

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k42-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.13 Power Control (PCON0/PCON1) Register

The Power Control (PCON0/PCON1) register contains flag bits to differentiate between a:

- Brown-out Reset (BOR)
- Power-on Reset (POR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Window Violation (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)
- Memory Violation Reset (MEMV)

The PCON0/1 register bits are shown in Register 6-2 and Register 6-3. Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 6-3).

Software should reset the bit to the inactive state after restart (hardware will not reset the bit). Software may also set any PCON0 bit to the active state, so that user code may be tested, but no Reset action will be generated.

EXAMPLE 10-1: DOZE SOFTWARE EXAMPLE

```
//Mainline operation
bool somethingToDo = FALSE:
void main()
{
   initializeSystem();
         // DOZE = 64:1 (for example)
// ROI = 1;
   GIE = 1; // enable interrupts
   while (1)
   {
       // If ADC completed, process data
       if (somethingToDo)
       {
           doSomething();
           DOZEN = 1; // resume low-power
       }
   }
// Data interrupt handler
void interrupt()
   // DOZEN = 0 because ROI = 1
   if (ADIF)
   {
       somethingToDo = TRUE;
       DOE = 0; // make main() go fast
       ADIF = 0;
   }
   // else check other interrupts...
   if (TMROIF)
   {
       timerTick++;
       DOE = 1; // make main() go slow
       TMROIF = 0;
   }
```

FIGURE 10-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1	01/02/03/04		Q3 Q4 Q1 Q2 Q3 Q4
	Tost ⁽³⁾	·/	
Interrupt flag	/ Interrupt Late	ncy ⁽⁴⁾	
GIE bit (INTCON reg.) Sleet		<u>.</u>	
Instruction Flow PC X PC X PC + 1 X	PC + 2 X PC + 2	PC+2 00	004h X 0005h
Instruction { Inst(PC) = Sleep Inst(PC + 1)	Inst(PC + 2)	Inst	(0004h) Inst(0005h)
Instruction { Inst(PC - 1) Sleep	Inst(PC + 1)	Forced NOP Force	ed NOP Inst(0004h)
Note 1: External clock. High, Medium, Low mode ass	umed.		

2: CLKOUT is shown here for timing reference.

3: TOST = 1024 TOSC. This delay does not apply to EC and INTOSC Oscillator modes.

4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

10.2.3 LOW-POWER SLEEP MODE

The PIC18F26/27/45/46/47/55/56/57K42 device family contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

The PIC18F26/27/45/46/47/55/56/57K42 devices allow the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register.

10.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_		TSEL	<3:0>	
bit 7	•	ŀ		·			bit (
d.							
Legend:							
R = Readab	R = Readable bit W = Writable bit				mented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown			-n/n = Value	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7-4	Unimple	mented: Read as ') '				
bit 3-0	•	:0>: Scanner Data T		Selection bits			
		Reserved	nggoi mpar				
	•						
	•						
	•						
		Reserved					
		SMT1_output					
		TMR6_postscaled TMR5 output					
		TMR4 postscaled					
		TMR3 output					
	0100 =	TMR2 postscaled					
	0011 =	TMR1 output					
		TMR0_output					
	0001 =	CLKREF_output					
	0000 =	LFINTOSC					

REGISTER 14-18: SCANTRIG: SCAN TRIGGER SELECTION REGISTER

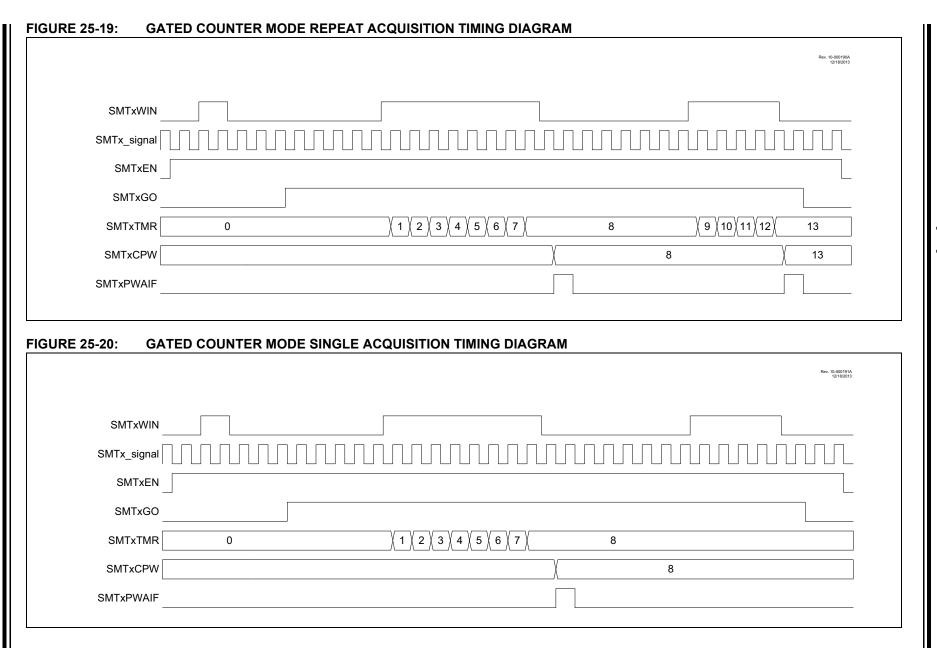
		•								
U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u			
—	_		RxyPPS<5:0>							
bit 7		bit 0								
Legend:										
R = Readable I	oit	W = Writable b	bit	U = Unimple	mented bit, rea	id as '0'				
u = Bit is uncha	anged	x = Bit is unkn	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	0' = Bit is cleared							

REGISTER 17-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RxyPPS<5:0>:** Pin Rxy Output Source Selection bits See Table 17-2 for the list of available ports.

R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
C4TSE	:L<1:0>	C3TSEL<1:0>		C2TSEL<1:0>		C1TSE	EL<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7-6	10 = CCP4 is	s based off Tin s based off Tin s based off Tin	ner5 in Captur ner3 in Captur	s e/Compare mo e/Compare mo e/Compare mo	de and Timer4	in PWM mode	
bit 5-4	11 = CCP3 is 10 = CCP3 is	s based off Tim s based off Tim	ner5 in Captur ner3 in Captur	e/Compare mo e/Compare mo e/Compare mo e/Compare mo	de and Timer4	in PWM mode	
bit 3-2	11 = CCP2 is 10 = CCP2 is	based off Tim based off Tim	er5 in Capture er3 in Capture	s e/Compare mod e/Compare mod e/Compare mod	le and Timer4 i	n PWM mode	
bit 1-0	10 = CCP1 is	based off Tim based off Tim based off Tim	er5 in Capture er3 in Capture	s e/Compare mod e/Compare mod e/Compare mod	le and Timer4 i	n PWM mode	


REGISTER 23-2: CCPTMRS0: CCP TIMERS CONTROL REGISTER 0

R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
P8TS	EL<1:0>	P7TSE	L<1:0>	P6TSE	EL<1:0>	P5TSEL<1:0>	
bit 7						·	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7-6	11 = PWM8 10 = PWM8	PWM8 Time based on TMR based on TMR based on TMR ed	6 4	S			
bit 5-4							
bit 3-2	11 = PWM6 b 10 = PWM6 b	PWM6 Time ased on TMR6 ased on TMR4 ased on TMR2 d	5 4	S			
bit 1-0	P5TSEL<1:0> 11 = PWM5 b 10 = PWM5 b	PWM5 Time based on TMR6 based on TMR4 based on TMR2	5 4	s			

REGISTER 24-2: CCPTMRS1: CCP TIMERS CONTROL REGISTER 1

25.6.3 PERIOD AND DUTY CYCLE MODE

In Duty Cycle mode, either the duty cycle or period (depending on polarity) of the SMT1_signal can be acquired relative to the SMT clock. The CPW register is updated on a falling edge of the signal, and the CPR register is updated on a rising edge of the signal, along with the SMT1TMR resetting to 0x0001. In addition, the GO bit is reset on a rising edge when the SMT is in Single Acquisition mode. See Figure 25-6 and Figure 25-7.

© 2016-2017 Microchip Technology Inc

Preliminary

REGISTER :	R/W-0/0	N2: UART CONTE R/W-0/0 R/	W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
RUNOVF	RXPOL	STP<1:0>	•• 0/0	C0EN	TXPOL		<1:0>	
bit 7	101 02			OULIN	174 02	120	bit (
Legend:								
R = Readable		W = Writable bit			nented bit, read			
u = Bit is uncl	•	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is cleared						
bit 7		In During Overflow C	`ontrol h	it				
		shifter continues to			hits after overflo	w condition		
		shifter stops all activ						
bit 6	RXPOL: Rec	eive Polarity Control	bit					
		K polarity, Idle state is						
	-	ity is not inverted, Id		s high				
bit 5-4		top Bit Mode Control		a first Otan hit				
		nit 2 Stop bits, receiver verifies first Stop bit nit 2 Stop bits, receiver verifies first and second Stop bits						
		nit 1.5 Stop bits, rece						
		nit 1 Stop bit, receive		s first Stop bit				
bit 3	COEN: Check	sum Mode Select bi	t(2)					
	LIN mode:							
		m Mode 1, enhanced				um		
	 0 = Checksum Mode 0, legacy LIN checksum does not include PID in sum Other modes: 							
		X and RX characters	5					
	0 = Checksu	ms disabled						
bit 2	TXPOL: Tran	smit Polarity Control	bit					
		ata is inverted, TX ou	•					
	-	ata is not inverted, T	-	t is high in Idle	state			
bit 1-0		landshake Flow Cont	trol bits					
	$11 = \frac{\text{Reserv}}{\text{RTS/C}}$	ved CTS and TXDE Hardv	ware flow	v control				
		OFF Software flow		Veontion				
	00 = Flow c	ontrol is off						
Note 1: All	modes transmit	t selected number of	Stop bit	s. Only DMX a	nd DALI receive	ers verify select	ted number o	
		thers verify only the f				-		

REGISTER 31-3: UxCON2: UART CONTROL REGISTER 2

2: UART1 only.

REGISTER 31-8: UxBRGL: UART BAUD RATE GENERATOR LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			BRG	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 BRG<7:0>: Least Significant Byte of Baud Rate Generator

REGISTER 31-9: UxBRGH: UART BAUD RATE GENERATOR HIGH REGISTER

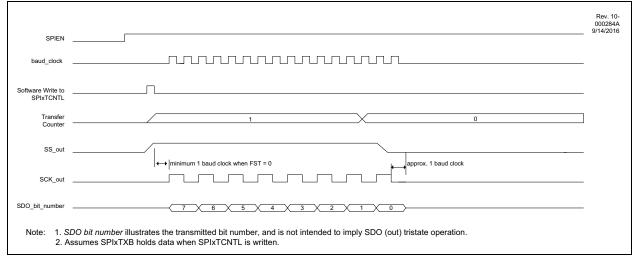
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
BRG<15:8>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 BRG<15:8>: Most Significant Byte of Baud Rate Generator

Note 1: The UxBRG registers should only be written when ON = 0.

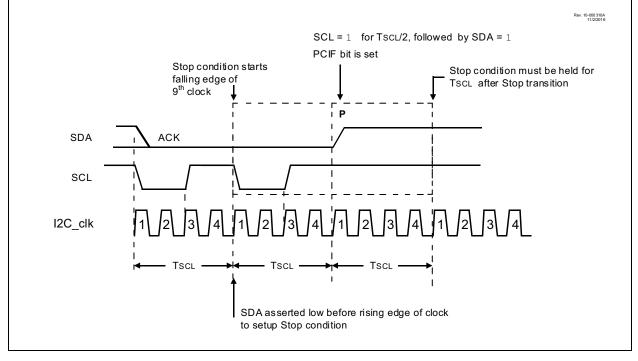
2: Maximum BRG value when MODE = 100x and BRGS = 1 is 0x7FFE.


3: Maximum BRG value when MODE = '100x' and BRGS = 0 is 0x1FFE.

32.5.5 MASTER MODE SLAVE SELECT CONTROL

32.5.5.1 Hardware Slave Select Control

This SPI module allows for direct hardware control of a Slave Select output. The Slave Select output SS(out) is controlled both directly, through the SSET bit of SPIxCON2, as well indirectly by the hardware while the transfer counter is non-zero (see Section 32.4 "Transfer Counter"). SS(out) is steered by the PPS registers to pins (see Section 17.2 "PPS Outputs") and its polarity is controlled by the SSP bit of SPIxCON1. Setting the SSET bit will also assert SS(out). Clearing the SSET bit will leave SS(out) to be controlled by the Transfer Counter. When the Transfer Counter is loaded, the SPI module will automatically assert the SS. When the Transfer Counter decrements to zero, the SPI module will deassert SS either one baud period after the final SCK pulse of the final transfer (if CKE/SMP = 0/1) or one half baud period otherwise (see Figure 32-6).


FIGURE 32-6: SPI MASTER SS OPERATION- CKE = 0, BMODE = 1, TCWIDTH = 0, SSP = 0

32.5.5.2 Software Slave Select Control

Slave Select can also be controlled through software via a general purpose I/O pin. In this case, ensure that the pin in question is configured as a GPIO through PPS (see Section 17.2 "PPS Outputs"), and ensure that the pin is set as an output (clear the appropriate bit in the appropriate TRIS register). In this case, SSET will not affect the slave select, the Transfer Counter will not automatically control the slave select output, and all setting and clearing of the slave select output line must be directly controlled by software.

FIGURE 33-18: STOP CONDITION DURING RECEIVE OR TRANSMIT

33.5.9 MASTER TRANSMISSION IN 7-BIT ADDRESSING MODE

This section describes the sequence of events for the I^2C module configured as an I^2C master in 7-bit Addressing mode and is transmitting data. Figure 33-19 is used as a visual reference for this description.

1. If ABD = 0; i.e., Address buffers are enabled

Master software loads number of bytes to be transmitted in one sequence in I2CxCNT, slave address in I2CxADB1 with R/W = 0 and the first byte of data in I2CxTXB. Master software has to set the Start (S) bit to initiate communication.

If ABD = 1; i.e., Address buffers are disabled

Master software loads the number of bytes to be transmitted in one sequence in I2CxCNT and the slave address with R/W = 0 into the I2CxTXB register. Writing to the I2CxTXB will assert the start condition on the bus and sets the S bit. Software writes to the S bit are ignored in this case.

- 2. Master hardware waits for BFRE bit to be set; then shifts out start and address.
- If the transmit buffer is empty (i.e., TXBE = 1) and I2CxCNT!= 0, the I2CxTXIF and MDR bits are set and the clock is stretched on the 8th falling SCL edge. Clock can be started by loading the next data byte in I2CxTXB register.
- 4. Master sends out the 9th SCL pulse for ACK.
- If the Master hardware receives ACK from Slave device, it loads the next byte from the transmit buffer (I2CxTXB) into the shift register and the

value of I2CxCNT register is decremented.

- 6. If a NACK was received, Master hardware asserts Stop or Restart
- 7. If ABD = 0; i.e., Address buffers are enabled

If I2CxCNT = 0, Master hardware sends Stop or sets MDR if RSEN = 1 and waits for the software to set the Start bit again to issue a restart condition.

If ABD = 1; i.e., Address buffers are disabled

If I2CxCNT = 0, Master hardware sends Stop or sets MDR if RSEN = 1 and waits for the software to write the new address to the I2CxTXB register. Software writes to the S bit are ignored in this case.

- 8. Master hardware outputs data on SDA.
- 9. If TXBE = 1 and I2CxCNT! = 0, I2CxTXIF and MDR bits are set and the clock is stretched on 8th falling SCL edge. The user can release the clock by writing the next data byte to I2CxTXB register.
- 10. Master hardware clocks in ACK from Slave, and loads the next data byte from I2CTXB to the shift register. The value of I2CxCNT is decremented.
- 11. Go to step 7.

34.0 FIXED VOLTAGE REFERENCE (FVR)

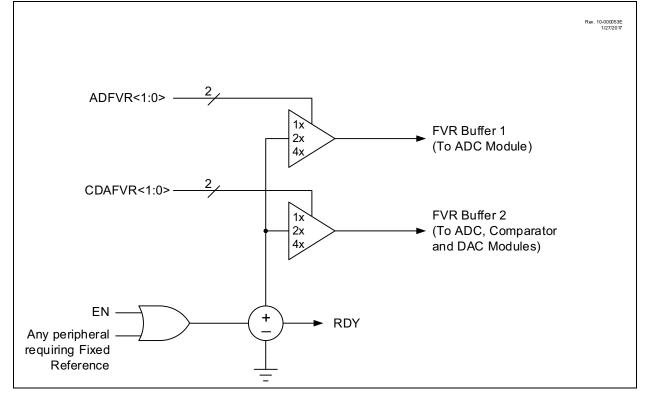
The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- ADC positive reference
- Comparator input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the EN bit of the FVRCON register.

Note: Fixed Voltage Reference output cannot exceed VDD.

34.1 Independent Gain Amplifiers


The output of the FVR, which is connected to the ADC, Comparators, and DAC, is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels. The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference Section 36.0 "Analog-to-Digital Converter with Computation (ADC2) Module" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference Section 37.0 "5-Bit Digital-to-Analog Converter (DAC) Module" and Section 38.0 "Comparator Module" for additional information.

34.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the RDY bit of the FVRCON register will be set.

FIGURE 34-1: VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 41-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
ACCESS	ACCESS = 0: RAM access bit symbol
BANKED	BANKED = 1: RAM access bit symbol
bbb	Bit address within an 8-bit file register (0 to 7)
BSR	Bank Select Register. Used to select the current RAM bank.
d	Destination select bit; d = 0: store result in WREG, d = 1: store result in file register f.
dest	Destination either the WREG register or the specified register file location
f	8-bit Register file address (00h to FFh)
f _n	FSR Number (0 to 2)
fs	12-bit Register file address (000h to FFFh). This is the source address.
f _d	12-bit Register file address (000h to FFFh). This is the destination address.
zs	7-bit literal offset for FSR2 to used as register file address (000h to FFFh). This is the source address.
zd	7-bit literal offset for FSR2 to used as register file address (000h to FFFh). This is the destination address.
k	Literal field, constant data or label (may be a 6-bit, 8-bit, 12-bit or a 20-bit value)
label	Label name
mm	The mode of the TBLPTR register for the Table Read and Table Write instructions Only used with Table Read and Table Write instructions:
*	No Change to register (such as TBLPTR with Table reads and writes)
*+	Post-Increment register (such as TBLPTR with Table reads and writes)
*_	Post-Decrement register (such as TBLPTR with Table reads and writes)
+*	Pre-Increment register (such as TBLPTR with Table reads and writes)
n	The relative address (2's complement number) for relative branch instructions, or the direct address for Call/Branch and Return instructions
PRODH	Product of Multiply high byte
PRODL	Product of Multiply low byte
S	Fast Call / Return mode select bit. s = 0: do not update into/from shadow registers s = 1: certain registers loaded into/from shadow registers (Fast mode)
u	Unused or Unchanged
W	W = 0: Destination select bit symbol
WREG	Working register (accumulator)
х	Don't care (0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
TBLPTR	21-bit Table Pointer (points to a Program Memory location)
TABLAT	8-bit Table Latch
TOS	Top of Stack
PC	Program Counter
PCL	Program Counter Low Byte
PCH	Program Counter High Byte
PCLATH	Program Counter High Byte Latch
PCLATU	Program Counter Upper Byte Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer
ТО	Time-out bit
PD	Power-down bit
C, DC, Z, OV, N	ALU status bits Carry, Digit Carry, Zero, Overflow, Negative
[]	Optional
()	Contents
\rightarrow	Assigned to

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Registe on page
3A16h	RC6PPS	—	—	—	RC6PPS4	RC6PPS3	RC6PPS2	RC6PPS1	RC6PPS0	280
3A15h	RC5PPS	_	—	—	RC5PPS4	RC5PPS3	RC5PPS2	RC5PPS1	RC5PPS0	280
3A14h	RC4PPS	_	—	—	RC4PPS4	RC4PPS3	RC4PPS2	RC4PPS1	RC4PPS0	280
3A13h	RC3PPS	_	—	_	RC3PPS4	RC3PPS3	RC3PPS2	RC3PPS1	RC3PPS0	280
3A12h	RC2PPS	_	—	—	RC2PPS4	RC2PPS3	RC2PPS2	RC2PPS1	RC2PPS0	280
3A11h	RC1PPS	_	—	—	RC1PPS4	RC1PPS3	RC1PPS2	RC1PPS1	RC1PPS0	280
3A10h	RC0PPS	_	—	—	RC0PPS4	RC0PPS3	RC0PPS2	RC0PPS1	RC0PPS0	280
3A0Fh	RB7PPS	_	—	—	RB7PPS4	RB7PPS3	RB7PPS2	RB7PPS1	RB7PPS0	280
3A0Eh	RB6PPS	_	—	_	RB6PPS4	RB6PPS3	RB6PPS2	RB6PPS1	RB6PPS0	280
3A0Dh	RB5PPS	_	—	—	RB5PPS4	RB5PPS3	RB5PPS2	RB5PPS1	RB5PPS0	280
3A0Ch	RB4PPS	_	—	_	RB4PPS4	RB4PPS3	RB4PPS2	RB4PPS1	RB4PPS0	280
3A0Bh	RB3PPS	_	—	_	RB3PPS4	RB3PPS3	RB3PPS2	RB3PPS1	RB3PPS0	280
3A0Ah	RB2PPS	_	—	_	RB2PPS4	RB2PPS3	RB2PPS2	RB2PPS1	RB2PPS0	280
3A09h	RB1PPS	_	—	_	RB1PPS4	RB1PPS3	RB1PPS2	RB1PPS1	RB1PPS0	280
3A08h	RB0PPS	_	_	_	RB0PPS4	RB0PPS3	RB0PPS2	RB0PPS1	RB0PPS0	280
3A07h	RA7PPS	_	_	—	RA7PPS4	RA7PPS3	RA7PPS2	RA7PPS1	RA7PPS0	280
3A06h	RA6PPS	_	_	_	RA6PPS4	RA6PPS3	RA6PPS2	RA6PPS1	RA6PPS0	280
3A05h	RA5PPS	_	_	_	RA5PPS4	RA5PPS3	RA5PPS2	RA5PPS1	RA5PPS0	280
3A04h	RA4PPS	_	_	_	RA4PPS4	RA4PPS3	RA4PPS2	RA4PPS1	RA4PPS0	280
3A03h	RA3PPS	_	_	_	RA3PPS4	RA3PPS3	RA3PPS2	RA3PPS1	RA3PPS0	280
3A02h	RA2PPS	_	_	_	RA2PPS4	RA2PPS3	RA2PPS2	RA2PPS1	RA2PPS0	280
3A01h	RA1PPS	_	_	_	RA1PPS4	RA1PPS3	RA1PPS2	RA1PPS1	RA1PPS0	280
3A00h	RA0PPS	_	_	_	RA0PPS4	RA0PPS3	RA0PPS2	RA0PPS1	RA0PPS0	280
39FFh - 39F8h	—			L	Unimple	emented		•		
39F7h	SCANPR	_	—	_	_	_		PR		31
39F6h - 39F5h	—				Unimple	emented				
39F4h	DMA2PR	—	—	—	—	—		PR		31
39F3h	DMA1PR	—	—	—	—	—		PR		30
39F2h	MAINPR	—	—	—	—	—		PR		30
39F1h	ISRPR	—	—	—	—	—		PR		30
39F0h	—				Unimple	emented				
39EFh	PRLOCK	—	—	—	—	—	—	—	PRLOCKED	31
39EEh - 39E7h	—				Unimple	emented				
39E6h	NVMCON2			-	NVM	CON2				211
39E5h	NVMCON1	RI	EG	—	FREE	WRERR	WREN	WR	RD	210
39E4h					Unimple	emented				
39E3h	NVMDAT				D	AT				212
39E2h	—				Unimple	emented				
39E1h	NVMADRH ⁽⁴⁾	—	—	_	—	_	—	A	DR	211
39E0h	NVMADRL				A	DR				211
39DFh	OSCFRQ	_	_	_	_		F	RQ		107
39DEh	OSCTUNE	_	_				TUN			108
39DDh	OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	—	109
39DCh	OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	106
39DBh	OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	_	_	_	105

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Regis on pa
3989h	IPR9	—	—	—	_	CLC3IP	CWG3IP	CCP3IP	TMR6IP	165
3988h	IPR8	TMR5GIP	TMR5IP	_	_	—	_	—	_	164
3987h	IPR7		_	INT2IP	CLC2IP	CWG2IP	-	CCP2IP	TMR4IP	164
3986h	IPR6	TMR3GIP	TMR3IP	U2IP	U2EIP	U2TXIP	U2RXIP	I2C2EIP	I2C2IP	163
3985h	IPR5	I2C2TXIP	I2C2RXIP	DMA2AIP	DMA2ORIP	DMA2DCN- TIP	DMA2SCN- TIP	C2IP	INT1IP	162
3984h	IPR4	CLC1IP	CWG1IP	NCO1IP	_	CCP1IP	TMR2IP	TMR1GIP	TMR1IP	161
3983h	IPR3	TMR0IP	U1IP	U1EIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP	160
3982h	IPR2	I2C1RXIP	SPI1IP	SPI1TXIP	SPI1RXIP	DMA1AIP	DMA10RIP	DMA1DCN- TIP	DMA1SCNTIP	15
3981h	IPR1	SMT1PWAIP	SMT1PRAIP	SMT1IP	C1IP	ADTIP	ADIP	ZCDIP	INT0IP	158
3980h	IPR0	IOCIP	CRCIP	SCANIP	NVMIP	CSWIP	OSFIP	HLVDIP	SWIP	15
397Fh - 397Eh	—	Unimplemented								
397Dh	SCANTRIG		_	_	_		T	SEL		22
397Ch	SCANCON0	EN	TRIGEN	SGO	_	—	MREG	BURSTMD	BUSY	22
397Bh	SCANHADRU	—	—		•	F	IADR	•		22
397Ah	SCANHADRH				HA	DR				22
3979h	SCANHADRL	HADR								22
3978h	SCANLADRU									22
3977h	SCANLADRH	LADR								22
3976h	SCANLADRL	LADR								22
3975h - 396Ah	-	Unimplemented								
3969h	CRCCON1		DLEI	N			P	LEN		21
3968h	CRCCON0	EN	CRCGO	BUSY	ACCM	_	_	SHIFTM	FULL	21
3967h	CRCXORH	X15	X14	X13	X12	X11	X10	X9	X8	22
3966h	CRCXORL	X7	X6	X5	X4	X3	X2	X1	_	22
3965h	CRCSHIFTH	SHFT15	SHFT14	SHFT13	SHFT12	SHFT11	SHFT10	SHFT9	SHFT8	22
3964h	CRCSHIFTL	SHFT7	SHFT6	SHFT5	SHFT4	SHFT3	SHFT2	SHFT1	SHFT0	22
3963h	CRCACCH	ACC15	ACC14	ACC13	ACC12	ACC11	ACC10	ACC9	ACC8	21
3962h	CRCACCL	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0	22
3961h	CRCDATH	DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8	21
3960h	CRCDATL	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	21
395Fh	WDTTMR			WDTTMR	1		STATE		SCNT	18
395Eh	WDTPSH	PSCNT							18	
395Dh	WDTPSL	PSCNT							18	
395Ch	WDTCON1	_		CS				WINDOW		18
395Bh	WDTCON0					PS			SEN	18
395Ah - 38A0h	_	Unimplemented								.0
389Fh	IVTADU	AD								16
389Eh	IVTADH	AD								16
389Dh	IVTADL									16
389Ch - 3891h	_	AD Unimplemented								10
	PRODH SHAD	PRODH							12	
3890h		PRODE								
3890h 388Fh	PRODL_SHAD				PR	וחכ				125

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Note 1: Unimplemented in LF devices.

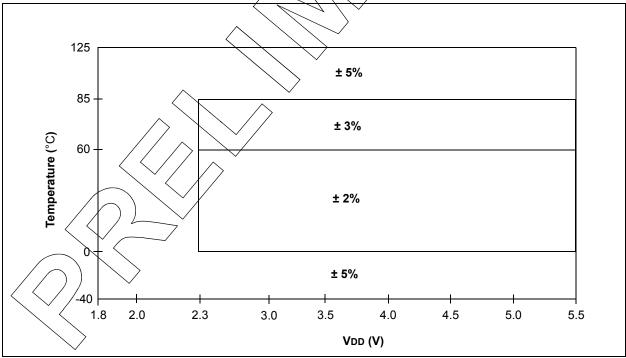
Unimplemented in PIC18(L)F26/27K42. 2:

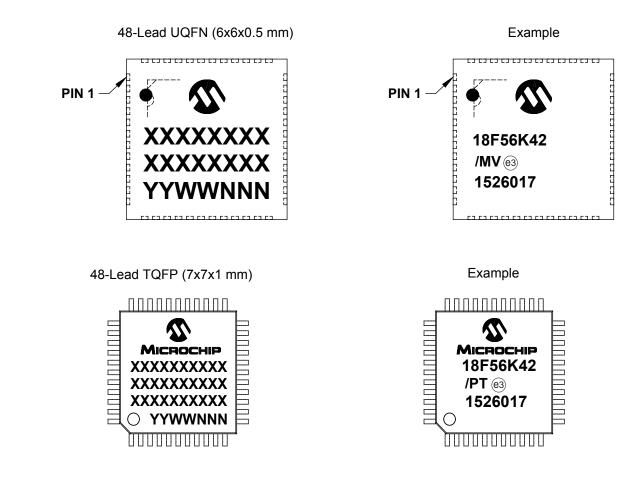
Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

4: Unimplemented in PIC18(L)F45/55K42.

TABLE 44-10: INTERNAL OSCILLATOR PARAMETERS⁽¹⁾

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS50	FHFOSC	Precision Calibrated HFINTOSC Frequency	_	4 8 12 16 48 64		MHz	(Note 2)	
OS51	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency	0.93 1.86	1 2	1.07 2.14	MHz MHz		
OS53*	FLFOSC	Internal LFINTOSC Frequency	—	31	_	kHz		
OS54*	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20 —	μs μs	VREGPM = 0 VREGPM = 1	
OS56	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time		0.2		ms		

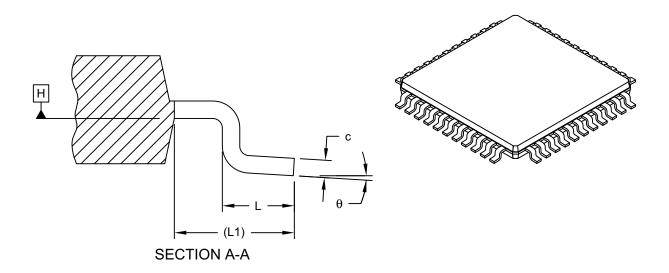

These parameters are characterized but not tested. *


Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

2: See Figure 44-6: Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature.

PRECISION CALIBRATED HEINTOSC FREQUENCY ACCURACY OVER DEVICE **FIGURE 44-6:** VDD AND TEMPERATURE



Package Marking Information (Continued)

Legend	d: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	N	44				
Lead Pitch	е	0.80 BSC				
Overall Height	Α			1.20		
Standoff	A1	0.05	0.05 -			
Molded Package Thickness	A2	0.95	1.00	1.05		
Overall Width	E	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Length	D1 10.00 BSC					
Lead Width	b	0.30	0.37	0.45		
Lead Thickness	С	0.09	-	0.20		
Lead Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	θ	0°	3.5°	7°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2