged. Upon a return from the high priority ISR (by executing the RETFIE instruction), the low priority interrupt is serviced, see Figure 9-3.

If any other high priority interrupts are pending and enabled, then they are serviced before servicing the pending low priority interrupt. If no other high priority interrupt requests are active, the low priority interrupt is serviced.

FIGURE 9-3: INTERRUPT EXECUTION: HIGH PRIORITY INTERRUPT WITH A LOW PRIORITY INTERRUPT PENDING

FIGURE 10-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1	01/02/03/04		Q3 Q4 Q1 Q2 Q3 Q4
	Tost ⁽³⁾	·/	
Interrupt flag	/ Interrupt Late	ncy ⁽⁴⁾	
GIE bit (INTCON reg.) Sleet		<u>.</u>	
Instruction Flow PC X PC X PC + 1 X	PC + 2 X PC + 2	PC+2 00	004h X 0005h
Instruction { Inst(PC) = Sleep Inst(PC + 1)	Inst(PC + 2)	Inst	(0004h) Inst(0005h)
Instruction { Inst(PC - 1) Sleep	Inst(PC + 1)	Forced NOP Force	ed NOP Inst(0004h)
Note 1: External clock. High, Medium, Low mode ass	umed.		

2: CLKOUT is shown here for timing reference.

3: TOST = 1024 TOSC. This delay does not apply to EC and INTOSC Oscillator modes.

4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

10.2.3 LOW-POWER SLEEP MODE

The PIC18F26/27/45/46/47/55/56/57K42 device family contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

The PIC18F26/27/45/46/47/55/56/57K42 devices allow the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register.

10.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

11.7 Register Definitions: Windowed Watchdog Timer Control

REGISTER 11-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0
_	-			PS<4:0>			SEN
oit 7							bit
_egend:							
R = Reada	ble bit	W = Writable bit		U = Unimpleme	nted bit, read as	'0'	
u = Bit is ur	nchanged	x = Bit is unknow	vn	-n/n = Value at	POR and BOR/V	alue at all other Re	esets
1' = Bit is s	et	'0' = Bit is cleare	d	q = Value deper	nds on condition		
oit 7-6	Unimplem	nented: Read as '0'					
bit 5-1	•	Watchdog Timer Preso	ala Salaat hita()			
JIL J- I		= Prescale Rate	ale Select bits.				
		Reserved. Results in	minimum inten	al (1·32)			
	•			ar(1.52)			
	•						
	•						
	10011 =	Reserved. Results in	minimum interv	al (1:32)			
	10010 =	1:8388608 (2 ²³) (Inte	erval 256s nomir	nal)			
		1:4194304 (2 ²²) (Inte					
		1:2097152 (2 ²¹) (Inte					
	01111 =	1:1048576 (2 ²⁰) (Inte	erval 32s nomina	al)			
	01110 =	1:524288 (219) (Inter	val 16s nominal)			
	01101 =	1:262144 (2 ¹⁸) (Inter	val 8s nominal)				
	01100 =	1:131072 (2 ¹⁷) (Inter	val 4s nominal)				
		1:65536 (Interval 2s	, ,	value)			
		1:32768 (Interval 1s	,				
		1:16384 (Interval 512					
		1:8192 (Interval 256	,				
		1:4096 (Interval 128					
		1:2048 (Interval 64 m 1:1024 (Interval 32 m					
		1:512 (Interval 16 ms	,				
		1:256 (Interval 8 ms	,				
		1:128 (Interval 4 ms	,				
		1:64 (Interval 2 ms n	,				
		1:32 (Interval 1 ms ne					
oit O		ware Enable/Disable fo	or Watchdog Tin	ner bit			
	If WDTE<						
	This bit is						
	If WDTE<						
		is turned on					
		is turned off					
	If WDTE< This bit is						
		-	hand a Oddi				
Note 1: 2:		vroximate. WDT time is PS <4:0> in CONFIG3L			<4.0> is 01011	Otherwise the Po	set value of
2:		ual to WDTCPS<4:0>		Cesel value of PS	-4.0/ 15 UIUII.	ouierwise, lite Re	Set value of
3:	•	PS <4:0> in CONFIG3L		bits are read-on	lv		
4:		DT is configured to rur			-	o is allowed to upo	lorgo o Dooo

4: When the WWDT is configured to run using the SOSC as a clock source and the device is allowed to undergo a Reset, as triggered by a WDT time-out, the SOSC would also undergo a Reset. That means the SOSC will execute its start-up sequence which requires 1024 SOSC clock counts before it is made available for peripherals to use. So for example, if the WDT is set for a 1 ms time-out and the device is allowed to undergo a WDT Reset, then the actual WDT Reset period will be: WDT_PERIOD = (1/(SOSC_FREQUENCY) * 1024) + 1 ms.

PIC18(L)F26/27/45/46/47/55/56/57K42

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_		TSEL	<3:0>	
bit 7	•	ŀ		·			bit (
d.							
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	l as '0'	
u = Bit is un	ichanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7-4	Unimple	mented: Read as ') '				
bit 3-0	•	:0>: Scanner Data T		Selection bits			
		Reserved	nggoi mpar				
	•						
	•						
	•						
		Reserved					
		SMT1_output					
		TMR6_postscaled TMR5 output					
		TMR4 postscaled					
		TMR3 output					
	0100 =	TMR2 postscaled					
	0011 =	TMR1 output					
		TMR0_output					
	0001 =	CLKREF_output					
	0000 =	LFINTOSC					

REGISTER 14-18: SCANTRIG: SCAN TRIGGER SELECTION REGISTER

20.3 Programmable Prescaler

A software programmable prescaler is available for exclusive use with Timer0. There are 16 prescaler options for Timer0 ranging in powers of two from 1:1 to 1:32768. The prescaler values are selected using the CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable. Clearing the prescaler register can be done by writing to the TMR0L register or to the T0CON0/T0CON1 register or by any Reset.

20.4 Programmable Postscaler

A software programmable postscaler (output divider) is available for exclusive use with Timer0. There are 16 postscaler options for Timer0 ranging from 1:1 to 1:16. The postscaler values are selected using the OUTPS bits of the T0CON0 register.

The postscaler is not directly readable or writable. Clearing the postscaler register can be done by writing to the TMR0L register or to the T0CON0/T0CON1 register or by any Reset.

20.5 Operation During Sleep

When operating synchronously, Timer0 will halt. When operating asynchronously, Timer0 will continue to increment and wake the device from Sleep (if Timer0 interrupts are enabled) provided that the input clock source is active.

20.6 Timer0 Interrupts

The Timer0 interrupt flag bit (TMR0IF) is set when either of the following conditions occur:

- 8-bit TMR0L matches the TMR0H value
- 16-bit TMR0 rolls over from 'FFFFh'

When the postscaler bits (OUTPS) are set to 1:1 operation (no division), the T0IF flag bit will be set with every TMR0 match or rollover. In general, the TMR0IF flag bit will be set every OUTPS +1 matches or rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the PIE3 register = '1'), the CPU will be interrupted and the device may wake from Sleep (see Section 20.2 "Clock Source Selection" for more details).

20.7 Timer0 Output

The Timer0 output can be routed to any I/O pin via the RxyPPS output selection register (see Section **17.0 "Peripheral Pin Select (PPS) Module**" for additional information). The Timer0 output can also be used by other peripherals, such as the auto-conversion trigger of the Analog-to-Digital Converter. Finally, the Timer0 output can be monitored through software via the Timer0 output bit (OUT) of the T0CON0 register (Register 20-1).

TMR0_out will be a pulse of one postscaled clock period when a match occurs between TMR0L and PR0 (Period register for TMR0) in 8-bit mode, or when TMR0 rolls over in 16-bit mode. The Timer0 output is a 50% duty cycle that toggles on each TMR0_out rising clock edge.

22.5 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the T2CON register are cleared).
- The diagrams illustrate any clock except FOSC/4 and show clock-sync delays of at least two full cycles for both ON and T2TMR_ers. When using FOSC/4, the clocksync delay is at least one instruction period for T2TMR_ers; ON applies in the next instruction period.
- ON and T2TMR_ers are somewhat generalized, and clock-sync delays may produce results that are slightly different than illustrated.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in Section 23.0 "Capture/ Compare/PWM Module" and Section 24.0 "Pulse-Width Modulation (PWM)". The signals are not a part of the T2TMR module.

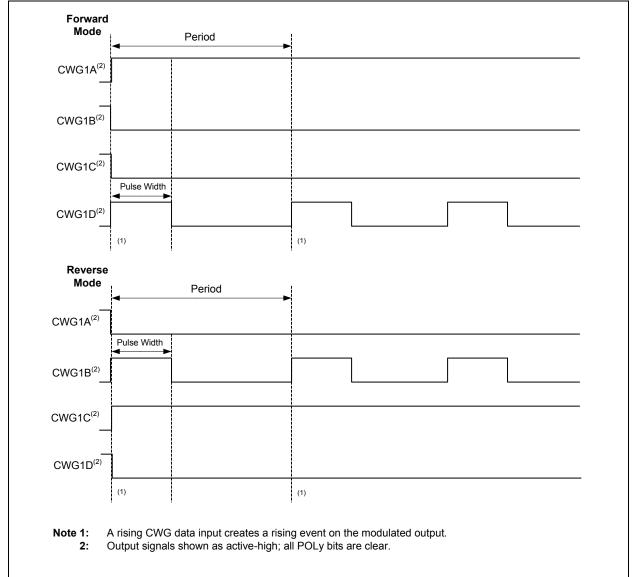
| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | RH< | :7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Lanandı | | | | | | | |

REGISTER 23-5: CCPRxH: CCPx REGISTER HIGH BYTE

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0	MODE = Capture Mode:
	RH<7:0>: MSB of captured TMR1 value
	MODE = Compare Mode:
	RH<7:0>: MSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	RH<7:2>: Not used
	RH<1:0>: CCPW<9:8> - Pulse-Width MS 2 bits
	MODE = PWM Mode && FMT = 1:
	RH<7:0>: CCPW<9:2> - Pulse-Width MS 8 bits

TABLE 23-4: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPxCON	EN	—	OUT	FMT		350			
CCPxCAP							CTS<	:1:0>	352
CCPRxL	CCPRx<7:0>							352	
CCPRxH	CCPRx<15:8>							353	
CCPTMRS0	C4TSEL<1:0> C3TSEL<1:0>				C2TSE	L<1:0>	C1TSE	L<1:0>	351

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

In Forward Full-Bridge mode (MODE<2:0> = 010), CWGxA is driven to its active state, CWGxB and CWGxC are driven to their inactive state, and CWGxD is modulated by the input signal, as shown in Figure 26-7.

In Reverse Full-Bridge mode (MODE<2:0> = 011), CWGxC is driven to its active state, CWGxA and CWGxD are driven to their inactive states, and CWGxB is modulated by the input signal, as shown in Figure 26-7. In Full-Bridge mode, the dead-band period is used when there is a switch from forward to reverse or viceversa. This dead-band control is described in Section 26.6 "Dead-Band Control", with additional details in Section 26.7 "Rising Edge and Reverse Dead Band" and Section 26.8 "Falling Edge and Forward Dead Band". Steering modes are not used with either of the Full-Bridge modes. The mode selection may be toggled between forward and reverse toggling the MODE<0> bit of the CWGxCON0 while keeping MODE<2:1> static, without disabling the CWG module.

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 26-3: CWGxCLK: CWGx CLOCK INPUT SELECTION REGISTER

CS bit 7bit 0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
bit 7 bit 0	—	—	_	—	—	—	_	CS
	bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

bit 0

CS: CWG Clock Source Selection bits

CS	CWG1	CWG2	CWG3
1	HFINTOSC ⁽¹⁾	HFINTOSC ⁽¹⁾	HFINTOSC ⁽¹⁾
0	Fosc	Fosc	Fosc

Note 1: HFINTOSC remains operating during Sleep.

29.0 ZERO-CROSS DETECTION (ZCD) MODULE

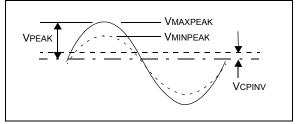
The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 29-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- Accurate long term time measurement
- Dimmer phase delayed drive
- Low EMI cycle switching

29.1 External Resistor Selection


The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 29-1 and Figure 29-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 29-1: EXTERNAL RESISTOR

$$RSERIES = \frac{V_{PEAK}}{3 \times 10^{-4}}$$

FIGURE 29-1: EXTERNA

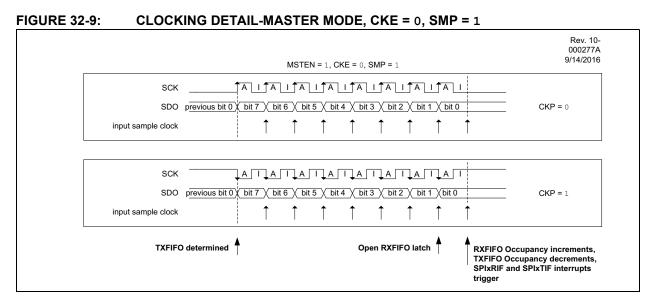
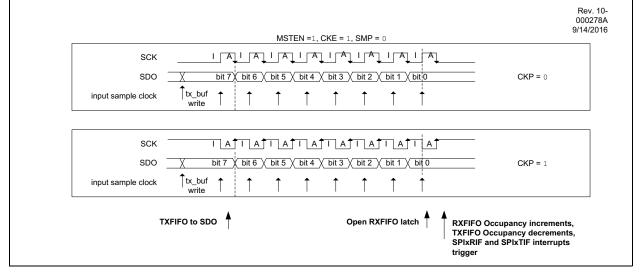



FIGURE 32-10: CLOCKING DETAIL-MASTER MODE, CKE = 1, SMP = 0

32.5.6.3 SCK Start-Up Delay

When starting an SPI data exchange, the master device sets the SS output (either through hardware or software) and then triggers the module to send data. These data triggers are synchronized to the clock selected by the SPIxCLK register before the first SCK pulse appears, usually requiring one or two clocks of the selected clock.

The SPI module includes synchronization delays on SCK generation specifically designed to ensure that the Slave Select output timing is correct, without requiring precision software timing loops.

When the value of the SPIxBAUD register is a small number (indicating higher SCK frequencies), the synchronization delay can be relatively long between setting SS and the first SCK. With larger values of SPIxBAUD (indicating lower SCK frequencies), this delay is much smaller and the first SCK can appear relatively quickly after SS is set.

By default, the SPI module inserts a ½ baud delay (half of the period of the clock selected by the SPIxCLK register) before the first SCK pulse. This allows for systems with a high SPIxBAUD value to have extra setup time before the first clock. Setting the FST bit in SPIxCON1 removes this additional delay, allowing systems with low SPIxBAUD values (and thus, long synchronization delays) to forego this unnecessary extra delay.

34.0 FIXED VOLTAGE REFERENCE (FVR)

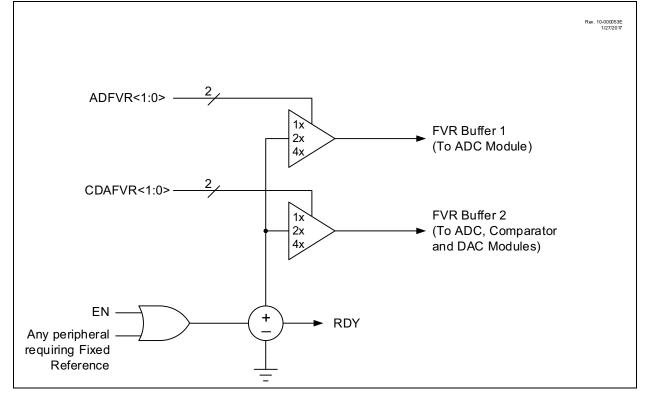
The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- ADC positive reference
- Comparator input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the EN bit of the FVRCON register.

Note: Fixed Voltage Reference output cannot exceed VDD.

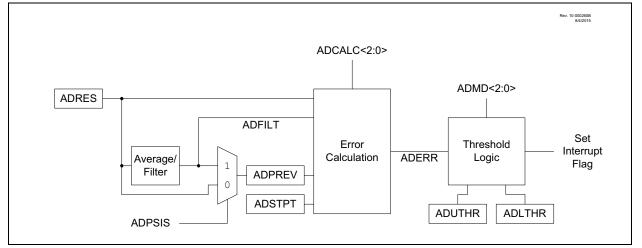
34.1 Independent Gain Amplifiers


The output of the FVR, which is connected to the ADC, Comparators, and DAC, is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels. The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference Section 36.0 "Analog-to-Digital Converter with Computation (ADC2) Module" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference Section 37.0 "5-Bit Digital-to-Analog Converter (DAC) Module" and Section 38.0 "Comparator Module" for additional information.

34.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the RDY bit of the FVRCON register will be set.


FIGURE 34-1: VOLTAGE REFERENCE BLOCK DIAGRAM

36.6 Computation Operation

The ADC module hardware is equipped with post conversion computation features. These features provide data post-processing functions that can be operated on the ADC conversion result, including digital filtering/averaging and threshold comparison functions.

FIGURE 36-10: COMPUTATIONAL FEATURES SIMPLIFIED BLOCK DIAGRAM

The operation of the ADC computational features is controlled by ADMD <2:0> bits in the ADCON2 register.

The module can be operated in one of five modes:

• **Basic**: In this mode, ADC conversion occurs on single (ADDSEN = 0) or double (ADDSEN = 1) samples. ADIF is set after all the conversion are complete.

• Accumulate: With each trigger, the ADC conversion result is added to accumulator and CNT increments. ADIF is set after each conversion. ADTIF is set according to the calculation mode.

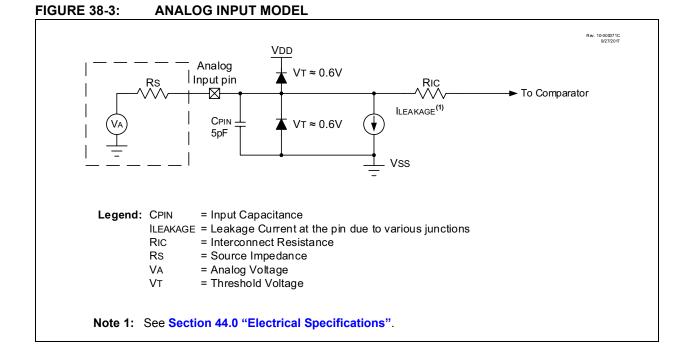
• Average: With each trigger, the ADC conversion result is added to the accumulator. When the RPT number of samples have been accumulated, a threshold test is performed. Upon the next trigger, the accumulator is cleared. For the subsequent tests, additional RPT samples are required to be accumulated.

• **Burst Average**: At the trigger, the accumulator is cleared. The ADC conversion results are then collected repetitively until RPT samples are accumulated and finally the threshold is tested.

• Low-Pass Filter (LPF): With each trigger, the ADC conversion result is sent through a filter. When RPT samples have occurred, a threshold test is performed. Every trigger after that the ADC conversion result is sent through the filter and another threshold test is performed.

The five modes are summarized in Table 36-2 below.

38.7 Comparator Response Time


The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 44-17 and Table 44-19 for more details.

38.8 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 38-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

The maximum source impedance for analog sources is mentioned in Parameter AD08 in Table 44-15. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

© 2017 Microchip Technology Inc.

39.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

39.7 Operation During Idle and Doze Modes

In both Idle and Doze modes, the module is active and events are generated if peripheral is enabled.

39.8 Operation During Freeze

When in Freeze mode, no new event or interrupt can be generated. The state of the LRDY bit is frozen.

Register reads and writes through the CPU interface are allowed.

39.9 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

PIC18(L)F26/27/45/46/47/55/56/57K42

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3BC8h - 3AEBh	—				Unimple	mented				
3AEAh	U2CTSPPS	—	—	—		U2CTSPPS				
3AE8h	U2RXPPS	_	—	—		U2RXPPS				
3AE7h	U1CTSPPS	_	—	—		U1CTSPPS				
3AE5h	U1RXPPS	_	—	_			U1RXPPS			277
3AE4h	I2C2SDAPPS	—	—	—			I2C2SDAPPS	S		277
3AE3h	I2C2SCLPPS	_	—	_			I2C2SCLPPS	3		277
3AE2h	I2C1SDAPPS	_	—	_			I2C1SDAPPS	S		277
3AE1h	I2C1SCLPPS	—	—	—			I2C1SCLPPS	3		277
3AE0h	SPI1SSPPS	_	—	_			SPI1SSPPS	;		277
3ADFh	SPI1SDIPPS	_	—	_			SPI1SDIPPS	6		277
3ADEh	SPI1SCKPPS	—	—	—		SPI1SCKPPS				
3ADDh	ADACTPPS	—	—	—		ADACTPPS				
3ADCh	CLCIN3PPS	—	—	—		CLCIN3PPS				
3ADBh	CLCIN2PPS	—	—	—		CLCIN2PPS				
3ADAh	CLCIN1PPS	—	—	—		CLCIN1PPS				
3AD9h	CLCIN0PPS	—	—	—			CLCIN0PPS	;		277 277
3AD8h	MD1SRCPPS	—	—	—		MD1SRCPPS				
3AD7h	MD1CARHPPS	—	—	—		MD1CARHPPS				
3AD6h	MD1CARLPPS	—	—	—	MD1CARLPPS					277
3AD5h	CWG3INPPS	—	—	—	CWG3INPPS					277
3AD4h	CWG2INPPS	—	—	—	CWG2INPPS					277
3AD3h	CWG1INPPS	_	—	—	CWG1INPPS					277
3AD2h	SMT1SIGPPS	_	—	—	SMT1SIGPPS					277
3AD1h	SMT1WINPPS		_	—	SMT1WINPPS					277
3AD0h	CCP4PPS		_	—	CCP4PPS					277
3ACFh	CCP3PPS		_	—	CCP3PPS					277
3ACEh	CCP2PPS	—	—	—	CCP2PPS					277
3ACDh	CCP1PPS		_	—	CCP1PPS					277
3ACCh	T6INPPS		_	—	T6INPPS					277
3ACBh	T4INPPS	_	_	—	T4INPPS					277
3ACAh	T2INPPS		_	—	T2INPPS					277
3AC9h	T5GPPS			—	T5GPPS					277
3AC8h	T5CLKIPPS			—	T5CLKIPPS					277
3AC7h	T3GPPS			—	T3GPPS					277
3AC6h	T3CLKIPPS	_	_	—	T3CLKIPPS					277
3AC5h	T1GPPS	_	—	—	TIGPPS					277
3AC4h	T1CLKIPPS	_	—	—	T1CLKIPPS					277
3AC3h	TOCLKIPPS	_	—	—	TOCLKIPPS					277
3AC2h	INT2PPS	_	—	—	INT2PPS					277
3AC1h	INT1PPS	_	—	—	INTIPPS					277
3AC0h	INT0PPS	_	_	—			INT0PPS			277
3ABFh	PPSLOCK	_	—	—	—	_	—	_	PPSLOCKED	283
3ABEh	—				Reserved, m	aintain as '0'				
3ABDh - 3A9Ah	—				Unimple	mented				
3A99h	—				Reserved, m	aintain as '0'				

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Note

Unimplemented in LF devices. 1:

Unimplemented in PIC18(L)F26/27K42. 2:

Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

Unimplemented in PIC18(L)F45/55K42. 4:

TABLE 44-5:POWER-DOWN CURRENT (IPD)

PIC18LF27/47/57K42					Standard Operating Conditions (unless otherwise stated)						
PIC18F27/47/57K42				Standard Operating Conditions (unless otherwise stated) VREGPM = 1							
Param.	Symbol	Device Characteristics	Min.	Typ.†	Max.	Max.	Units		Conditions		
No.	Cymbol	Device onaracteristics		ויקעי	+85°C	+125°C		VDD	Note		
D200	IPD	IPD Base	—	0.07	2	10.5	μΑ	3.0V	$\langle \rangle$		
D200	IPD	IPD Base	_	0.4	4	12	μA	3.0V			
D200A			—	20	38	42	μΑ	3.0V	VREGPM = 0		
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	—	0.9	3.2	11.2	μΑ	3.0V	\frown		
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	—	1.1	3.2	13	μΑ	3.0	\sum		
D202	IPD_SOSC	Secondary Oscillator (SOSC)		0.75	6	14	μΑ	3.QV	⊻P mode		
D202	IPD_SOSC	Secondary Oscillator (SOSC)		1.0	7	15	μΑ	3.0V	LP mode		
D203	IPD_FVR	FVR		45	74	75	/ttA_	3.0V	FVRCON = 0x81 or 0x84		
D203	IPD_FVR	FVR	_	40	70	76	μA	3.0∀	EVRCON = 0x81 or 0x84		
D204	IPD_BOR	Brown-out Reset (BOR)		9.4	14	18	\µA\	3.0V	\checkmark		
D204	IPD_BOR	Brown-out Reset (BOR)	_	9.4	15	18	μA	3.0V			
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	—	0.2	3 ·	$\langle \mathcal{M} \rangle$	μΑ	3.0V			
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)	—	9.5	14.8	18	μΑ `	√ 3.0∨			
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)	_	9.7	14.2	-17-	μA	3.0V			
D207	IPD_ADCA	ADC - Converting		.01	X	10.5	μŔ	3.0V			
D207	IPD_ADCA	ADC - Converting	—	0(1	4	12	μΑ	3.0V	ADC not converting (4)		
D208	IPD_CMP	Comparator	—	33	49	50	μΑ	3.0V			
D208	IPD_CMP	Comparator		30	49	50	μΑ	3.0V			

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base /DD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base lop or IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

4: ADC clock source is FRC.

TABLE 44-15: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

<mark>Operating Conditions (unless otherwise stated)</mark> VDD = 3.0V, TA = 25°C, TAD = 1μs							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD01	NR	Resolution	—	_	12	bit	\wedge
AD02	EIL	Integral Error	_	±0.1	±2.0	LSb	ADCREF+ = 3.0V, ADCREF- $\neq 0$
AD03	Edl	Differential Error	_	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= ρV
AD04	EOFF	Offset Error	_	0.5	6.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD05	Egn	Gain Error	_	±0.2	±6.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V	
AD07	VAIN	Full-Scale Range	ADREF-	_	ADREF+	V	
AD08	Zain	Recommended Impedance of Analog Voltage Source	—	1	—	kΩ	
AD09	Rvref	ADC Voltage Reference Ladder Impedance	—	50	—	kΩ	Note 3

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

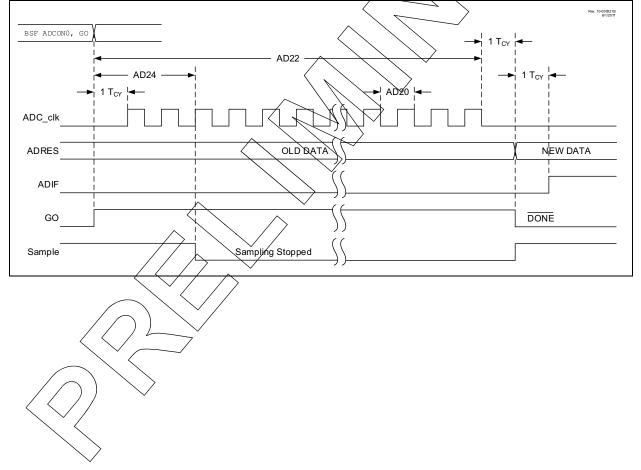
Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

PIC18(L)F26/27/45/46/47/55/56/57K42

TABLE 44-16: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS


Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD20	Tip	ADC Clock Period	1	_	9	μS	Using Fosc as the ADC clock source ADCS = 1	
AD21	TAD			2		μS	Using FRC as the ADC clock source ADCS = 0	
AD22	TCNV	Conversion Time ⁽¹⁾		14 Tad + 2 Tcy		_	Using Fosc as the ADC clock source ADCS = 1	
				16 Tad + 2 Tcy		_	Using FRc as the ADC clock source ADCS = &	
AD24	THCD	Sample and Hold Capacitor Disconnect Time		2 Tad + 1 Tcy	I	_	Using Fose as the ADC clock source ADCS = 1	
			_	3 Tad + 2 Tcy			Using FRC as the AD C clo ck source ADCS = 0	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

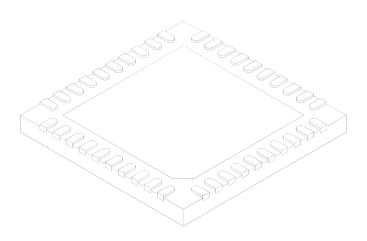

Note 1: Does not apply for the ADCRC oscillator.

FIGURE 44-10: ADC CONVERSION TIMING (ADC CLOCK Fose-BASED)

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS				
Dimen	MIN	NOM	MAX					
Number of Pins	N	40						
Pitch	е	0.40 BSC						
Overall Height	A	0.45	0.50	0.55				
Standoff	A1	0.00	0.02	0.05				
Contact Thickness	A3	0.127 REF						
Overall Width	E	5.00 BSC						
Exposed Pad Width	E2	3.60	3.70	3.80				
Overall Length	D	5.00 BSC						
Exposed Pad Length	D2	3.60	3.70	3.80				
Contact Width	b	0.15	0.20	0.25				
Contact Length	L	0.30	0.40	0.50				
Contact-to-Exposed Pad	K	0.20	-	-				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2