

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k42-i-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 7.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, refer to these Microchip application notes, available at the corporate website (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

4.2.4 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bit wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU register are performed through the PCLATH register or writable. Updates to the PCU register are performed through the PCU register are performed through the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by any operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.3.2.1 "Computed GOTO").

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by two to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

4.2.5 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack (TOS) Special File Registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL, CALLW or RCALL instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits in the PCON0 register indicate if the stack has overflowed or underflowed.

4.2.5.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, holds the contents of the stack location pointed to by the STKPTR register (Figure 4-1). This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE) bits while accessing the stack to prevent inadvertent stack corruption.

TABLE 4-8: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES BANK 59

3BFFh	DMA1SIRQ	3BDFh	DMA2SIRQ	3BBFh	—	3B9Fh	—	3B7Fh	_	3B5Fh	—	3B3Fh		3B1Fh	—
3BFEh	DMA1AIRQ	3BDEh	DMA2AIRQ	3BBEh	—	3B9Eh	—	3B7Eh	_	3B5Eh	—	3B3Eh		3B1Eh	—
3BFDh	DMA1CON1	3BDDh	DMA2CON1	3BBDh	—	3B9Dh	—	3B7Dh	_	3B5Dh	—	3B3Dh	-	3B1Dh	—
3BFCh	DMA1CON0	3BDCh	DMA2CON0	3BBCh	—	3B9Ch	—	3B7Ch	_	3B5Ch	—	3B3Ch	-	3B1Ch	—
3BFBh	DMA1SSAU	3BDBh	DMA2SSAU	3BBBh	—	3B9Bh	—	3B7Bh	_	3B5Bh	—	3B3Bh	-	3B1Bh	—
3BFAh	DMA1SSAH	3BDAh	DMA2SSAH	3BBAh	—	3B9Ah	—	3B7Ah	_	3B5Ah	—	3B3Ah	-	3B1Ah	—
3BF9h	DMA1SSAL	3BD9h	DMA2SSAL	3BB9h	—	3B99h	—	3B79h	_	3B59h	—	3B39h	-	3B19h	_
3BF8h	DMA1SSZH	3BD8h	DMA2SSZH	3BB8h	—	3B98h	—	3B78h	_	3B58h	—	3B38h	-	3B18h	_
3BF7h	DMA1SSZL	3BD7h	DMA2SSZL	3BB7h	—	3B97h	—	3B77h	_	3B57h	—	3B37h	-	3B17h	_
3BF6h	DMA1SPTRU	3BD6h	DMA2SPTRU	3BB6h	—	3B96h	—	3B76h	_	3B56h	—	3B36h	-	3B16h	—
3BF5h	DMA1SPTRH	3BD5h	DMA2SPTRH	3BB5h	—	3B95h	—	3B75h	_	3B55h	—	3B35h	-	3B15h	_
3BF4h	DMA1SPTRL	3BD4h	DMA2SPTRL	3BB4h	—	3B94h	—	3B74h	_	3B54h	—	3B34h	-	3B14h	—
3BF3h	DMA1SCNTH	3BD3h	DMA2SCNTH	3BB3h	—	3B93h	—	3B73h	_	3B53h	—	3B33h	-	3B13h	_
3BF2h	DMA1SCNTL	3BD2h	DMA2SCNTL	3BB2h	—	3B92h	—	3B72h	_	3B52h	—	3B32h	-	3B12h	_
3BF1h	DMA1DSAH	3BD1h	DMA2DSAH	3BB1h	—	3B91h	—	3B71h	_	3B51h	—	3B31h		3B11h	—
3BF0h	DMA1DSAL	3BD0h	DMA2DSAL	3BB0h	—	3B90h	—	3B70h	_	3B50h	—	3B30h		3B10h	—
3BEFh	DMA1DSZH	3BCFh	DMA2DSZH	3BAFh	—	3B8Fh	—	3B6Fh	_	3B4Fh	—	3B2Fh		3B0Fh	—
3BEEh	DMA1DSZL	3BCEh	DMA2DSZL	3BAEh	—	3B8Eh	—	3B6Eh	_	3B4Eh	—	3B2Eh		3B0Eh	—
3BEDh	DMA1DPTRH	3BCDh	DMA2DPTRH	3BADh	—	3B8Dh	—	3B6Dh	_	3B4Dh	—	3B2Dh		3B0Dh	—
3BECh	DMA1DPTRL	3BCCh	DMA2DPTRL	3BACh	—	3B8Ch	—	3B6Ch	_	3B4Ch	—	3B2Ch		3B0Ch	—
3BEBh	DMA1DCNTH	3BCBh	DMA2DCNTH	3BABh	—	3B8Bh	—	3B6Bh	_	3B4Bh	—	3B2Bh		3B0Bh	—
3BEAh	DMA1DCNTL	3BCAh	DMA2DCNTL	3BAAh	—	3B8Ah	—	3B6Ah	_	3B4Ah	—	3B2Ah		3B0Ah	—
3BE9h	DMA1BUF	3BC9h	DMA2BUF	3BA9h	—	3B89h	—	3B69h	_	3B49h	—	3B29h		3B09h	—
3BE8h	—	3BC8h	—	3BA8h	—	3B88h	—	3B68h	_	3B48h	—	3B28h		3B08h	—
3BE7h	—	3BC7h	—	3BA7h	—	3B87h	—	3B67h	_	3B47h	—	3B27h		3B07h	—
3BE6h	—	3BC6h	—	3BA6h	—	3B86h	_	3B66h	_	3B46h	—	3B26h	_	3B06h	—
3BE5h	—	3BC5h	—	3BA5h	—	3B85h	—	3B65h	_	3B45h	—	3B25h	—	3B05h	—
3BE4h	—	3BC4h	—	3BA4h	—	3B84h	—	3B64h	_	3B44h	—	3B24h	—	3B04h	—
3BE3h	_	3BC3h	_	3BA3h	_	3B83h	—	3B63h	_	3B43h	_	3B23h	_	3B03h	
3BE2h	—	3BC2h	—	3BA2h	—	3B82h	—	3B62h	—	3B42h	—	3B22h	—	3B02h	—
3BE1h	—	3BC1h	—	3BA1h	—	3B81h	—	3B61h	—	3B41h	—	3B21h	—	3B01h	—
3BE0h		3BC0h	_	3BA0h	_	3B80h		3B60h	_	3B40h	_	3B20h	_	3B00h	

Legend: Unimplemented data memory locations and registers, read as '0'.

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

R/W/HS-0/	0 R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
CLC1IF	CWG1IF	NCO1IF	-	CCP1IF	TMR2IF	TMR1GIF	TMR1IF
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
u = Bit is un	changed	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	et	'0' = Bit is clea	ared	HS = Bit is se	t in hardware		
bit 7	CLC1IF: CLC	1 Interrupt Flag	g bit				
	1 = Interrupt	has occurred (r	nust be clear	ed by software)		
	0 = Interrupt	event has not o	occurred				
bit 6	CWG1IF: CW	G1 Interrupt FI	ag bit				
	1 = Interrupt	has occurred (r	nust be clear	ed by software)		
L:1 F							
DILD		Di interrupt Fla	ig bit must be clear	ad by coffware	N N		
	0 = Interrupt	event has not o	nust be clear	ed by soltware)		
bit 4	Unimplemen	ted: Read as ')'				
bit 3	CCP1IF: CCF	P1 Interrupt Flag	a bit				
	1 = Interrupt	has occurred (r	nust be clear	ed by software)		
	0 = Interrupt	event has not o	occurred	,	,		
bit 2	TMR2IF: TMF	R2 Interrupt Fla	g bit				
	1 = Interrupt	has occurred (r	nust be clear	ed by software)		
	0 = Interrupt	event has not c	occurred				
bit 1	TMR1GIF: TN	/IR1 Gate Inter	rupt Flag bit				
	1 = Interrupt	has occurred (r	nust be clear	ed by software)		
hit O							
DILU	1 = Interrupt	has occurred (r	y DIL Must be clear	ed by software)		
	0 = Interrupt	event has not o	ccurred	cu by soltware)		
Note 1: In	nterrupt flag bits g enable bit, or the g	et set when an lobal enable bi	interrupt con t. User softwa	dition occurs, r are should ensu	egardless of the ire the appropri	e state of its con ate interrupt fla	rresponding Ig bits are
C	ciear prior to enabl	ing an interrupt					

REGISTER 9-7: PIR4: PERIPHERAL INTERRUPT REGISTER 4⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SMT1PWAIE	SMT1PRAIE	SMT1IE	C1IE	ADTIE	ADIE	ZCDIE	INT0IE
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	SMT1PWAIE:	SMI1 Pulse \	Width Acquisit	ion Interrupt E	nable bit		
	\perp = Enabled						
bit 6	SMT1PRAIE:	SMT1 Period	Acquisition Int	terrupt Enable	bit		
	1 = Enabled				~		
	0 = Disabled						
bit 5	SMT1IE: SMT	1 Interrupt En	able bit				
	1 = Enabled						
L:1 4		www.et Excelsion.htm					
DIT 4		rrupt Enable b	I				
	0 = Disabled						
bit 3	ADTIE: ADC	Threshold Inte	rrupt Enable b	oit			
	1 = Enabled						
	0 = Disabled						
bit 2	ADIE: ADC In	terrupt Enable	bit				
	1 = Enabled						
hit 1		Interrunt Enabl	o hit				
DIC 1	1 = Enabled		e bit				
	0 = Disabled						
bit 0	INT0IE: Exter	nal Interrupt 0	Enable bit				
	1 = Enabled						
	0 = Disabled						

REGISTER 9-15: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

x = bit is unknown u = bit is unchanged

REGISTE	R 15-1: DM	AXCONU: DMAX	CONTROL	. REGISTER	K U			
R/W-0/0	R/W/HC-0/0	R/W/HS/HC-0/0	U-0	U-0	R/W/HC-0/0	U-0	R/HS/HC-0/0	
EN	SIRQEN	DGO	_	—	AIRQEN	—	XIP	
bit 7							bit 0	
Legend:	Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					

-n/n = Value at POR	0 = bit is cleared
and BOR/Value at all	
other Resets	

bit 7 EN: DMA Module Enable b	oit
-------------------------------	-----

- 1 = Enables module
- 0 = Disables module
- SIRQEN: Start of Transfer Interrupt Request Enable bits
 - 1 = Hardware triggers are allowed to start DMA transfers
 - 0 = Hardware triggers are not allowed to start DMA transfers

bit 5 DGO: DMA transaction bit

bit 6

- 1 = DMA transaction is in progress
- 0 = DMA transaction is not in progress
- bit 4-3 Unimplemented: Read as '0'

bit 2 AIRQEN: Abort of Transfer Interrupt Request Enable bits

- 1 = Hardware triggers are allowed to abort DMA transfers
- 0 = Hardware triggers are not allowed to abort DMA transfers

bit 1 Unimplemented: Read as '0'

- bit 0 XIP: Transfer in Progress Status bit
 - 1 = The DMAxBUF register currently holds contents from a read operation and has not transferred data to the destination.
 - 0 = The DMAxBUF register is empty or has successfully transferred data to the destination address

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	—	—	DMA2MD	DMA1MD
bit 7							bit 0

REGISTER 19-8: PMD7: PMD CONTROL REGISTER 7

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-2	Unimplemented: Read as '0'
bit 1	DMA2MD: Disable DMA2 Module bit
	1 = DMA2 module disabled0 = DMA2 module enabled
bit 0	DMA1MD: Disable DMA1 Module bit

1 = DMA1 module disabled 0 = DMA1 module enabled

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH PERIPHERAL MODULE DISABLE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	290
PMD1	NCO1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	291
PMD2	—	DACMD	ADCMD	—	_	CMP2MD	CMP1MD	ZCDMD	292
PMD3	PWM8MD	PWM7MD	PWM6MD	PWM5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	293
PMD4	CWG3MD	CWG2MD	CWG1MD	_	_	_	_	_	294
PMD5	—	—	U2MD	U1MD	_	SPI1MD	I2C2MD	I2C1MD	295
PMD6	—	—	SMT1MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	DSMMD	295
PMD7	_	_	_	_	_	_	DMA2MD	DMA1MD	297

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by peripheral module disable.

22.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the level triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMR2_ers, as shown in Figure 22-7. Selecting MODE<4:0> = 00110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 00111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMR2_ers = 1. ON is controlled by BSF and BCF instructions. When ON=0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the T2PR value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the T2PR match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

	Rev. 10.00/98C 912295
MODE	0b00111
TMRx_clk	
TxPR	5
Instruction ⁽¹⁾ -	BSF BSF
ON	
TMRx_ers	
TxTMR	$0 \begin{pmatrix} 1 \\ 2 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 5 \\ 0 \\ 1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$
TMRx_postscaled	
PWM Duty Cycle	3
PWM Output	
Note 2	BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

REGISTER 22-3: TxTMR: TIMERx COUNTER REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMR×	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 TMRx<7:0>: Timerx Counter bits

REGISTER 22-4: TxPR: TIMERx PERIOD REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PRx< | :7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

i.	
	1
	Legend:
	Ecgena.

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PRx<7:0>:** Timerx Period Register bits

REGISTER 25-10: SMT1CPRL: SMT CAPTURED PERIOD REGISTER – LOW BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT1C	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

bit 7-0 SMT1CPR<7:0>: Significant bits of the SMT Period Latch – Low Byte

'0' = Bit is cleared

REGISTER 25-11: SMT1CPRH: SMT CAPTURED PERIOD REGISTER - HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT1C	PR<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 SMT1CPR<15:8>: Significant bits of the SMT Period Latch – High Byte

REGISTER 25-12: SMT1CPRU: SMT CAPTURED PERIOD REGISTER – UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT1CPI	R<23:16>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1CPR<23:16>: Significant bits of the SMT Period Latch – Upper Byte

© 2017 Microchip Technology Inc.

'1' = Bit is set

29.10 Register Definitions: ZCD Control

R/W-0/0	U-0	R-x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
SEN	—	OUT	POL	—	_	INTP	INTN		
bit 7							bit 0		
Legend:									
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared					eared	x = Bit is unkr	nown		
bit 7	SEN: Zero-Cr This bit is igno 1= Zero-cro 0= Zero-cro	oss Detect So ored when ZCI oss detect is er oss detect is di	ftware Enable DSEN configui nabled. sabled. ZCD p	bit ration bit is se in operates ac	t. ccording to PP	S and TRIS conf	rols.		
bit 6	Unimplemented: Read as '0'								
bit 5	OUT: Zero-Cross Detect Data Output bit								
	$\frac{\text{ZCDPOL bit}}{1 = \text{ZCD pin is}}$ $0 = \text{ZCD pin is}$ $\frac{\text{ZCDPOL bit}}{1 = \text{ZCD pin is}}$ $0 = \text{ZCD pin is}$	 <u>0</u>: s sinking curre s sourcing curre <u>1</u>: s sourcing curre s sinking curre 	nt rent rent nt						
bit 4	POL: Zero-Cr	oss Detect Po	larity bit						
	1 = ZCD logic 0 = ZCD logic	output is inve output is not i	rted nverted						
bit 3-2	Unimplement	ted: Read as '	0'						
bit 1	INTP: Zero-Ci	ross Detect Po	sitive-Going E	Edge Interrupt	Enable bit				
	1 = ZCDIF bit 0 = ZCDIF bit	is set on low-fis unaffected	o-high ZCD_o by low-to-high	utput transitio ZCD_output t	n ransition				
bit 0	INTN: Zero-Cu 1 = ZCDIF bit 0 = ZCDIF bit	ross Detect Ne is set on high- is unaffected	egative-Going -to-low ZCD_o by high-to-low	Edge Interrup output transitio ZCD_output t	t Enable bit n ransition				

REGISTER 29-1: ZCDCON: ZERO-CROSS DETECT CONTROL REGISTER

TABLE 29-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
ZCDCON	SEN	—	OUT	POL	—	_	INTP	INTN	462

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

		MD1CARH		MD	1CARL	
CH<4:0>		Connection	CL<4:0>		Connection	
11111-10011	31-19	Reserved	11111-10011	31-19	Reserved	
10010	18	CLC4OUT	10010	18	CLC4OUT	
10001	17	CLC3OUT	10001	17	CLC3OUT	
10000	16	CLC2OUT	10000	16	CLC2OUT	
01111	15	CLC1OUT	01111	15	CLC1OUT	
01110	14	NC010UT	01110	14	NCO10UT	
01101-01100	13-12	Reserved	01101-01100	13-12	Reserved	
01011	11	PWM8 OUT	01011	11	PWM8 OUT	
01010	10	PWM7 OUT	01010	10	PWM7 OUT	
01001	9	PWM6 OUT	01001	9	PWM6 OUT	
01000	8	PWM5 OUT	01000	8	PWM5 OUT	
00111	7	CCP4 OUT	00111	7	CCP4 OUT	
00110	6	CCP3 OUT	00110	6	CCP3 OUT	
00101	5	CCP2 OUT	00101	5	CCP2 OUT	
00100	4	CCP1 OUT	00100	4	CCP1 OUT	
00011	3	CLKREF output	00011	3	CLKREF output	
00010	2	HFINTOSC	00010	2	HFINTOSC	
00001	1	FOSC (system clock)	00001	1	FOSC (system clock)	
00000	0	Pin selected by MD1CARHPPS	00000	0	Pin selected by MD1CARLPPS	

TABLE 30-1: MD1CARH/MD1CARL SELECTION MUX CONNECTIONS

REGISTER 30-5: MD1SRC: MODULATION SOURCE CONTROL REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			MS<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 MS<4:0>: Modulator Source Selection bits⁽¹⁾ See Table 30-2 for signal list

Note 1:Unused selections provide a zero as the input value.

31.12.3 XON/XOFF FLOW CONTROL

XON/XOFF flow control is selected by setting the FLO<1:0> bits to '01'.

XON/XOFF is a data based flow control method. The signals to suspend and resume transmission are special characters sent by the receiver to the transmitter The advantage is that additional hardware lines are not needed.

XON/XOFF flow control requires full duplex operation because the transmitter must be able to receive the signal to suspend transmitting while the transmission is in progress. Although XON and XOFF are not defined in the ASCII code, the generally accepted values are 13h for XOFF and 11h for XON. The UART uses those codes.

The transmitter defaults to XON, or transmitter enabled. This state is also indicated by the read-only XON bit in the UxFIFO register.

When an XOFF character is received, the transmitter stops transmitting after completing the character actively being transmitted. The transmitter remains disabled until an XON character is received.

XON will be forced on when software toggles the TXEN bit.

When the RUNOVF bit in the UxCON2 register is set then XON and XOFF characters continue to be received and processed without the need to clear the input FIFO by reading the UxRXB. However, if the RUNOVF bit is clear then the UxRXB must be read to avoid a receive overflow which will suspend flow control when the receive buffer overflows.

FIGURE 32-7: CLOCKING DETAIL-MASTER MODE, CKE/SMP = 0/0

There are four main operations based on the direction of the data being shared during I^2C communication.

- Master Transmit (master is transmitting data to a slave)
- Master Receive (master is receiving data from a slave)
- Slave Transmit (slave is transmitting data to a master)
- Slave Receive (slave is receiving data from the master)

To begin any I^2C communication, the master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues to shift data in or out of the slave until it terminates the message with a Stop.

Further details about the I²C module are discussed in the section below.

33.3 I²C Mode Operation

All l^2C communication is 8-bit data and 1-bit acknowledge and shifted out MSb first. The user can control the interaction between the software and the module using several control registers and interrupt flags. Two pins, SDA and SCL, are exercised by the module to communicate with other external l^2C devices.

33.3.1 DEFINITION OF I²C TERMINOLOGY

The I²C communication protocol terminologies are defined for reference below in Table 33-1. These terminologies are used throughout this document. Table 33-1 has been adapted from the Phillips I²C specification.

TABLE 33-1: I²C BUS TERMS

TERM	Description
Transmitter	The device which shifts data out onto the bus
Receiver	The device which shifts data in from the bus
Master	The device that initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master
Multi-master	A bus with more than one device that can initiate data transfers
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high
Active	Any time one or more master devices are controlling the bus
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master
Matching Address	Address byte that is clocked into a slave that matches the value stored in I2CxADR
Write Request	Slave receives a matching address with R/W bit clear and is ready to clock in data
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus holds SCL low to stall communication
Bus Collision	Any time the SDA line is sampled low by the module while it is outputting and expected high state.
Bus Timeout	Any time the I2CBTOISM input transitions high, the I ² C module is reset and the module goes idle.

36.5.2 PRECHARGE CONTROL

The precharge stage is an optional period of time that brings the external channel and internal sample and hold capacitor to known voltage levels. Precharge is enabled by writing a non-zero value to the ADPRE register. This stage is initiated when an ADC conversion begins, either from setting the GO bit, a special event trigger, or a conversion restart from the computation functionality. If the ADPRE register is cleared when an ADC conversion begins, this stage is skipped.

During the precharge time, CHOLD is disconnected from the outer portion of the sample path that leads to the external capacitive sensor and is connected to either VDD or VSS, depending on the value of the PPOL bit of ADCON1. At the same time, the port pin logic of the selected analog channel is overridden to drive a digital high or low out, in order to precharge the outer portion of the ADC's sample path, which includes the external sensor. The output polarity of this override is also determined by the PPOL bit of ADCON1. The amount of time that this charging receives is controlled by the ADPRE register.

- Note 1: The external charging overrides the TRIS setting of the respective I/O pin.
 - **2:** If there is a device attached to this pin, Precharge should not be used.

36.5.3 ACQUISITION CONTROL

The Acquisition stage is an optional time for the voltage on the internal sample and hold capacitor to charge or discharge from the selected analog channel. This acquisition time is controlled by the ADACQ register. If PRE = 0, acquisition starts at the beginning of conversion. When PRE = 1, the acquisition stage begins when precharge ends.

At the start of the acquisition stage, the port pin logic of the selected analog channel is overridden to turn off the digital high/low output drivers so they do not affect the final result of the charge averaging. Also, the selected ADC channel is connected to CHOLD. This allows charge averaging to proceed between the precharged channel and the CHOLD capacitor.

Note: When PRE! = 0, acquisition time cannot be '0'. In this case, setting ADACQ to '0' will set a maximum acquisition time (8191 ADC clock cycles). When precharge is disabled, setting ADACQ to '0' will disable hardware acquisition time control.

36.5.4 GUARD RING OUTPUTS

Figure 36-8 shows a typical guard ring circuit. CGUARD represents the capacitance of the guard ring trace placed on the PCB board. The user selects values for RA and RB that will create a voltage profile on CGUARD, which will match the selected acquisition channel.

The purpose of the guard ring is to generate a signal in phase with the CVD sensing signal to minimize the effects of the parasitic capacitance on sensing electrodes. It also can be used as a mutual drive for mutual capacitive sensing. For more information about active guard and mutual drive, see Application Note AN1478, "*mTouch*TM Sensing Solution Acquisition Methods Capacitive Voltage Divider" (DS01478).

The ADC has two guard ring drive outputs, ADGRDA and ADGRDB. These outputs can be routed through PPS controls to I/O pins (see Section **17.0 "Peripheral Pin Select (PPS) Module**" for details) and the polarity of these outputs are controlled by the ADGPOL and ADIPEN bits of ADCON1.

At the start of the first precharge stage, both outputs are set to match the ADGPOL bit of ADCON1. Once the acquisition stage begins, ADGRDA changes polarity, while ADGRDB remains unchanged. When performing a double sample conversion, setting the ADIPEN bit of ADCON1 causes both guard ring outputs to transition to the opposite polarity of ADGPOL at the start of the second precharge stage, and ADGRDA toggles again for the second acquisition. For more information on the timing of the guard ring output, refer to Figure 36-8 and Figure 36-9.

41.1.1 STANDARD INSTRUCTION SET

ADD	FSR	Add Lite	Add Literal to FSR					
Synta	ax:	ADDFSR	f, k					
Oper	ands:	$0 \le k \le 63$	3					
		f ∈ [0, 1,	$f \in [0, 1, 2]$					
Oper	ation:	FSR(f) +	$k \rightarrow FSR($	(f)				
Statu	is Affected:	None	1					
Enco	oding:	1110	1000	ffk	k	kkkk		
Desc	cription:	The 6-bit contents	literal 'k' i of the FSI	s add R spe	ed to cifieo	o the d by 'f'.		
Word	ls:	1						
Cycle	es:	1	1					
QCy	cle Activity:							
		Q1	Q2	Q3		Q4		
		Decod	Read	Pro	-	Write to		
		е	literal	ces	s	FSR		
			ʻk'	Dat	а			
		Decod	Read	Pro	-	Write to		
		e	literal	Ces	s	FSR		
ADD	After Instructic FSR2	on = 0422h ADD liter	ral to W					
Sunt			k					
Onor	ande.		5					
Operation:		$\mathbf{U} \ge \mathbf{K} \ge \mathbf{Z}\mathbf{G}$	$(W) + k \rightarrow W$					
Status Affected		$(VV) + K \rightarrow$	$N \cap V \cap D \cap Z$					
Encoding:								
Encourry.		0000						
Desc	cription:	The conter 8-bit literal W.	nts of W a 'k' and th	re ad e resi	ded ult is	to the placed in		
Words:		1						
Cycles:		1						
0 C	vcle Activitv							
20	Q1	02	03			Q4		
		Read	Proco	~~	\٨/r	ite to W		
	Decoue	literal 'k'	Data	35 1	vvi			

Example:			ADDLW	15h		
Befor	e Ins	struct	ion			
	W	=	10h			
After Instruction						
,	W	=	25h			

ADDWF	ADD W to f
Syntax:	ADDWF f {,d {,a}}
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow dest
Status Affected:	N, OV, C, DC, Z
Encoding:	0010 01da ffff ffff
Description.	Add W to register 1. If d is 0, the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.
Words:	1
Cycles:	1

Q Cycle Activity:

Decode Read Process Write to register 'f' Data destination	Q1	Q2	Q3	Q4
register 'f' Data destination	Decode	Read	Process	Write to
0		register 'f'	Data	destination

Example: ADDWF REG, 0, 0

Before Instruction

W	=	17h
REG	=	0C2h
After Instruct	ion	
W	=	0D9h
REG	=	0C2h

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
39DAh	OSCCON2	– COSC CDIV				105				
39D9h	OSCCON1	—		NOSC			Ν	DIV		104
39D8h	CPUDOZE	IDLEN	DOZEN	ROI	DOE	—		DOZE		177
39D7h - 39D2h	—				Unimple	emented				
39D1h	VREGCON ⁽¹⁾	—	—	—	—	—	—	VREGPM	—	176
39D0h	BORCON	SBOREN	—	—	—	_	—	—	BORRDY	85
39CFh - 39C8h	—			1	Unimple	emented				
39C7h	PMD7	_	—	—	—	_	—	DMA2MD	DMA1MD	297
39C6h	PMD6	—	—	SMT1MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	DSMMD	296
39C5h	PMD5	—	—	U2MD	U1MD	—	SPI1MD	I2C2MD	I2C1MD	295
39C4h	PMD4	CWG3MD	CWG2MD	CWG1MD	_	_	—	—	—	294
39C3h	PMD3	PWM8MD	PWM7MD	PWM6MD	PWM5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	293
39C2h	PMD2	_	DACMD	ADCMD	_		CMP2MD	CMP1MD	ZCDMD	292
39C1h	PMD1	NCO1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	291
39C0h	PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	290
39BFh - 39ABh	—			1	Unimple	emented				
39AAh	PIR10		—	—	—	—	_	CLC4IF	CCP4IF	146
39A9h	PIR9		—	—	—	CLC3IF	CWG3IF	CCP3IF	TMR6IF	145
39A8h	PIR8	TMR5GIF	TMR5IF	—	—	—	—	—	—	145
39A7h	PIR7	—	—	INT2IF	CLC2IF	CWG2IF	—	CCP2IF	TMR4IF	144
39A6h	PIR6	TMR3GIF	TMR3IF	U2IF	U2EIF	U2TXIF	U2RXIF	I2C2EIF	I2C2IF	143
39A5h	PIR5	I2C2TXIF	I2C2RXIF	DMA2AIF	DMA2ORIF	DMA2DCN- TIF	DMA2SCN- TIF	C2IF	INT1IF	142
39A4h	PIR4	CLC1IF	CWG1IF	NCO1IF	_	CCP1IF	TMR2IF	TMR1GIF	TMR1IF	141
39A3h	PIR3	TMR0IF	U1IF	U1EIF	U1TXIF	U1RXIF	I2C1EIF	I2C1IF	I2C1TXIF	140
39A2h	PIR2	I2C1RXIF	SPI1IF	SPI1TXIF	SPI1RXIF	DMA1AIF	DMA10RIF	DMA1DCN- TIF	DMA1SCNTIF	138
39A1h	PIR1	SMT1PWAIF	SMT1PRAIF	SMT1IF	C1IF	ADTIF	ADIF	ZCDIF	INT0IF	138
39A0h	PIR0	IOCIF	CRCIF	SCANIF	NVMIF	CSWIF	OSFIF	HLVDIF	SWIF	137
399Fh - 399Bh	_				Unimple	emented				
399Ah	PIE10	_	_	—	_	_	_	CLC4IE	CCP4IE	156
3999h	PIE9	_	—	—	_	CLC3IE	CWG3IE	CCP3IE	TMR6IE	155
3998h	PIE8	TMR5GIE	TMR5IE	_	_	_	—	—	—	155
3997h	PIE7	_	—	INT2IE	CLC2IE	CWG2IE		CCP2IE	TMR4IE	154
3996h	PIE6	TMR3GIE	TMR3IE	U2IE	U2EIE	U2TXIE	U2RXIE	I2C2EIE	I2C2IE	153
3995h	PIE5	I2C2TXIE	I2C2RXIE	DMA2AIE	DMA2ORIE	DMA2DCN- TIE	DMA2SCN- TIE	C2IE	INT1IE	152
3994h	PIE4	CLC1IE	CWG1IE	NCO1IE	—	CCP1IE	TMR2IE	TMR1GIE	TMR1IE	151
3993h	PIE3	TMR0IE	U1IE	U1EIE	U1TXIE	U1RXIE	I2C1EIE	I2C1IE	I2C1TXIE	150
3992h	PIE2	I2C1RXIE	SPI1IE	SPI1TXIE	SPI1RXIE	DMA1AIE	DMA10RIE	DMA1DCN- TIE	DMA1SCNTIE	149
3991h	PIE1	SMT1PWAIE	SMT1PRAIE	SMT1IE	C1IE	ADTIE	ADIE	ZCDIE	INT0IE	148
3990h	PIE0	IOCIE	CRCIE	SCANIE	NVMIE	CSWIE	OSFIE	HLVDIE	SWIE	147
398Fh - 398Bh	—				Unimple	emented				
398Ah	IPR10	_	_	_	_	_	_	CLC4IP	CCP4IP	165
Lonondi				منامير مامم						

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Microchip Technology Drawing C04-103D Sheet 1 of 2