
Microchip Technology - PIC18LF26K42-E/MX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 28-UQFN Exposed Pad

Supplier Device Package 28-UQFN (6x6)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k42-e-mx

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf26k42-e-mx-4390243
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F26/27/45/46/47/55/56/57K42

7.4 Fail-Safe Clock Monitor
The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM is enabled by setting the FCMEN bit in the
Configuration Words. The FSCM is applicable to all
external Oscillator modes (LP, XT, HS, ECL/M/H and
Secondary Oscillator).

FIGURE 7-9: FSCM BLOCK DIAGRAM

7.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64. See Figure 7-9. Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire half-
cycle of the sample clock elapses before the external
clock goes low.

7.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM overwrites the
COSC bits to select HFINTOSC (3'b110). The
frequency of HFINTOSC would be determined by the
previous state of the FRQ bits and the NDIV/CDIV bits.
The bit flag OSFIF of the respective PIR register is set.
Setting this flag will generate an interrupt if the OSFIE
bit of the respective PIR register is also set. The device
firmware can then take steps to mitigate the problems
that may arise from a failed clock. The system clock will
continue to be sourced from the internal clock source
until the device firmware successfully restarts the
external oscillator and switches back to external
operation, by writing to the NOSC and NDIV bits of the
OSCCON1 register.

7.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset,
executing a SLEEP instruction or changing the NOSC
and NDIV bits of the OSCCON1 register. When
switching to the external oscillator or PLL, the OST is
restarted. While the OST is running, the device
continues to operate from the INTOSC selected in
OSCCON1. When the OST times out, the Fail-Safe
condition is cleared after successfully switching to the
external clock source. The OSCFIF bit should be
cleared prior to switching to the external clock source.
If the Fail-Safe condition still exists, the OSCFIF flag
will again become set by hardware.External

LFINTOSC
÷ 64

S

R

Q

31 kHz
(~32 s)

488 Hz
(~2 ms)

Clock Monitor
Latch

Clock
Failure

Detected

Oscillator

Clock

Q

Sample Clock
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 102

PIC18(L)F26/27/45/46/47/55/56/57K42

9.6 Returning from Interrupt Service

Routine (ISR)
The “Return from Interrupt” instruction (RETFIE) is
used to mark the end of an ISR.

When RETFIE 1 instruction is executed, the PC is
loaded with the saved PC value from the top of the PC
stack. Saved context is also restored with the execution
of this instruction. Thus, execution returns to the
previous state of operation that existed before the
interrupt occurred.

When RETFIE 0 instruction is executed, the saved
context is not restored back to the registers.

9.7 Interrupt Latency
By assigning each interrupt with a vector address/
number (MVECEN = 1), scanning of all interrupts is not
necessary to determine the source of the interrupt.

When MVECEN = 1, Vectored interrupt controller
requires three clock cycles to vector to the ISR from
main routine, thereby removing dependency of
interrupt timing on compiled code.

There is a fixed latency of three instruction cycles
between the completion of the instruction active when
the interrupt occurred and the first instruction of the
Interrupt Service Routine. Figure 9-7, Figure 9-8 and
Figure 9-9 illustrate the sequence of events when a
peripheral interrupt is asserted when the last executed
instruction is one-cycle, two-cycle and three-cycle
respectively, when MVECEN = 1.

After the Interrupt Flag Status bit is set, the current
instruction completes executing. In the first latency
cycle, the contents of the PC, STATUS, WREG, BSR,
FSR0/1/2, PRODL/H and PCLATH/U registers are
context saved and the IVTBASE+ Vector number is
calculated. In the second latency cycle, the PC is
loaded with the calculated vector table address for the
interrupt source and the starting address of the ISR is
fetched. In the third latency cycle, the PC is loaded with
the ISR address. All the latency cycles are executed as
a FNOP instruction.

When MVECEN = 0, Vectored interrupt controller
requires two clock cycles to vector to the ISR from main
routine. There is a latency of two instruction cycles plus
the software latency between the completion of the
instruction active when the interrupt occurred and the
first instruction of the Interrupt Service Routine.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 127

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 9-2: INTCON1: INTERRUPT CONTROL REGISTER 1
R-0/0 R-0/0 U-0 U-0 U-0 U-0 U-0 U-0

STAT<1:0> — — — — — —

bit 7 bit 0

Legend:
HC = Bit is cleared by hardware

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-6 STAT<1:0>: Interrupt State Status bits

11 = High priority ISR executing, high priority interrupt was received while a low priority ISR was
executing

10 = High priority ISR executing, high priority interrupt was received in main routine
01 = Low priority ISR executing, low priority interrupt was received in main routine
00 = Main routine executing

bit 5-0 Unimplemented: Read as ‘0’
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 136

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 9-13: PIR10: PERIPHERAL INTERRUPT REGISTER 10(1)

U-0 U-0 U-0 U-0 U-0 U-0 R/W/HS-0/0 R/W/HS-0/0

— — — — — — CLC4IF CCP4IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Bit is set in hardware

bit 7-2 Unimplemented: Read as ‘0’

bit 1 CLC4IF: CLC4 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 0 CCP4IF: CCP4 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

Note 1: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding
enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are
clear prior to enabling an interrupt.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 146

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 9-25: IPR0: PERIPHERAL INTERRUPT PRIORITY REGISTER 0
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

IOCIP CRCIP SCANIP NVMIP CSWIP OSFIP HLVDIP SWIP

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 IOCIP: Interrupt-on-Change Priority bit

1 = High priority
0 = Low priority

bit 6 CRCIP: CRC Interrupt Priority bit

1 = High priority
0 = Low priority

bit 5 SCANIP: Memory Scanner Interrupt Priority bit

1 = High priority
0 = Low priority

bit 4 NVMIP: NVM Interrupt Priority bit

1 = High priority
0 = Low priority

bit 3 CSWIP: Clock Switch Interrupt Priority bit

1 = High priority
0 = Low priority

bit 2 OSFIP: Oscillator Fail Interrupt Priority bit

1 = High priority
0 = Low priority

bit 1 HLVDIP: HLVD Interrupt Priority bit

1 = High priority
0 = Low priority

bit 0 SWIP: Software Interrupt Priority bit

1 = High priority
0 = Low priority
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 157

PIC18(L)F26/27/45/46/47/55/56/57K42
TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page

INTCON0 GIE/GIEH GIEL IPEN — — INT2EDG INT1EDG INT0EDG 135

INTCON1 STAT<1:0> — — — — — — 136

PIE0 IOCIE CRCIE SCANIE NVMIE CSWIE OSFIE HLVDIE SWIE 147

PIE1 SMT1PWAIE SMT1PRAIE SMT1IE C1IE ADTIE ADIE ZCDIE INT0IE 148

PIE2 I2C1RXIE SPI1IE SPI1TXIE SPI1RXIE DMA1AIE DMA1ORIE DMA1DCNTIE DMA1SCNTIE 149

PIE3 TMR0IE U1IE U1EIE U1TXIE U1RXIE I2C1EIE I2C1IE I2C1TXIE 150

PIE4 CLC1IE CWG1IE NCO1IE — CCP1IE TMR2IE TMR1GIE TMR1IE 151

PIE5 I2C2TXIE I2C2RXIE DMA2AIE DMA2ORIE DMA2DCNTIE DMA2SCNTIE C2IE INT1IE 152

PIE6 TMR3GIE TMR3IE U2IE U2EIE U2TXIE U2RXIE I2C2EIE I2C2IE 153

PIE7 — — INT2IE CLC2IE CWG2IE — CCP2IE TMR4IE 154

PIE8 TMR5GIE TMR5IE — — — — — — 155

PIE9 — — — — CLC3IE CWG3IE CCP3IE TMR6IE 155

PIE10 — — — — — — CLC4IE CCP4IE 156

PIR0 IOCIF CRCIF SCANIF NVMIF CSWIF OSFIF HLVDIF SWIF 137

PIR1 SMT1PWAIF SMT1PRAIF SMT1IF C1IF ADTIF ADIF ZCDIF INT0IF 138

PIR2 I2C1RXIF SPI1IF SPI1TXIF SPI1RXIF DMA1AIF DMA1ORIF DMA1DCNTIF DMA1SCNTIF 139

PIR3 TMR0IF U1IF U1EIF U1TXIF U1RXIF I2C1EIF I2C1IF I2C1TXIF 140

PIR4 CLC1IF CWG1IF NCO1IF — CCP1IF TMR2IF TMR1GIF TMR1IF 141

PIR5 I2C2TXF I2C2RXF DMA2AIF DMA2ORIF DMA2DCNTIF DMA2SCNTIF C2IF INT1IF 142

PIR6 TMR3GIF TMR3IF U2IF U2EIF U2TXIF U2RXIF I2C2EIF I2C2IF 143

PIR7 — — INT2IF CLC2IF CWG2IF — CCP2IF TMR4IF 144

PIR8 TMR5GIF TMR5IF — — — — — — 145

PIR9 — — — — CLC3IF CWG3IF CCP3IF TMR6IF 145

PIR10 — — — — — — CLC4IF CCP4IF 146

IPR0 IOCIP CRCIP SCANIP NVMIP CSWIP OSFIP HLVDIP SWIP 157

IPR1 SMT1PWAIP SMT1PRAIP SMT1IP C1IP ADTIP ADIP ZCDIP INT0IP 158

IPR2 I2C1RIP SPI1IP SPI1TIP SPI1RIP DMA1AIP DMA1ORIP DMA1DCNTIP DMA1SCNTIP 159

IPR3 TMR0IP U1IP U1EIP U1TXIP U1RXIP I2C1EIP I2C1IP I2C1TXIP 160

IPR4 CLC1IP CWG1IP NCO1IP — CCP1IP TMR2IP TMR1GIP TMR1IP 161

IPR5 I2C2TXP I2C2RXP DMA2AIP DMA2ORIP DMA2DCNTIP DMA2SCNTIP C2IP INT1IP 162

IPR6 TMR3GIP TMR3IP U2IP U2EIP U2TXIP U2RXIP I2C2EIP I2C2IP 163

IPR7 — — INT2IP CLC2IP CWG2IP — CCP2IP TMR4IP 164

IPR8 TMR5GIP TMR5IP — — — — — — 164

IPR9 — — — — CLC3IP CWG3IP CCP3IP TMR6IP 165

IPR10 — — — — — — CLC4IP CCP4IP 165

IVTBASEU — — — BASE<20:16> 166

IVTBASEH BASE<15:8> 166

IVTBASEL BASE<7:0> 166

IVTADU AD<20:16> 167

IVTADH AD<15:8> 167

IVTADL AD<7:0> 167

IVTLOCK — — — — — — — IVTLOCKED 168

Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for interrupts.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 169

PIC18(L)F26/27/45/46/47/55/56/57K42

15.9.4 TRANSFER FROM SFR TO GPR

The following visual reference describes the sequence
of events when copying ADC results to a GPR location.
The ADC Interrupt Flag can be chosen as the Source

Hardware trigger, the Source address can be set to
point to the ADC Result registers at 3EEF, the
Destination address can be set to point to any GPR
location of our choice (Example 0x100).

FIGURE 15-8: SFR SPACE TO GPR SPACE TRANSFER
Rev. 10-000275C

8/12/2016

Instruction
Clock

EN

DMAxSSZ 0x2

DMAxSSA 0x3EEF

1 2 3 4 5 6 7 8 N N+1

Source Hardware
Trigger

SIRQEN

DGO

DMAxSPTR 0x3EEF

DMAxDPTR 0x100

DMAxSCNT 2

DMAxDCNT 10

0x3EF0

0x101

1

9

0x3EEF

0x102

0x3EF0

0x103

1

7

SR(1) DW(2)SR(1) DW(2)IDLEDMA STATE SR(1) DW(2)SR(1) DW(2)

DMAxSCNTIF

DMAxDCNTIF

DMAxDSZ 0xA

DMAxDSA 0x100

N+2 N+3 N+4 N+5 N+6 N+7 N+x

2

8

0x3EEF

0x103

2

6

IDLEIDLE

SMODE 0x1 DMODE 0x1

Note 1: SR - Source Read

2: DW - Destination Write
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 241

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 16-2: TRISx: TRI-STATE CONTROL REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

TRISx7 TRISx6 TRISx5 TRISx4 TRISx3 TRISx2 TRISx1 TRISx0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 TRISx<7:0>: TRISx Port I/O Tri-state Control bits

1 = Port output driver is disabled
0 = Port output driver is enabled

TABLE 16-3: TRIS REGISTERS
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0

TRISB TRISB7(1) TRISB6(1) TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0

TRISD(2) TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0

TRISE(2) — — — — — TRISE2 TRISE1 TRISE0

TRISF(3) TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0

Note 1: Bits RB6 and RB7 read ‘1’ while in Debug mode.
2: Unimplemented in PIC18(L)F26/27K42.
3: Unimplemented in PIC18(L)F26/45/46/47K42.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 264

PIC18(L)F26/27/45/46/47/55/56/57K42
TABLE 16-11: SUMMARY OF REGISTERS ASSOCIATED WITH I/O

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on
Page

PORTA RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 263
PORTB RB7(1) RB6(1) RB5 RB4 RB3 RB2 RB1 RB0 263
PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 263
PORTD(6) RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 263
PORTE — — — — RE3(2) RE2(6) RE1(6) RE0(6) 263
PORTF(7) RF7 RF6 RF5 RF4 RF3 RF2 RF1 RF0 263
TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 264
TRISB TRISB7(3) TRISB6(3) TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 264
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 264
TRISD(6) TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 264
TRISE(6) — — — — — TRISE2 TRISE1 TRISE0 264
TRISF(7) TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 264
LATA LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0 265
LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 265
LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 265
LATD(6) LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 265
LATE(6) — — — — — LATE2 LATE1 LATE0 265
LATF(7) LATF7 LATF6 LATF5 LATF4 LATF3 LATF2 LATF1 LATF0 265
ANSELA ANSELA7 ANSELA6 ANSELA5 ANSELA4 ANSELA3 ANSELA2 ANSELA1 ANSELA0 266
ANSELB ANSELB7 ANSELB6 ANSELB5 ANSELB4 ANSELB3 ANSELB2 ANSELB1 ANSELB0 266
ANSELC ANSELC7 ANSELC6 ANSELC5 ANSELC4 ANSELC3 ANSELC2 ANSELC1 ANSELC0 266
ANSELD(6) ANSELD7 ANSELD6 ANSELD5 ANSELD4 ANSELD3 ANSELD2 ANSELD1 ANSELD0 266
ANSELE(6) — — — — — ANSELE2 ANSELE1 ANSELE0 266
ANSELF(7) ANSELF7 ANSELF6 ANSELF5 ANSELF4 ANSELF3 ANSELF2 ANSELF1 ANSELF0 266
WPUA WPUA7 WPUA6 WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 267
WPUB WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0 267
WPUC WPUC7 WPUC6 WPUC5 WPUC4 WPUC3 WPUC2 WPUC1 WPUC0 267
WPUD(6) WPUD7 WPUD6 WPUD5 WPUD4 WPUD3 WPUD2 WPUD1 WPUD0 267
WPUE — — — — WPUE3(4) WPUE2(6) WPUE1(6) WPUE0(6) 267
WPUF(6) WPUF7 WPUF6 WPUF5 WPUF4 WPUF3 WPUF2 WPUF1 WPUF0 267
ODCONA ODCA7 ODCA6 ODCA5 ODCA4 ODCA3 ODCA2 ODCA1 ODCA0 268
ODCONB ODCB7 ODCB6 ODCB5 ODCB4 ODCB3 ODCB2 ODCB1 ODCB0 268
ODCONC ODCC7 ODCC6 ODCC5 ODCC4 ODCC3 ODCC2 ODCC1 ODCC0 268
ODCOND(6) ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 268
ODCONE(6) — — — — — ODCE2 ODCE1 ODCE0 268
ODCONF(7) ODCF7 ODCF6 ODCF5 ODCF4 ODCF3 ODCF2 ODCF1 ODCF0 268
SLRCONA SLRA7 SLRA6 SLRA5 SLRA4 SLRA3 SLRA2 SLRA1 SLRA0 269
SLRCONB SLRB7 SLRB6 SLRB5 SLRB4 SLRB3 SLRB2 SLRB1 SLRB0 269
SLRCONC SLRC7 SLRC6 SLRC5 SLRC4 SLRC3 SLRC2 SLRC1 SLRC0 269
SLRCOND(6) SLRD7 SLRD6 SLRD5 SLRD4 SLRD3 SLRD2 SLRD1 SLRD0 269
SLRCONE(6) — — — — — SLRE2 SLRE1 SLRE0 269
SLRCONF(7) SLRF7 SLRF6 SLRF5 SLRF4 SLRF3 SLRF2 SLRF1 SLRF0 269
INLVLA INLVLA7 INLVLA6 INLVLA5 INLVLA4 INLVLA3 INLVLA2 INLVLA1 INLVLA0 270
INLVLB INLVLB7 INLVLB6 INLVLB5 INLVLB4 INLVLB3 INLVLB2(5) INLVLB1(5) INLVLB0 270
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by I/O Ports.

Note 1: Bits RB6 and RB7 read ‘1’ while in Debug mode.
2: Bit PORTE3 is read-only, and will read ‘1’ when MCLRE = 1 (Master Clear enabled).
3: Bits RB6 and RB7 read ‘1’ while in Debug mode.
4: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.
5: Any peripheral using the I2C pins read the I2C ST inputs when enabled via RxyI2C.
6: Unimplemented in PIC18(L)F26/27K42.
7: Unimplemented in PIC18(L)F26/27/45/46/47K42 parts.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 272

PIC18(L)F26/27/45/46/47/55/56/57K42

17.8 Register Definitions: PPS Input Selection
REGISTER 17-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

U-0 U-0 R/W-m/u(1,3) R/W-m/u(1) R/W-m/u(1) R/W-m/u(1) R/W-m/u(1) R/W-m/u(1)

— — xxxPPS<5:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit -n/n = Value at POR and BOR/Value at all other Resets

u = Bit is unchanged x = Bit is unknown q = value depends on peripheral

‘1’ = Bit is set U = Unimplemented bit,
read as ‘0’

m = value depends on default location for that input

‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’

bit 5-3 xxxPPS<5:3>: Peripheral xxx Input PORTx Pin Selection bits

See Table 17-1 for the list of available ports and default pin locations.
101 = PORTF(2)

100 = PORTE(3)

011 = PORTD(3)

010 = PORTC
001 = PORTB
000 = PORTA

bit 2-0 xxxPPS<2:0>: Peripheral xxx Input PORTx Pin Selection bits

111 = Peripheral input is from PORTx Pin 7 (Rx7)
110 = Peripheral input is from PORTx Pin 6 (Rx6)
101 = Peripheral input is from PORTx Pin 5 (Rx5)
100 = Peripheral input is from PORTx Pin 4 (Rx4)
011 = Peripheral input is from PORTx Pin 3 (Rx3)
010 = Peripheral input is from PORTx Pin 2 (Rx2)
001 = Peripheral input is from PORTx Pin 1 (Rx1)
000 = Peripheral input is from PORTx Pin 0 (Rx0)

Note 1: The Reset value ‘m’ of this register is determined by device default locations for that input.

2: Reserved on PIC18LF26/27/45/46/57K42 parts.

3: Reserved on PIC18LF26/27K42 parts.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 277

PIC18(L)F26/27/45/46/47/55/56/57K42

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page

TxPR Timer2 Module Period Register 320*

TxTMR Holding Register for the 8-bit T2TMR Register 320*

TxCON ON CKPS<2:0> OUTPS<3:0> 338

TxCLK — — — — — CS<2:0> 335

TxRST — — — — RSEL<3:0> 336

TxHLT PSYNC CPOL CSYNC MODE<4:0> 339

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2 module.
* Page provides register information.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 340

PIC18(L)F26/27/45/46/47/55/56/57K42

25.6.6 GATED WINDOWED MEASURE

MODE

This mode measures the duty cycle of the SMT1_signal
input over a known input window. It does so by
incrementing the timer on each pulse of the clock signal
while the SMT1_signal input is high, updating the
SMT1CPR register and resetting the timer on every
rising edge of the SMTWINx input after the first. See
Figure 25-12 and Figure 25-13.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 378

PIC18(L)F26/27/45/46/47/55/56/57K42
FIGURE 26-11: SIMPLIFIED CWG BLOCK DIAGRAM (OUTPUT STEERING MODES)

Rev. 10-000211D
5/30/2017

1

0

1

0

1

0

1

0

00

11

10

01

00

11

10

01

00

11

10

01

00

11

10

01

LSAC<1:0>

LSBD<1:0>

LSAC<1:0>

LSBD<1:0>

CWG Data
Input

E

D Q

POLA

POLB

POLC

POLD

CWG
Data

FREEZE
D Q

CWG1D

CWG1C

CWG1B

CWG1A

‘1’

‘1’

‘0’

‘1’

‘1’

‘0’

‘0’

‘0’

High-Z

High-Z

High-Z

High-Z

1

0
OVRD

STRD

1

0
OVRC

STRC

1

0
OVRB

STRB

1

0
OVRA

STRA

CWG Data

SHUTDOWN

CWG Data D

CWG Data C

CWG Data B

CWG Data A

EN

MODE<2:0> = 000: Asynchronous

MODE<2:0> = 001: Synchronous

REN
SHUTDOWN = 0

S

R

QAuto-shutdown source
(CWGxAS1 register)
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 415


 2016

-2017 M
icrochip T

echnology In
c.

Prelim
inary

D
S

40
001919B

-pa
ge 418

PIC
18(L)F26/27/45/46/47/55/56/57K

42

FIG

FIG THAN DEAD BAND

In

I

URE 26-12: DEAD-BAND OPERATION, CWGxDBR = 0x01, CWGxDBF = 0x02

URE 26-13: DEAD-BAND OPERATION, CWGxDBR = 0x03, CWGxDBF = 0x06, SOURCE SHORTER

put Source

CWGxA

CWGxB

cwg_clock

source shorter than dead band

nput Source

CWGxA

CWGxB

cwg_clock

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 31-6: DMX TRANSMIT SEQUENCE

31.5 LIN Modes (UART1 only)
LIN is a protocol used primarily in automotive
applications. The LIN network consists of two kinds of
software processes: a Master process and a Slave
process. Each network has only one Master process
and one or more Slave processes.

From a physical layer point of view, the UART on one
processor may be driven by both a Master and a Slave
process, as long as only one Master process exists on
the network.

A LIN transaction consists of a Master process followed
by a Slave process. The Slave process may involve
more than one Slave where one is transmitting and the
other(s) are receiving. The transaction begins by the
following Master process transmission sequence:

1. Break

2. Delimiter bit

3. Sync Field

4. PID byte

The PID determines which Slave processes are
expected to respond to the Master. When the PID byte
is complete, the TX output remains in the Idle state.
One or more of the Slave processes may respond to
the Master process. If no one responds within the inter-
byte period, the Master is free to start another
transmission. The inter-byte period is timed by software
using a means other than the UART.

The Slave process follows the Master process. When
the Slave software recognizes the PID then that Slave
process responds by either transmitting the required
response or by receiving the transmitted data. Only
Slave processes send data. Therefore, Slave
processes receiving data are receiving that of another
Slave process.

When a Slave sends data, the Slave UART
automatically calculates the checksum for the
transmitted bytes as they are sent and appends the
inverted checksum byte to the slave response.

When a Slave receives data, the checksum is
accumulated on each byte as it is received using the
same algorithm as the sending process. The last byte,
which is the inverted checksum value calculated by the
sending process, is added to the locally calculated
checksum by the UART. The check passes when the
result is all ‘1’s, otherwise the check fails and the
CERIF bit is set.

Two methods for computing the checksum are
available: legacy and enhanced. The legacy checksum
includes only the data bytes. The enhanced checksum
includes the PID and the data. The C0EN control bit in
the UxCON2 register determines the checksum
method. Setting C0EN to ‘1’ selects the enhanced
method. Software must select the appropriate method
before the Start bit of the checksum byte is received.

31.5.1 LIN MASTER/SLAVE MODE

The LIN Master mode includes capabilities to generate
Slave processes. The Master process stops at the PID
transmission. Any data that is transmitted in Master/
Slave mode is done as a Slave process. LIN Master/
Slave mode is configured by the following settings:

• MODE<3:0> = 1100
• TXEN = 1
• RXEN = 1
• UxBRGH:L = Value to achieve desired baud rate
• TXPOL = 0 (for high Idle state)
• STP = desired Stop bits selection
• C0EN = desired checksum mode
• RxyPPS = TX pin selection code
• TX pin TRIS control = 0
• ON = 1

Write to UxTXB

TX pin

TXMTIF bit
(Transmit Shift

Reg. Empty Flag)

Start Code Byte 1

softwareStart Code byte 1

UxTXIF bit
(Transmit Buffer

Reg. Empty Flag)

byte 2
MAB(1)

Break Start CodeMAB

delay

Byte 2 Byte 3 Byte n Start Code Byte 1

Break byte n

TXEN bit
(optional

synchronization)

Note 1: The MAB period is fixed at 3-bits period.

Note: The TXEN bit must be set before the
Master process is received and remain set
while in LIN mode whether or not the slave
process is a transmitter.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 483

PIC18(L)F26/27/45/46/47/55/56/57K42

31.6 DALI Mode (UART1 only)
DALI is a protocol used for intelligent lighting control for
building automation. The protocol consists of Control
Devices and Control Gear. A Control Device is an
application controller that sends out commands to the
light fixtures. The light fixture itself is termed as a
Control Gear. The communication is done using
Manchester encoding, which is performed by the UART
hardware.

Manchester encoding consists of the clock and data in
a single bit stream. A high-to-low or a low-to-high
transition always occurs in the middle of the bit period
and is not guaranteed to occur at the bit period
boundaries. When the consecutive bits in the bit stream
are of the same value i.e. consecutive '1's or
consecutive '0's, a transition occurs at the bit boundary.
However, when the bit value changes, there is no
transition at the bit boundary. According to the
standard, a half-bit time is typically 416.7 µs long. A
double half-bit time or a single bit is typically 833.3 µs.

The protocol is inherently half-duplex. Communication
over the bus occurs in the form of forward and
backward frames. Wait times between the frames are
defined in the standard to prevent collision between the
frames.

A Control Device transmission is termed as the forward
frame. In the DALI 2.0 standard, a forward frame can
be two or three bytes in length. The two-byte forward
frame is used for communication between Control
Device and Control Gear whereas the three-byte for-
ward frame is used for communication between Control
Devices on the bus. The first byte in the forward frame
is the control byte and is followed by either one or two
data bytes. The transaction begins when the Control
Device starts a transmission. Unlike other protocols,
each byte in the frame is transmitted MSB first. Typical
frame timing is as shown in Figure 31-8.

During communication between two Control Devices,
three bytes are required to be transmitted. In this case,
the software must write the third byte to UxTXB as soon
as UxTXIF goes True and before the output shifter
becomes empty. This ensures that the three bytes of
the forward frame are transmitted back-to-back without
any interruption.

All Control Gear on the bus receive the forward frame.
If the forward frame requires a reply to be sent, one of
the Control Gear may respond with a single byte, called
the backward frame. The 2.0 standard requires the
Control Gear to begin transmission of the backward
frame between 5.5 ms to 10.5 ms (~14 to 22 half-bit
times) after reception of the forward frame. Once the
backward frame is received by the Control Device, it is
required to wait a minimum of 2.4 ms (~6 half-bit times).
After this wait time, the Control Device is free to
transmit another forward frame (see Figure 31-9).

A start bit is used to indicate the start of the forward and
backward frames. The receiver bit rate is determined
by the BRG register. The low period of the start bit is
measured and is used as the timing reference for all
data bits in the forward and backward frames. The
ABDOVF bit is set if the start bit low period causes the
measurement counter to overflow. All the bits following
the start bit are data bits. The bit stream terminates
when no transition is detected in the middle of a bit
period (see Figure 31-7).

Forward and backward frames are terminated by two
Idle bit periods or Stop bits. Normally, these start in the
first bit period of a byte. If both Stop bits are valid, the
byte reception is terminated.

If either of the Stop bits is invalid, the frame is tagged
as invalid by saving it as a null byte and setting the
framing error in the receive FIFO.

A framing error also occurs when no transition is
detected on the bus in the middle of a bit period when
the byte reception is not complete. In such a scenario,
the byte will be saved with the FERIF bit.

31.6.1 CONTROL DEVICE

Control Device mode is configured with the following
settings:

• MODE = 0b1000

• TXEN = 1

• RXEN = 1

• UxP1 = Forward frames are held for transmission
with this number of half-bit periods after the
completion of a forward or backward frame.

• UxP2 = Forward/backward frame threshold
delimiter. Any reception that starts this number of
half bit periods after the completion of a forward or
backward frame is detected as forward frame and
sets the PERIF flag of the corresponding received
byte.

• UxBRGH:L = Value to achieve 1200 baud rate

• TXPOL = appropriate polarity for interface circuit

• STP = 0b10 for two Stop bits

• RxyPPS = TX pin selection code

• TX pin TRIS control = 0

• ON = 1.

A forward frame is initiated by writing the control byte to
the UxTXB register. After sending the control byte,
each data byte must be written to the UxTXB register
as soon as UxTXIF goes true. It is necessary to
perform every write after UxTXIF goes true, to ensure
that the transmit buffer is ready to accept the byte.
Each write must also occur before the TXMTIF bit goes
true, to ensure that the bit stream of forward frame is
generated without an interruption.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 485

PIC18(L)F26/27/45/46/47/55/56/57K42

31.9 Stop Bits
The number of Stop bits is user selectable with the STP
bits in the UxCON2 register.The STP bits affect all
modes of operation.

Stop bits selections include:

• 1 transmit with receive verify on first
• 1.5 transmit with receive verify on first
• 2 transmit with receive verify on both
• 2 transmit with receive verify on first only

In all modes, except DALI, the transmitter is idle for the
number of Stop bit periods between each consecutively
transmitted word. In DALI, the Stop bits are generated
after the last bit in the transmitted data stream.

The input is checked for the idle level in the middle of
the first Stop bit, when receive verify on first is selected,
as well as in the middle of the second Stop bit, when
verify on both is selected. If any Stop bit verification
indicates a non-idle level, the framing error FERIF bit is
set for the received word.

31.9.1 DELAYED UXRXIF

When operating in Half-Duplex mode, where the
microcontroller needs to reverse the transceiver
direction after a reception, it may be more convenient
to hold off the UxRXIF interrupt until the end of the Stop
bits to avoid line contention. The user selects when the
UxRXIF interrupt occurs with the STPMD bit in the
UxFIFO register. When STPMD is ‘1’, the UxRXIF
occurs at the end of the last Stop bit. When STPMD is
‘0’, UxRXIF occurs when the received byte is stored in
the receive FIFO. When STP<1:0> = 10, the store
operation is performed in the middle of the second Stop
bit, otherwise, it is performed in the middle of the first
Stop bit. The FERIF and PERIF interrupts are not
delayed with STPMD. Only UxRXIF is delayed when
STPMD is set and should be the only indicator for
reversing transceiver direction.

31.10 Operation after FIFO overflow
The Receive Shift Register (RSR) can be configured to
stop or continue running during a receive FIFO
overflow condition. Stopped operation is the Legacy
mode.

When the RSR continues to run during an overflow
condition, the first word received after clearing the
overflow will always be valid.

When the RSR is stopped during an overflow condition,
synchronization with the Start bits is lost. Therefore, the
first word received after the overflow is cleared may
start in the middle of a word.

Operation during overflow is selected with the
RUNOVF bit in the UxCON2 register. Setting the
RUNOVF bit selects the run during overflow method.

31.11 Receive and Transmit Buffers
The UART uses small buffer areas to transmit and
receive data. These are sometimes referred to as
FIFOs.

The receiver has a Receive Shift Register (RSR) and
two buffer registers. The buffer at the top of the FIFO
(earliest byte to enter the FIFO) is by retrieved by
reading the UxRXB register.

The transmitter has one Transmit Shift Register (TSR)
and one buffer register. Writes to UxTXB go to the
transmit buffer then immediately to the TSR, if it is
empty. When the TSR is not empty, writes to UxTXB
are held then transferred to the TSR when it becomes
available.

31.11.1 FIFO STATUS

The UxFIFO register contains several status bits for
determining the state of the receive and transmit
buffers.

The RXBE bit indicates that the receive FIFO is empty.
This bit is essentially the inverse of UxRXIF. The RXBF
bit indicates that the receive FIFO is full.

The transmitter has only one buffer register so the
status bits are essentially a copy and inverse of the
UxTXIF bit. The TXBE bit indicates that the buffer is
empty (same as UxTXIF) and the TXBF bit indicates
that the buffer is full (UxTXIF inverse). A third
transmitter status bit, TXWRE (transmit write error), is
set whenever a UxTXB write is performed when the
TXBF bit is set. This indicates that the write was
unsuccessful.

31.11.2 FIFO RESET

All modes support resetting the receive and transmit
buffers.

The receive buffer is flushed and all unread data
discarded when the RXBE bit in the UxFIFO register is
written to ‘1’. The MOVWF instruction with the TXBE bit
cleared should be used to avoid inadvertently clearing
a byte pending in the TSR when UxTXB is empty.

Data written to UxTXB when TXEN is low will be held in
the Transmit Shift Register (TSR) then sent when
TXEN is set. The transmit buffer and inactive TSR are
flushed by setting the TXBE bit in the UxFIFO register.
Setting TXBE while a character is actively transmitting
from the TSR will complete the transmission without
being flushed.

Clearing the ON bit will discard all received data and
transmit data pending in the TSR and UxTXB.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 489

PIC18(L)F26/27/45/46/47/55/56/57K42

36.6.5 BURST AVERAGE MODE

The Burst Average mode (ADMD = 011) acts the same
as the Average mode in most respects. The one way it
differs is that it continuously retriggers ADC sampling
until the CNT value is greater than or equal to RPT,
even if Continuous Sampling mode (see Section
36.6.8 “Continuous Sampling mode”) is not
enabled. This allows for a threshold comparison on the
average of a short burst of ADC samples.

36.6.6 LOW-PASS FILTER MODE

The Low-pass Filter mode (ADMD = 100) acts similarly
to the Average mode in how it handles samples
(accumulates samples until CNT value greater than or
equal to RPT, then triggers threshold comparison), but
instead of a simple average, it performs a low-pass
filter operation on all of the samples, reducing the effect
of high-frequency noise on the average, then performs
a threshold comparison on the results. (see Table 36-2
for a more detailed description of the mathematical
operation). In this mode, the ADCRS bits determine the
cut-off frequency of the low-pass filter (as
demonstrated by Table 36-3).

36.6.7 THRESHOLD COMPARISON

At the end of each computation:

• The conversion results are latched and held
stable at the end-of-conversion.

• The error is calculated based on a difference
calculation which is selected by the
ADCALC<2:0> bits in the ADCON3 register. The
value can be one of the following calculations
(see Register 36-4 for more details):
- The first derivative of single measurements
- The CVD result in CVD mode
- The current result vs. a setpoint
- The current result vs. the filtered/average

result
- The first derivative of the filtered/average

value
- Filtered/average value vs. a setpoint

• The result of the calculation (ERR) is compared to
the upper and lower thresholds,
UTH<ADUTHH:ADUTHL> and
LTH<ADLTHH:ADLTHL> registers, to set the
ADUTHR and ADLTHR flag bits. The threshold
logic is selected by ADTMD<2:0> bits in the
ADCON3 register. The threshold trigger option
can be one of the following:
- Never interrupt
- Error is less than lower threshold
- Error is greater than or equal to lower

threshold
- Error is between thresholds (inclusive)
- Error is outside of thresholds
- Error is less than or equal to upper threshold
- Error is greater than upper threshold

- Always interrupt regardless of threshold test
results

- If the threshold condition is met, the threshold
interrupt flag ADTIF is set.

36.6.8 CONTINUOUS SAMPLING MODE

Setting the CONT bit in the ADCON0 register
automatically retriggers a new conversion cycle after
updating the ADACC register. The GO bit remains set
and re-triggering occurs automatically.

If ADSOI = 1, a threshold interrupt condition will clear
GO and the conversions will stop.

36.6.9 DOUBLE SAMPLE CONVERSION

Double sampling is enabled by setting the ADDSEN bit
of the ADCON1 register. When this bit is set, two
conversions are required before the module will
calculate threshold error (each conversion must still be
triggered separately). The first conversion will set the
ADMATH bit of the ADSTAT register and update
ADACC, but will not calculate ERR or trigger ADTIF.
When the second conversion completes, the first value
is transferred to PREV (depending on the setting of
ADPSIS) and the value of the second conversion is
placed into ADRES. Only upon the completion of the
second conversion is ERR calculated and ADTIF
triggered (depending on the value of ADCALC).

Note 1: The threshold tests are signed
operations.

2: If ADAOV is set, a threshold interrupt is
signaled.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 616

PIC18(L)F26/27/45/46/47/55/56/57K42

36.7 Register Definitions: ADC Control
REGISTER 36-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0 R/W-0/0 U-0 R/W-0/0 U-0 R/W-0/0 U-0 R/W/HC-0

ON CONT — CS — FM — GO

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware

bit 7 ON: ADC Enable bit

1 = ADC is enabled
0 = ADC is disabled

bit 6 CONT: ADC Continuous Operation Enable bit

1 = GO is retriggered upon completion of each conversion trigger until ADTIF is set (if ADSOI is set)
or until GO is cleared (regardless of the value of ADSOI)

0 = ADC is cleared upon completion of each conversion trigger

bit 5 Unimplemented: Read as ‘0’

bit 4 CS: ADC Clock Selection bit

1 = Clock supplied from FRC dedicated oscillator
0 = Clock supplied by FOSC, divided according to ADCLK register

bit 3 Unimplemented: Read as ‘0’

bit 2 FM: ADC results Format/alignment Selection

1 = ADRES and PREV data are right-justified
0 = ADRES and PREV data are left-justified, zero-filled

bit 1 Unimplemented: Read as ‘0’

bit 0 GO: ADC Conversion Status bit(1)

1 = ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle. The bit is
cleared by hardware as determined by the CONT bit

0 = ADC conversion completed/not in progress

Note 1: This bit requires ON bit to be set.

2: If cleared by software while a conversion is in progress, the results of the conversion up to this point will
be transfered to ADRES and the state machine will be reset, but the ADIF interrupt flag bit will not be set;
filter and threshold operations will not be performed.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 617

PIC18(L)F26/27/45/46/47/55/56/57K42

43.2 MPLAB XC Compilers
The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.

For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.

The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.

MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other
relocatable object files and archives to create an
executable file. MPLAB XC Compiler uses the
assembler to produce its object file. Notable features of
the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility

43.3 MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects

• User-defined macros to streamline
assembly code

• Conditional assembly for multipurpose
source files

• Directives that allow complete control over the
assembly process

43.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

43.5 MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 733

