

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k42-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ρ
С
$\overset{\sim}{\rightharpoonup}$
8
F
2
6/:
27
14
5 5
/4
6/
4
11
55
5
6
5
7
Ň
1 Z

Interrupt-on-Change

IOCC3 IOCC4

IOCC5

IOCC6

IOCC7

_

_

_

_

_

_

_

—

_

_

_

IOCE3

_

_

_

_

_

_

Basic

_

_

_

_

_

_

_

_

_

—

_

_

_ MCLR

VPP

_

_

O/I	40-Pin PDIP	44-Pin TQFP	40-Pin UQFN	44-Pin QFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	l²c	SPI	UART	WSD	Timers/SMT	CCP and PWM	OWG	CLC	NCO	Clock Reference (CLKR)
RC3	18	37	33	37	ANC3	—	—	—	—	SCL1 ^(3,4)	SCK1 ⁽¹⁾	—	I	T2IN ⁽¹⁾		-		-	—
RC4	23	42	38	42	ANC4	—	—	—	—	SDA1 ^(3,4)	SDI1 ⁽¹⁾	—	-	—	-	_		-	—
RC5	24	43	39	43	ANC5	_	_	—	-	_	—	—		T4IN ⁽¹⁾					-
RC6	25	44	40	44	ANC6	_	_	_	-	-	_	CTS1 ⁽¹⁾		_					_
RC7	26	1	1	1	ANC7	—	—	—	—	_	—	RX1 ⁽¹⁾	-	_		_		-	—
RD0	19	38	34	38	AND0	_	_	—	-	(4)	_	—		_					-
RD1	20	39	35	39	AND1	_	_	_	—	(4)	_	—	-	_	-		-	Ι	—
RD2	21	40	36	40	AND2	_	_	_	—	_	—	—	_	_	-	_	-	-	—
RD3	22	41	37	41	AND3	_	_	_	—	_	_	_	_	-	_	_	_	_	_
RD4	27	2	2	2	AND4	—	—	—	—	—	—	—	_	-	_		_		_
RD5	28	3	3	3	AND5	_	_	_	—	_	_	_	_	-	_	_	_	_	_
RD6	29	4	4	4	AND6	—	—	—	—	—	—	—	_	-	_		_		_
RD7	30	5	5	5	AND7	—	_	_	—	_	—	—	_	-	_	_	_	_	_
RE0	8	25	23	25	ANE0	_	_	_	—	-	—	—	_	-	_	_	-	_	_
RE1	9	26	24	26	ANE1	_	_	_	—	_	_	_	_	-	_	_	_	_	_
RE2	10	27	25	27	ANE2	—	—	—	—	—	—	—	_	-	_		_		_
RE3	1	18	16	18	—	—	-	—	-	—	—	—	—	—	—	—	—	—	_
VDD	11, 32	7, 28	7, 26	7, 28	_	-	_	—	-	-	-	-	_	_	_	_	-	_	-

1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note

_

2: All output signals shown in this row are PPS remappable.

_

_

40/44-PIN ALLOCATION TABLE FOR PIC18(L)F4XK42

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

_

4: These pins can be configured for I²C and SMBTM 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4/RD0/RD1 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

TABLE 2:

12, 31 6, 29 6, 27 6, 30

Vss

FIGURE 7-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE) PIC® MCU

FIGURE 7-4: CERAMIC RESONATOR OPERATION (XT OR HS MODE)

7.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR), or a wake-up from Sleep. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

7.2.1.4 4x PLL

The oscillator module contains a 4x PLL that can be used with the external clock sources to provide a system clock source. The input frequency for the PLL must fall within specifications. See the PLL Clock Timing Specifications in Table 44-11.

The PLL can be enabled for use by one of two methods:

- 1. Program the RSTOSC bits in the Configuration Word 1 to 010 (enable EXTOSC with 4x PLL).
- 2. Write the NOSC bits in the OSCCON1 register to 010 (enable EXTOSC with 4x PLL).

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0		
_	-	INT2IE	CLC2IE	CWG2IE	—	CCP2IE	TMR4IE		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6	Unimplemen	ted: Read as '	0'						
bit 5	INT2IE: Exter	mal Interrupt 2	Enable bit						
	1 = Enabled								
	0 = Disabled								
bit 4	CLC2IE: CLC	2 Interrupt Ena	able bit						
	1 = Enabled								
h# 2		100 Interrupt E	nahla hit						
DIL 3	1 - Enabled		nable bit						
	0 = Disabled								
bit 2	Unimplemen	ted: Read as '	0'						
bit 1	CCP2IE: CCF	2 Interrupt En	able bit						
1 = Enabled									
0 = Disabled									
bit 0	TMR4IE: TMF	R4 Interrupt En	able bit						
	1 = Enabled								
	0 = Disabled								

REGISTER 9-21: PIE7: PERIPHERAL INTERRUPT ENABLE REGISTER 7

R/W-1/1 TMR0IP	R/W-1/1 U1IP	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
TMR0IP	U1IP								
		UTEIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	TMROIP: TMF	R0 Interrupt Pri	iority bit						
	1 = High prio	rity							
	0 = Low prior	ity							
bit 6	U1IP: UART1	Interrupt Prior	ity bit						
	1 = High prio	rity							
hit 5		11y 1 Eroming Err	or Intorrunt Dr	iority bit					
Dit 5	1 = High prio	rity	or interrupt Fi	ionty bit					
	0 = Low prior	ity							
bit 4	U1TXIP: UAR	RT1 Transmit Ir	nterrupt Priorit	y bit					
	1 = High prio	rity	•						
	0 = Low prior	ity							
bit 3	U1RXIP: UAF	RT1 Receive In	terrupt Priority	y bit					
	1 = High prio	rity							
	0 = Low prior	ity							
bit 2	I2C1EIP: I ² C ²	1 Error Interrup	ot Priority bit						
	1 = High prio	rity							
hit 1		Intorrupt Driori	hy hit						
	1 = High prio								
	0 = Low prior	itv							
bit 0		C1 Transmit Int	errupt Prioritv	bit					
	1 = High prio	rity		-					
	0 = Low prior	ity							

REGISTER 9-28: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

REGISTER 11-3: WDTPSL: WWDT PRESCALE SELECT LOW BYTE REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unknow	'n	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleared	d				

bit 7-0 **PSCNT<7:0>:** Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during normal operation.

REGISTER 11-4: WDTPSH: WWDT PRESCALE SELECT HIGH BYTE REGISTER (READ-ONLY)

						•	
R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCNT	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>:** Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during normal operation.

TABLE 13-2: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 13-3:

TABLE POINTER BOUNDARIES BASED ON OPERATION

15.10 Reset

The DMA registers are set to the default state on any Reset. The registers are also reset to the default state when the enable bit is cleared (DMA1CON1bits.EN=0).

15.11 Power Saving Mode Operation

The DMA utilizes system clocks and it is treated as a peripheral when it comes to power saving operations. Like other peripherals, the DMA also uses Peripheral Module Disable bits to further tailor its operation in low-power states.

15.11.1 SLEEP MODE

When the device enters Sleep mode, the system clock to the module is shut down, therefore no DMA operation is supported in Sleep. Once the system clock is disabled, the requisite read and write clocks are also disabled, without which the DMA cannot perform any of its tasks.

Any transfers that may be in progress are resumed on exiting from Sleep mode. Register contents are not affected by the device entering or leaving Sleep mode. It is recommended that DMA transactions be allowed to finish before entering Sleep mode.

15.11.2 IDLE MODE

In IDLE mode, all of the system clocks (including the read and write clocks) are still operating but the CPU is not using them to save power.

Therefore, every instruction cycle is available to the system arbiter and if the bubble is granted to the DMA, it may be utilized to move data.

15.11.3 DOZE MODE

Similar to the Idle mode, the CPU does not utilize all of the available instruction cycles slots that are available to it in order to save power. It only executes instructions based on its settings from the Doze settings.

Therefore, every instruction not used by the CPU is available for system arbitration and may be utilized by the DMA if granted by the arbiter.

15.11.4 PERIPHERAL MODULE DISABLE

The Peripheral Module Disable (PMD) registers provide a method to disable DMA by gating all clock sources supplied to it. The respective DMAxMD bit needs to be set in order to disable the DMA.

15.12 DMA Register Interfaces

The DMA can transfer data to any GPR or SFR location. For better user accessibility, some of the more commonly used SFR spaces have their Mirror registers placed in Bank 64 (0x4000-0x40FF). These Mirror registers can be only accessed through the DMA Source and Destination Address registers. Refer to Table 4-3 for details about Bank 64 Registers.

16.0 I/O PORTS

The PIC18(L)F26/27/45/46/47/55/56/57K42 devices have six I/O ports, allocated as shown in Table 16-1.

TABLE 16-1: PORT ALLOCATION TABLE FOR PIC18(L)F26/27/45/46/47/ 55/56/57K42 DEVICES

Device	PORTA	PORTB	PORTC	РОКТD	PORTE	РОКТЕ
PIC18(L)F26K42	•	•	•		. (1)	
PIC18(L)F27K42	•	•	•		. (1)	
PIC18(L)F45K42	•	•	•	•	•(2)	
PIC18(L)F46K42	•	•	•	•	•(2)	
PIC18(L)F47K42	•	•	•	•	•(2)	
PIC18(L)F55K42	•	•	•	•	•(2)	•
PIC18(L)F56K42	•	•	•	•	•(2)	•
PIC18(L)F57K42	•	•	•	•	•(2)	•

Note 1: Pin RE3 only.

2: Pins RE0, RE1, RE2 and RE3 only.

Each port has ten registers to control the operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate control)
- ODCONx registers (open-drain control)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSELx bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 16-1.

FIGURE 16-1: GENERIC I/O PORT

16.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See Section 17.0 "Peripheral Pin Select (PPS) Module" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over digital outputs and force the digital output driver into a high-impedance state.

The pin function priorities are as follows:

- 1. Configuration bits
- 2. Analog outputs (disable the input buffers)
- 3. Analog inputs
- 4. Port inputs and outputs from PPS

16.2 PORTx Registers

In this section, the generic names such as PORTx, LATx, TRISx, etc. can be associated with PORTA, PORTB, and PORTC. The functionality of PORTE is different compared to other ports and is explained in a separate section.

FIGURE 21-7:	TIMER1/3/5 GATE SING	GLE-PULSE AND TOGGLE COME	BINED MODE
TMRxGE			
TxGPOL			
TxGSPM			
TxGTM			
TxGG <u>O/</u>	Set by software	•	Cleared by hardware on falling edge of TxGVAL
DONE	Counting enabled o	on	
TxG_IN			
ТхСКІ			
TxGV <u>AL</u>			
TIMER1/3/5	Ν	$\underbrace{N+1} \underbrace{N+2} \underbrace{N+3} \underbrace{N+4}$	
TMRxGIF	 Cleared by software 	Set by hardware on falling edge of TxGVAL ——▶	Cleared by software

21.11 Peripheral Module Disable

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bits for Timer1 (TMR1MD), Timer3 (TMR3MD) and Timer5 (TMR5MD) are in the respective PMD registers. See **Section 19.0 "Peripheral Module Disable (PMD)"** for more information.

DyS<5:0> Value	•	CLCx Input Source
111111 [63]	Reserved
110100 [52]	Reserved
110011 [51]	CWG3B_out
110010 [50]	CWG3A_out
110001 [49]	CWG2B_out
110000 [48]	CWG2A_out
101111 [[47]	CWG1B_out
101110 [46]	CWG1A_out
101101 [45]	SS1
101100 [44]	SCK1
101011 [43]	SDO1
101010 [[42]	Reserved
101001 [41]	UART2_tx_out
101000 [40]	UART1_tx_out
100111 [39]	CLC4_out
100110 [38]	CLC3_out
100101 [37]	CLC2_out
100100 [36]	CLC1_out
100011 [35]	DSM1_out
100010 [34]	IOC_flag
100001 [33]	ZCD_out
100000 [32]	CMP2_out
011111 [31]	CMP1_out
011110 [30]	NCO1_out
011101 [29]	Reserved
011100 [28]	Reserved
011011 [27]	PWM8_out
011010 [26]	PWM7_out
011001	25]	PWM6_out
011000	24]	PWM5_out
010111	23]	CCP4_out
010110	22]	CCP3_out
010101	21 <u>]</u>	CCP2_OUT
010100	20]	
010011	19]	SIVIT_OUT
010010	18]	
010001	1/]	
010000	16]	
001111	15	I WIK3 _OVERTIOW

TABLE 27-1: CLCx DATA INPUT SELECTION

TABLE 27-1:CLCx DATA INPUT SELECTION
(CONTINUED)

DyS<5:0> Value	CLCx Input Source			
001110 [14]	TMR2 _out			
001101 [13]	TMR1 _overflow			
001100 [12]	TMR0 _overflow			
001011 [11]	CLKR _out			
001010 [10]	ADCRC			
001001 [9]	SOSC			
001000 [8]	MFINTOSC (32 kHz)			
000111 [7]	MFINTOSC (500 kHz)			
000110 [6]	LFINTOSC			
000101 [5]	HFINTOSC			
000100 [4]	Fosc			
000011 [3]	CLCIN3PPS			
000010 [2]	CLCIN2PPS			
000001 [1]	CLCIN1PPS			
000000 [0]	CLCINOPPS			

28.1 NCO Operation

The NCO operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 28-1.

The NCO output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCO output is then distributed internally to other peripherals and can be optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_overflow).

The NCO period changes in discrete steps to create an average frequency. This output depends on the ability of the receiving circuit (i.e., CWG or external resonant converter circuitry) to average the NCO output to reduce uncertainty.

EQUATION 28-1: NCO OVERFLOW FREQUENCY

 $FOVERFLOW = \frac{NCO \ Clock \ Frequency \times Increment \ Value}{2^{20}}$

28.1.1 NCO CLOCK SOURCES

Clock sources available to the NCO include:

- Fosc
- HFINTOSC
- LFINTOSC
- MFINTOSC/4 (32 kHz)
- MFINTOSC (500 kHz)
- CLC1/2/3/4_out
- CLKREF
- SOSC

The NCO clock source is selected by configuring the N1CKS<2:0> bits in the NCO1CLK register.

28.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCO1ACCL
- NCO1ACCH
- NCO1ACCU

28.1.3 ADDER

The NCO Adder is a full adder, which operates independently from the source clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

28.1.4 INCREMENT REGISTERS

The increment value is stored in three registers making up a 20-bit incrementer. In order of LSB to MSB they are:

- NCO1INCL
- NCO1INCH
- NCO1INCU

When the NCO module is enabled, the NCO1INCU and NCO1INCH registers should be written first, then the NCO1INCL register. Writing to the NCO1INCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO_clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not useraccessible.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TXMTIE	PERIE	ABDOVE	CERIE	FERIE	RXBKIE	RXFOIE	TXCIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
hit 7		nomit Shift Doo	istor Empty In	torrupt Engblo	hit		
					DIL		
	0 = Interrupt	not enabled					
bit 6	PERIE: Parity	/ Error Interrup	t Enable bit				
	1 = Interrupt	enabled					
	0 = Interrupt	not enabled					
bit 5	ABDOVE: Au	ito-baud Detec	t Overflow Inte	errupt Enable b	pit		
	1 = Interrupt	enabled					
h:+ 4				L:4			
DIL 4	1 = Interrupt		errupt Errable	DIL			
	0 = Interrupt	not enabled					
bit 3	FERIE: Fram	ing Error Interr	upt Enable bit				
	1 = Interrupt	enabled					
	0 = Interrupt	not enabled					
bit 2	RXBKIE: Bre	ak Reception I	nterrupt Enab	le bit			
	1 = Interrupt	enabled					
	0 = Interrupt	not enabled	a				
bit 1	RXFOIE: Red		erflow Interrup	t Enable bit			
	1 = Interrupt 0 = Interrupt	not enabled					
bit 0	TXCIE: Trans	mit Collision Ir	terrupt Enabl	e bit			
	1 = Interrupt	enabled					
	0 = Interrupt	not enabled					

REGISTER 31-5: UXERRIE: UART ERROR INTERRUPT ENABLE REGISTER

If a BTO event occurs when the module is configured as a master and is active, (i.e., MMA bit is set), and the module immediately tries to assert a Stop condition and also sets the BTOIF bit. The actual generation of the Stop condition may be delayed if the bus is been clock stretched by some slave device. The MMA bit will be cleared only after the Stop condition is generated.

33.3.10 ADDRESS BUFFERS

The I²C module has two address buffer registers, I2CxADB0 and I2CxADB1. Depending on the mode, these registers are used as either receive or transmit address buffers. See Table 33-2 for data flow directions in these registers. In Slave modes, these registers are only updated when there is an address match. The ADB bit in the I2CxCON2 register is used to enable/ disable the address buffer functionality. When disabled, the address data is sourced from the transmit buffer and is stored in the receive buffer.

TABLE 33-2: ADDRESS BUFFER DIRECTION AS PER I²C MODE

Modes	MODE<2:0>	I2CxADB0	I2CxADB1
Slave (7-bit)	000	RX	—
	001	RX	—
Slave (10-bit)	010	RX	RX
	011	RX	RX
Master (7-bit)	100	—	TX
Master (10-bit)	101	TX	TX
Multi-Master	110	RX	TX
(7-bit)	111	RX	TX

33.3.10.1 Slave Mode (7-bit)

In 7-bit Slave mode, I2CxADB0 is loaded with the received matching address and R/W data. The I2CxADB1 register is ignored in this mode.

33.3.10.2 Slave Mode (10-bit)

In 10-bit Slave mode, I2CxADB0 is loaded with the lower eight bits of the matching received address. I2CxADB1 is loaded with full eight bits of the high address byte, including the R/W bit.

33.3.10.3 Master Mode (7-bit)

The I2CxADB0 register is ignored in this mode. In 7-bit Master mode, the I2CxADB1 register is used to copy address data byte, including the R/W value, to the shift register.

33.3.10.4 Master Mode (10-bit)

In 10-bit Master mode, the I2CxADB0 register stores the low address data byte value that will be copied to the shift register after the high address byte is shifted out. The I2CxADB1 register stores the high address byte value that will be copied to the shift register. It is up to the user to specify all eight of these bits, even though the I^2C specification defines the upper five bits as a constant.

33.3.10.5 Multi-Master Mode (7-bit only)

In Multi-Master mode, the device can be both master and slave depending on the sequence of events on the bus. If being addressed as a slave, the I2CxADB0 register stores the received matching slave address byte. If the device is trying to communicate as a master on the bus, the contents of the I2CxADB1 register are copied to the shift register for addressing a slave device.

33.3.11 RECEIVE AND TRANSMIT BUFFER

The receive buffer holds one byte of data while another is shifted into the SDA pin. The user can access the buffer by software (or DMA) through the I2CxRXB register. When new data is loaded into the I2CxRXB register, the receive buffer full Status bit (RXBF) is set and reading the I2CxRXB register clears this bit.

If the user tries to read I2CxRXB when it is empty (i.e., RXBF = 0), receive read error bit (RXRE) is set and a NACK will be generated. The user must clear the error bit to resume normal operation.

The transmit buffer holds one byte of data while another can be shifted out through the SDA pin. The user can access the buffer by software (or DMA) through the I2CxTXB register. When the I2CxTXB does not contain any transmit data, the transmit buffer empty status bit (TXBE) is set. At this point, the user can load another byte into the buffer.

If the user tries to write I2CxTXB when it is NOT empty (i.e. TXBE = 0), transmit write error flag bit (TXRE) is set and the new data is discarded. When TXRE is set, the user must clear this error condition to resume normal operation.

By setting the CLRBF bit in the I2CxSTAT1 register, the user can clear both receive and transmit buffers. CLRBF will also clear the I2CxRXIF and I2CxTXIF bits.

33.3.12 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Since the SCL connection is open-drain, the slave has the ability to hold the line low until it is ready to continue communicating. Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

33.5.10 MASTER RECEPTION IN 7-BIT ADDRESSING MODE

This section describes the sequence of events for the I^2C module configured as an I^2C master in 7-bit Addressing mode and is receiving data. Figure 33-20 is used as a visual reference for this description.

- Master software loads slave address in I2CxADB1 with R/W bit = d and number of bytes to be received in one sequence in I2CxCNT register.
- Master hardware waits for BFRE bit to be set; then shifts out start and address with R/W = 1.
- 3. Master sends out the 9th SCL pulse for ACK, master hardware clocks in ACK from Slave
- 4. If ABD = 0; i.e., Address buffers are enabled

If NACK, master hardware sends Stop or sets MDR (if RSEN = 1) and waits for user software to write to S bit for restart.

If ABD = 1; i.e., Address buffers are disabled

If NACK, master hardware sends Stop or sets MDR (if RSEN = 1) and waits for user software to load the new address into I2CxTXB. Software writes to the S bit are ignored in this case.

- 5. If ACK, master hardware receives 7-bits of data into the shift register.
- 6. If the receive buffer is full (i.e., RXBF = 1), clock is stretched on 7th falling SCL edge.
- 7. Master software must read previous data out of I2CxRXB to clear RXBF.
- Master hardware receives 8th bit of data into the shift register and loads it into I2CxRXB, sets I2CxRXIF and RXBF bits. I2CxCNT is decremented.
- 9. If I2CxCNT! = 0, master hardware clocks out ACKDT as ACK value to slave. If I2CxCNT = 0, master hardware clocks out ACKCNT as ACK value to slave. It is up to the user to set the values of ACKDT and ACKCNT correctly. If the user does not set ACKCNT to '1', the master hardware will never send a NACK when I2CxCNT becomes zero. Since a NACK was not seen on the bus, the master hardware will also not assert a Stop condition.
- 10. Go to step 4.

REGISTER 33-2: I2CxCON1: I ² C CONTROL REGISTER 1								
R/W-0	R/W-0	R-0	R-0	U-0	R/W/HS-0	R/W/HS-0	R/W-0	
ACKCNT ⁽	⁽²⁾ ACKDT ^(1,2)	ACKSTAT	ACKT	—	RXO	TXU	CSD	
bit 7							bit 0	
Legend:								
R = Reada	able bit	W = Writable b	it	U = Unimple	mented bit, reac	l as '0'		
u = Bit is u	nchanged	x = Bit is unkno	own	-n/n = Value	at POR and BO	R/Value at all of	her Resets	
'1' = Bit is	set	'0' = Bit is clea	red	HS = Hardwa	are set HC =	Hardware clear		
bit 7 ACKCNT: Acknowledge End of Count bit ⁽²⁾ Acknowledge value transmitted after received data, when I2CCNT = 0 1 = Not Acknowledge (copied to SDA output) 0 = Acknowledge (copied to SDA output)								
bit 6	bit 6 ACKDT: Acknowledge Data bit ^(1,2) Acknowledge value transmitted after matching address Acknowledge value transmitted after received data, when I2CCNT! = 0 1 = Not Acknowledge (copied to SDA output) 0 = Acknowledge (copied to SDA output)							
bit 5	ACKSTAT: A 1 = Acknow 0 = Acknow	Acknowledge Sta ledge was not re ledge was recei	atus bit (Transm eceived for mos ved for most re	nission only) st recent transr cent transmiss	nission sion			
bit 4	ACKT: Ackn 1 = Indicate 0 = Not in A	owledge Time S s the I ² C bus is cknowledge sec	tatus bit in an Acknowle quence, cleared	edge sequence I on 9th rising e	e, set on 8th fallin edge of SCL	ng edge of SCL	clock	
bit 3	Unimpleme	nted: Read as 1	' b0					
bit 2	bit 2 RXO: Receive Overflow Status bit (MODE<2:0> = $0 \times x \& 11x$) This bit can only be set when CSD= 1 1 = Set when SMA = 1, and a master clocks in data when RXBF = 1 0 = No slave overflow condition							
bit 1	bit 1 TXU: Transmit Underflow Status bit (MODE<2:0> = 0xx & 11x) This bit can only be set when CSTRDIS = 1 1 = Set when SMA = 1, and a master clocks out data when TXBE = 1 0 = No slave underflow condition							
bit 0	CSD: Clock 1 = When S 0 = Slave cl	Stretching Disat MA = 1, the CS lock stretching p	ble bit (MODE< TR bit will neve roceeds norma	2:0> = 0xx & : er be set illy	11x)			
Note 1: 2:	Software writes NACK may still	to ACKDT bit m be generated by	ust be followed [,] I ² C hardware	by a minimum when bus erro	SDA data-seturs are indicated	p time before cle in the I2CxSTA	earing CSTR. T1 or	

I2CxERR registers.

REGISTER 33-9: I2CxCNT: I²C BYTE COUNT REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CNT | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |
| | | | | | | (- 1 | |

R = Readable bit	vv = vvritable bit	U = Unimplemented b	it, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR a	nd BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set	HC = Hardware clear

bit 7-0 CNT<7:0>: I²C Byte Count Register bits

If receiving data,

decremented 8th SCL edge, when a new data byte is loaded into I2CxRXB

If transmitting data,

decremented 9th SCL edge, when a new data byte is moved from I2CxTXB CNTIF flag is set on 9th falling SCL edge, when I2CxCNT = 0. (Byte count cannot decrement past '0')

Note 1: It is recommended to write this register only when the module is IDLE (MMA = 0, SMA = 0) or when clock

stretching (CSTR = $1 \parallel MDR = 1$).

After Instruction

BSR Register =

MOVFFL	Move f to	o f (Long	Range)						
Syntax:	MOVFFL	f _s ,f _d							
Operands:	$\begin{array}{l} 0 \leq f_s \leq 16 \\ 0 \leq f_d \leq 16 \end{array}$	383 383							
Operation:	$(f_{s}) \rightarrow f_{d}$								
Status Affected:	None	None							
Encoding: 1st word 2nd word 3rd word	0000 1111 1111	0000 f _s f _s f _s f _s f _s f _d f _d f _d f _d	0110 f _s f _s f _s f _s f _s f _d f _d f _d f _d	f _s f _s f _s f _s f _s f _s f _s f _d f _d f _d f _d f _d f _d					
Description:	The contents of source register ' f_s ' are moved to destination register ' f_d '. Location of source ' f_s ' can be anywhere in the 16 Kbyte data space (0000h to 3FFFh). Either source or destination can be W (a useful special situation). MOVFFL is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFFL instruction cannot use the PCL, TOSU, TOSH or TOSL as the								
Words [.]	3	regioter.							
Cvcles:	3								
Q Cycle Activity:									
	Q1	Q2	Q3	Q4					
	Decode	No operation	No operation	No operation					
	Decode	Read reg- ister 'f _s ' (src)	Process data	No operation					
	Decode	No operation Nodummy read	No operation	Write register 'f _d ' (dest)					
Example: Before Instruction Contents of	MOVFFL on of 2000h	2000h, = 33h = 11h	200Ah						

MOVLB	Move lite	Move literal to BSR					
Syntax:	MOVLW k	(
Operands:	$0 \leq k \leq 63$						
Operation:	$k \rightarrow BSR$						
Status Affected:	None						
Encoding:	0000	0001	00kk	k kkk			
Description:	The 6-bit lit Bank Selec value of BS	The 6-bit literal 'k' is loaded into the Bank Select Register (BSR<5:0>). The value of BSR<7:6> always remains '0'.					
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3	}	Q4			
Decode	Read literal 'k'	ReadProcessWriteliteral 'k'Data'k' to					
Example: Before Instruc	MOVLB	5					
BSR Register = 02h							

05h

© 2017 Microchip Technology Inc.

After Instruction

Contents of 2000h

Contents of 200Ah = 33h

= 33h

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3A16h	RC6PPS	_	—	—	RC6PPS4	RC6PPS3	RC6PPS2	RC6PPS1	RC6PPS0	280
3A15h	RC5PPS		_	—	RC5PPS4	RC5PPS3	RC5PPS2	RC5PPS1	RC5PPS0	280
3A14h	RC4PPS	—	_	—	RC4PPS4	RC4PPS3	RC4PPS2	RC4PPS1	RC4PPS0	280
3A13h	RC3PPS	—	_	—	RC3PPS4	RC3PPS3	RC3PPS2	RC3PPS1	RC3PPS0	280
3A12h	RC2PPS	—	_	—	RC2PPS4	RC2PPS3	RC2PPS2	RC2PPS1	RC2PPS0	280
3A11h	RC1PPS	—	_	—	RC1PPS4	RC1PPS3	RC1PPS2	RC1PPS1	RC1PPS0	280
3A10h	RC0PPS	—	_	—	RC0PPS4	RC0PPS3	RC0PPS2	RC0PPS1	RC0PPS0	280
3A0Fh	RB7PPS	—	—	_	RB7PPS4	RB7PPS3	RB7PPS2	RB7PPS1	RB7PPS0	280
3A0Eh	RB6PPS	—	—	_	RB6PPS4	RB6PPS3	RB6PPS2	RB6PPS1	RB6PPS0	280
3A0Dh	RB5PPS	—	—	—	RB5PPS4	RB5PPS3	RB5PPS2	RB5PPS1	RB5PPS0	280
3A0Ch	RB4PPS	—	—	_	RB4PPS4	RB4PPS3	RB4PPS2	RB4PPS1	RB4PPS0	280
3A0Bh	RB3PPS	—	—	—	RB3PPS4	RB3PPS3	RB3PPS2	RB3PPS1	RB3PPS0	280
3A0Ah	RB2PPS	—	—	—	RB2PPS4	RB2PPS3	RB2PPS2	RB2PPS1	RB2PPS0	280
3A09h	RB1PPS	—	—	—	RB1PPS4	RB1PPS3	RB1PPS2	RB1PPS1	RB1PPS0	280
3A08h	RB0PPS		—	—	RB0PPS4	RB0PPS3	RB0PPS2	RB0PPS1	RB0PPS0	280
3A07h	RA7PPS		—	—	RA7PPS4	RA7PPS3	RA7PPS2	RA7PPS1	RA7PPS0	280
3A06h	RA6PPS		—	—	RA6PPS4	RA6PPS3	RA6PPS2	RA6PPS1	RA6PPS0	280
3A05h	RA5PPS		—	—	RA5PPS4	RA5PPS3	RA5PPS2	RA5PPS1	RA5PPS0	280
3A04h	RA4PPS	_	_	_	RA4PPS4	RA4PPS3	RA4PPS2	RA4PPS1	RA4PPS0	280
3A03h	RA3PPS			_	RA3PPS4	RA3PPS3	RA3PPS2	RA3PPS1	RA3PPS0	280
3A02h	RA2PPS	—	—	—	RA2PPS4	RA2PPS3	RA2PPS2	RA2PPS1	RA2PPS0	280
3A01h	RA1PPS	—	—	—	RA1PPS4	RA1PPS3	RA1PPS2	RA1PPS1	RA1PPS0	280
3A00h	RA0PPS	—	—	—	RA0PPS4	RA0PPS3	RA0PPS2	RA0PPS1	RA0PPS0	280
39FFh - 39F8h	—			1	Unimple	emented				
39F7h	SCANPR		—	—	—	—		PR		31
39F6h - 39F5h	—		1	1	Unimple	emented				
39F4h	DMA2PR	—		—	—	—		PR		31
39F3h	DMA1PR	—		—	—	—		PR		30
39F2h	MAINPR	—	—	—	—	_		PR		30
39F1h	ISRPR	—	—	—	—	—		PR		30
39F0h	—		1		Unimple	emented			Γ	
39EFh	PRLOCK		—	—	—	—	—	—	PRLOCKED	31
39EEh - 39E7h	—	Unimplemented								
39E6h	NVMCON2				NVM	CON2				211
39E5h	NVMCON1	RE	EG	—	FREE	WRERR	WREN	WR	RD	210
39E4h	<u> </u>	Unimplemented								0.10
39E3h	NVMDAT	DAT							212	
39E2h		Unimplemented							011	
39E1h	NVMADRH ⁽⁴⁾	—	<u> </u>						ADR .	211
39E0h	NVMADRL	ADR							211	
39DFh	USCERQ	—	<u> </u>							107
39DEh	OSCIUNE			MEGEN		000051/				108
39DDh	USCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SUSCEN	ADOEN	—	—	109
39DCh	USCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	100
39DBh	USCCON3	CSWHOLD	SOSCPWR	—	OKDY	NOSCR	—	—	—	105

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

44.3 **DC Characteristics**

TABLE 44-1: SUPPLY VOLTAGE

PIC18(L)F26/27/4	5/46/47/55/56/57K42	Standard Operating Conditions (unless otherwise stated)				s (unless otherwise stated)
PIC18F2	26/45/46/5	55/56K42					
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
Supply V	Voltage						
D002	Vdd		1.8 2.5 2.7		3.6 3.6 3.6	V V V	$ Fosc \le 16 \text{ MHz} \\ Fosc > 32 \text{ MHz} \\ Fosc > 64 \text{ MHz} $
D002	Vdd		2.3 2.5 2.7		5.5 5.5 5.5	V V V	$ Fosc \le 16 \text{ MHz} \\ Fosc > 32 \text{ MHz} \\ Fosc > 64 \text{ MHz} \\ $
RAM Da	ta Retent	tion ⁽¹⁾				-	
D003	Vdr		1.5	_	_	V	Device in Sleep mode
D003	Vdr		1.7	_	—	V	Device in Sleep mode
Power-c	on Reset	Release Voltage ⁽²⁾					\sim
D004	VPOR		_	1.6	—	V	BOR or LPBOR disabled ⁽³⁾
D004	VPOR		_	1.6	—	V	BOR of LPBOR disabled ⁽³⁾
Power-c	on Reset	Rearm Voltage ⁽²⁾				\frown	\setminus
D005	VPORR		_	0.8	—	∕v∕	BOR or PBOR disabled ⁽³⁾
D005	VPORR		_	1.5	<u> </u>	-N	BOR or LPBOR disabled ⁽³⁾
VDD Rise Rate to ensure internal Power-on Reset signal ⁽²⁾							
D006	SVDD		0.05	$-\langle$	/- /	V/ms	BOR or LPBOR disabled ⁽³⁾
D006	SVDD		0.05	$\overline{}$	/-/	Vims	BOR or LPBOR disabled ⁽³⁾

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
2: See Figure 44-3, POR and POR REARM with Slow Rising VDD.

- 3: See Table 44-13 for BOR and LPBOR trip point information.