

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХГ

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k42t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ρ
С
$\overset{\sim}{\rightharpoonup}$
8
F
2
6/:
27
14
5 5
/4
6/
4
12
55
5
6
5
7
Ň
1 Z

Interrupt-on-Change

IOCC3 IOCC4

IOCC5

IOCC6

IOCC7

_

_

_

_

_

_

_

—

_

_

_

IOCE3

_

_

_

_

_

_

Basic

_

_

_

_

_

_

_

_

_

—

_

_

_ MCLR

VPP

_

_

O/I	40-Pin PDIP	44-Pin TQFP	40-Pin UQFN	44-Pin QFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	l²C	IdS	UART	WSD	Timers/SMT	CCP and PWM	OWG	CLC	NCO	Clock Reference (CLKR)
RC3	18	37	33	37	ANC3	—	—	—	—	SCL1 ^(3,4)	SCK1 ⁽¹⁾	—	I	T2IN ⁽¹⁾		-		-	—
RC4	23	42	38	42	ANC4	—	—	—	—	SDA1 ^(3,4)	SDI1 ⁽¹⁾	—	-	—	-	_		-	—
RC5	24	43	39	43	ANC5	_	—	—	-	_	—	—		T4IN ⁽¹⁾					-
RC6	25	44	40	44	ANC6	_	-	_	-	-	_	CTS1 ⁽¹⁾		_					_
RC7	26	1	1	1	ANC7	—	—	—	—	_	—	RX1 ⁽¹⁾	-	_		_		-	—
RD0	19	38	34	38	AND0	_	_	—	-	(4)	_	—		_					-
RD1	20	39	35	39	AND1	_	_	_	—	(4)	_	—	-	_	-		-	Ι	—
RD2	21	40	36	40	AND2	—	_	_	—	_	—	—	_	_	-	_	-	-	—
RD3	22	41	37	41	AND3	_	_	_	—	_	_	_	_	-	_	_	_	_	_
RD4	27	2	2	2	AND4	—	—	—	—	—	—	—	_	-	_		_		_
RD5	28	3	3	3	AND5	_	_	_	—	_	_	_	_	-	_	_	_	_	_
RD6	29	4	4	4	AND6	—	—	—	—	—	—	—	_	-	_		_		_
RD7	30	5	5	5	AND7	—	_	_	—	_	—	—	_	-	_	_	_	_	_
RE0	8	25	23	25	ANE0	_	—	_	—	-	—	—	_	-	_	_	-	_	_
RE1	9	26	24	26	ANE1	_	_	_	—	_	_	_	_	-	_	_	_	_	_
RE2	10	27	25	27	ANE2	—	—	—	—	—	—	—	_	-	_		_		_
RE3	1	18	16	18	—	—	—	—	-	—	—	—	—	—	—	—	—	—	_
VDD	11, 32	7, 28	7, 26	7, 28	_	-	_	—	-	-	-	-	_	_	_	_	-	_	-

1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note

_

2: All output signals shown in this row are PPS remappable.

_

_

40/44-PIN ALLOCATION TABLE FOR PIC18(L)F4XK42

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

_

4: These pins can be configured for I²C and SMBTM 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4/RD0/RD1 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

TABLE 2:

12, 31 6, 29 6, 27 6, 30

Vss

PIC18(L)F26/27/45/46/47/55/56/57K42

7.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes).

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate internal system clock sources. The High-Frequency Internal Oscillator (HFINTOSC) can produce 1, 2, 4, 8, 12, 16, 32, 48 and 64 MHz clock. The frequency can be controlled through the OSCFRQ register (Register 7-5). The Low-Frequency Internal Oscillator (LFINTOSC) generates a fixed 31 kHz frequency.

A 4x PLL is provided that can be used with an external clock. When used with the HFINTOSC the 4x PLL has input frequency limitations.See **Section 7.2.1.4 "4x PLL"** for more details.

The system clock can be selected between external or internal clock sources via the NOSC bits in the OSCCON1 register. See **Section 7.3 "Clock Switching"** for additional information. The system clock can be made available on the OSC2/CLKOUT pin for any of the modes that do not use the OSC2 pin. The clock out functionality is governed by the CLKOUTEN bit in the CONFIG1H register (Register 5-2). If enabled, the clock out signal is always at a frequency of Fosc/4.

7.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the RSTOSC<2:0> and FEXTOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> and NDIV<3:0> bits in the OSCCON1 register to switch the system clock source.

See **Section 7.3 "Clock Switching"** for more information.

7.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/ CLKOUT is available for general purpose I/O or CLKOUT. Figure 7-2 shows the pin connections for EC mode. EC mode has three power modes to select from through Configuration Words:

- ECH High power
- ECM Medium power
- · ECL Low power

Refer to Table 44-9 for External Clock/Oscillator Timing Requirements. The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 7-2: EXTERNAL CLOCK (EC) MODE OPERATION

7.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification (above 100 kHz - 8 MHz).

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting (above 8 MHz).

Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

U-0	R-f/f	R-f/f	R-f/f	R-f/f	R-f/f	R-f/f	R-f/f
—		COSC<2:0>			CDIV	<3:0>	
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ired				

REGISTER 7-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

bit 7	Unimplemented: Read as '0'
bit 6-4	COSC<2:0>: Current Oscillator Source Select bits (read-only) ⁽¹⁾
	Indicates the current source oscillator and PLL combination per Table 7-1.
bit 3-0	CDIV<3:0>: Current Divider Select bits (read-only) ⁽¹⁾
	Indicates the current postscaler division ratio per Table 7-1.

Note 1: The POR value is the value present when user code execution begins.

REGISTER 7-3: OSCCON3: OSCILLATOR CONTROL REGISTER 3

R/W/HC-0/0	R/W-0/0	U-0	R-0/0	R-0/0	U-0	U-0	U-0
CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7	CSWHOLD: Clock Switch Hold bit
	 1 = Clock switch will hold (with interrupt) when the oscillator selected by NOSC is ready 0 = Clock switch may proceed when the oscillator selected by NOSC is ready; NOSCR becomes '1', the switch will occur
bit 6	SOSCPWR: Secondary Oscillator Power Mode Select bit
	1 = Secondary oscillator operating in High-Power mode
	0 = Secondary oscillator operating in Low-Power mode
bit 5	Unimplemented: Read as '0'
bit 4	ORDY: Oscillator Ready bit (read-only)
	1 = OSCCON1 = OSCCON2; the current system clock is the clock specified by NOSC
	0 = A clock switch is in progress
bit 3	NOSCR: New Oscillator is Ready bit (read-only) ⁽¹⁾
	1 = A clock switch is in progress and the oscillator selected by NOSC indicates a "ready" condition
	0 = A clock switch is not in progress, or the NOSC-selected oscillator is not yet ready
bit 2-0	Unimplemented: Read as '0'
Note 1:	If CSWHOLD = 0, the user may not see this bit set because, when the oscillator becomes ready there

Note 1: If CSWHOLD = 0, the user may not see this bit set because, when the oscillator becomes ready there may be a delay of one instruction clock before this bit is set. The clock switch occurs in the next instruction cycle and this bit is cleared.

PIC18(L)F26/27/45/46/47/55/56/57K42

EXAMPLE 9-4: SETTING UP VECTORED INTERRUPTS USING XC8

```
// NOTE 1: If IVTBASE is changed from its default value of 0x000008, then the
// "base(...)" argument must be provided in the ISR. Otherwise the vector
// table will be placed at 0x0008 by default regardless of the IVTBASE value.
// NOTE 2: When MVECEN=0 and IPEN=1, a separate argument as "high priority"
// or "low priority" can be used to distinguish between the two ISRs.
// If the argument is not provided, the ISR is considered high priority
// by default.
// NOTE 3: Multiple interrupts can be handled by the same ISR if they are
// specified in the "irq(...)" argument. Ex: irq(IRQ TMR0, IRQ CCP1)
void interrupt(irq(IRQ TMR0), base(0x4008)) TMR0 ISR(void)
{
       PIR3bits.TMR0IF = 0;
                                             // Clear the interrupt flag
       LATCbits.LC0 ^= 1;
                                             // ISR code goes here
}
void interrupt(irq(default), base(0x4008)) DEFAULT ISR(void)
{
       // Unhandled interrupts go here
}
void INTERRUPT Initialize (void)
{
                                            // Enable high priority interrupts
       INTCONObits.GIEH = 1;
                                             // Enable low priority interrupts
       INTCONObits.GIEL = 1;
       INTCONObits.IPEN = 1;
                                             // Enable interrupt priority
       PIE3bits.TMR0IE = 1;
                                            // Enable TMR0 interrupt
       PIE4bits.TMR1IE = 1;
                                             // Enable TMR1 interrupt
       IPR3bits.TMR0IP = 0;
                                             // Make TMR0 interrupt low priority
       // Change IVTBASE if required
       IVTBASEU = 0 \times 00;
                                             // Optional
       IVTBASEH = 0 \times 40;
                                             // Default is 0x0008
       IVTBASEL = 0 \times 08;
}
```

				-				
Γ	U-0	U-0	U-0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
Γ	—	—	—			AD<20:16>		
	bit 7							bit 0
_								

REGISTER 9-39: IVTADU: INTERRUPT VECTOR TABLE ADDRESS UPPER REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 AD<20:16>: Interrupt Vector Table Address bits

REGISTER 9-40: IVTADH: INTERRUPT VECTOR TABLE ADDRESS HIGH REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
AD<15:8>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 AD<15:8>: Interrupt Vector Table Address bits

REGISTER 9-41: IVTADL: INTERRUPT VECTOR TABLE ADDRESS LOW REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-1/1	R-0/0	R-0/0	R-0/0
			AD<	:7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplei	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value	at POR and BO	R/Value at all o	other Resets

bit 7-0 AD<7:0>: Interrupt Vector Table Address bits

'0' = Bit is cleared

'1' = Bit is set

INTCOM GIE/GIEH GIEL IPPEN T INT INT_EOG INTGEOR INTREE UIRX UIRX UIRX IDAAL DMAADORE UMAADORE UMAADORE UMAADORE UMAADORE UMAADORE UMAADORE UIRX IDAAL IDAAL <thidaal< th=""> <thida< th=""><th>Name</th><th>Bit 7</th><th>Bit 6</th><th>Bit 5</th><th>Bit 4</th><th>Bit 3</th><th>Bit 2</th><th>Bit 1</th><th>Bit 0</th><th>Register on Page</th></thida<></thidaal<>	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCOMSTAT+™¬¬ <t< td=""><td>INTCON0</td><td>GIE/GIEH</td><td>GIEL</td><td>IPEN</td><td>-</td><td>-</td><td>INT2EDG</td><td>INT1EDG</td><td>INT0EDG</td><td>135</td></t<>	INTCON0	GIE/GIEH	GIEL	IPEN	-	-	INT2EDG	INT1EDG	INT0EDG	135
Piefor Piefor Piefor CirtikeCKCIE 	INTCON1	STAT	<1:0>	-	-	-	-	-	-	136
PietSMT1PPAMESMT1RECTIEADTEDAIDEZOENINTOREINTOR1448PiezTRRNOEUIESPIITXIESPIITXIEDMAIAREDMAIAREDMAIORIEDMAISORTEIACSITXIE150PiezTRRNOEUIEUIEUITXIEUTRNEUZCIEIZCIENEIZCIENEIZCIENEIZCIENEIZCITXIE150PiesTRRNOEUIZCIEDMAZORDMAZORNEDMAZORNEDMAZORNEDMAZORNEIZCIENEIZCIENEIZCIENEIZCIENE155PiesTMRSOETMRSIEUZIEUZIEUZIEUZIECOP3ECOP3ETMRNE155PiesTTTTTTCCOP3ETMRNE155PiesTTTTTCCOP3ETMRNE155PiesTTTTTCCOP3ETMRNE155PiesTTTTTCCOP3ECOP3ETMRNE155PiesTOCIFCRCIFSCANFSMTIFCSWFOSFFHUDFSWF133PiesTOCIFCRCIFSCANFSMTIFOTTADIFZCIFNATORF138PiesTMRSIESMTIFSMTIFOTTDMAZORFDMAZORFMMADCHMATOFF138PiesTOCIFCRCIFSCANFSMTIFSMTIFOTTDMAZORFDMAZORFIMARE141PiesTMRSIE	PIE0	IOCIE	CRCIE	SCANIE	NVMIE	CSWIE	OSFIE	HLVDIE	SWIE	147
PE2I2C1RXIESPI17IESPI17IESPI17XIEDMA1ACDMA1ORIEDMA1ORIEDMA1ORIEDMA1ORIEDMA1ORIEMATSONTEM41SONTE149PIE3TURRIEUTIEUTIEUTIRUEUTRUEUTRUEIZC1EIZC1EIZC1EIZC1EIZC1EIZC1EIZC1EIZC1EIZC1EIZC1EIZC1EIZC1EIST1PIE4CLC1IECORVIEMA2CREDMA2ORTEDMA2CNTEDMA2CREDMA2CREIMA2EIZC1EIZC1EIZC1EIZC1EIST2PIE5TMR3GETMR3EUZIEUZIECUC2IECWG2IETCCITRAE155PIE6TMR3GETMR3EINT2IECIC2IECWG2IETCCC2IEITMR8E155PIE10TTTTTTCCC2IEKM33EKTRAE155PIE10TCRCIFSCANIFNVMIFCSWIFOSFIFHLVDIFSWIFE137PIR1SMTIPMAFSWT1FFSCANIFADTFADIFZCDIFITMR1E138PIR2IZC1RXIFSPI1FXSPI17XIFDMA1AFDMA1ORIFDMA1ORIFDMA1ORIFMASCNTF142PIR4CLC1IFOKG1IFNCOIFSCANIFDMA2ORIFDMA2ORIFDMA1ORIFDMA1ORIFITMR1F141PIR4CLC1IFCWG1IFNCOIFMAZORIFDMA2ORIFDMA2ORIFDMA2ORIFITMR1GIF1161PIR4CLC1IFOWG1IF <t< td=""><td>PIE1</td><td>SMT1PWAIE</td><td>SMT1PRAIE</td><td>SMT1IE</td><td>C1IE</td><td>ADTIE</td><td>ADIE</td><td>ZCDIE</td><td>INT0IE</td><td>148</td></t<>	PIE1	SMT1PWAIE	SMT1PRAIE	SMT1IE	C1IE	ADTIE	ADIE	ZCDIE	INT0IE	148
PE3TMR0IEU11EU1EIEU1TXIEU17XIEU12CIEE12C1EIE12C1EIE12C1EIE12C1TXIE150PIE4ICC2TXIEICC2TIF	PIE2	I2C1RXIE	SPI1IE	SPI1TXIE	SPI1RXIE	DMA1AIE	DMA10RIE	DMA1DCNTIE	DMA1SCNTIE	149
PE4CLC1IECWG1IENC01IETCCP1IETMR2IETMR2IETMR1GIETMR1IE151PIE6IZCZTXIEIZCZTXIEIZCZRXIEDMAZANEDMAZORIEDMAZORIEDMAZORIEDMAZORIEDMAZORIEIZCZIEINT1IE152PIE6TMR3GIETMR3IEUZIEUZIEUZIEUZIEUZIEIZCZIETMR4IE155PIE7TTIITIZIECLC2IECWG2IECP3IETMR4IE155PIE8TTTITTCLC3IECWG3IECP3IETMR6IE156PIE70TTTTCLC3IECWG3IECD3IETMR6IE156PIR0IOCIFCRCIFSCANIFNVMIFCSWIFOSFIFHLVDIFSWIF133PIR11SMT1PRAIFSMT1FAIFSPITIAIFSPITIAIFSPITIAIFDMA1AIFDMA1ORIFDMATOCTIFDMATOCTIF141PIR3IICIFCLC1IFCWG1IFNC01IFITTCCP1IFTMR2IFTMR1GIF141PIR4CLC1IFCWG3IFTMR3IFUZIFUZIFIFUZIFIFUZIFIFUZIFIF142PIR4TMR3IFTMR3IFUZIFUZIFIFUZIFIFUZIFIFTMR1GIF141PIR5IZC2TXFIZC2RXFDMA2AFDMA2ORIFDMA2ORIFDMA2ORIFDMA2ORIFDMA2ORIFCI2IFITMR3IF141PIR6TMR3IFTMR3IFUZIFUZIFIFUZIFIFUZIFIFUZIFIFI	PIE3	TMR0IE	U1IE	U1EIE	U1TXIE	U1RXIE	I2C1EIE	I2C1IE	I2C1TXIE	150
PIESI2C2TXIEI2C2RXIEDMA20RIEDMA20RIEDMA20RIEDMA20RIEDMA20RIEDMA20RIEDVA20EC2IEINTIE152PIEGTMTMITMR3IEUZIEUZIEUZIKIEUZRIEIZC2ELEIZC2ELEIZC2ELEIS3PIE7TTITMR3IEINTIECLC2IECWG2IETCC2PIETMR4IE155PIE3TTTTCLC3IECWG3IECC2IETMR4IE155PIE10TTTTTCLC3IECWG3IECC2IETMR4IE155PIR10NOCIFCRCIFSCANIFNVMIFCSUFOSFFHLVDIFSWITIF137PIR1SMT1PMAIFSMT1FSPITAIFSPITAFADIFADIFZCDIFINTOIF138PIR2I2C1RXIFSPITAFSPITAFSPITAFDMA10FFDMA10CNFDMA10CNTFDMA10CNTF140PIR3TMR0FU1FU1FFUTTIFUTR1FUTR1FTMR1GFIMT1F141PIR5I2C2TXF10/2CXFDMA2AFDMA2AFFDMA2CNTFDMA2SCNTFCC2FFINT1F142PIR6TMR3GFTMR3FU2FU2FFUTX1FU2RXFI2C2TKFI2C1TXF144PIR6TMR3GFTMR3FU2FU2FFUTX1FU2RXFI2C2FFIMT4F144PIR6TMR3GFTMR3FU2FU2FFUTX1FU2RXFI2C2FFIMT6F145PIR7	PIE4	CLC1IE	CWG1IE	NCO1IE	—	CCP1IE	TMR2IE	TMR1GIE	TMR1IE	151
PIEGTMR3GIETMR3IEU2IEU2IEIU2IEIEU2IXIEU2RXIEI2C2IEII12C2IE1533PIE7CC22IETMR4IE1544PIE8TMR5IETMR5IECC22IETMR6IE1555PIE9CLC3IECWG3IECCP3IETMR6IE1556PIE10CLC3IECWG3IECCP3IETMR6IE1556PIR0IOCIFCRCIFSCANIFN/MIFCSWIFOSFIFHIVDIFSWIF1377PIR1SMT1PWAIFSMT1PRAIFSMT1IFC11FAD1FAD1FZCDIFINTOF138PIR2I2C17XIFSP11FXSP11FXIFSP11FXIFDMA1AIFDMA1CRIFDMA1CRIFDMA1CRIFIMACRIFIMACRIF1411PIR3TMR0IFU11FU11EIFU11XIFU1RXIFIZC1FIFIZC1FIFIZC1TXIF1420PIR4CLC1IFCWG1IFNC01IFCCP1IFTMR2IFTMR1GFTMR1IF1442PIR3ITM2FIDM2FDMA2CRIFDMA2CNTIFDMA2SCNTIFIZC2IFIZC1TXIF1420PIR4CLC1IFCWG1IFU2IFU2IFU2IFU2IFU2IFIZC1TXIF1441PIR5ITM2FIDM2FCLC2IFCWG2IFCCP2IFTMR1IF1442PIR6ITM2FITM2FU2IFU2IFU2IFU2IFIZC1FIFIZC1FFIZC	PIE5	I2C2TXIE	I2C2RXIE	DMA2AIE	DMA2ORIE	DMA2DCNTIE	DMA2SCNTIE	C2IE	INT1IE	152
PIE7INT2IECLC2IECWG2IECCP2IETMR4IE154PIE8TMR5IETMR5IE155PIE9155PIE9CLC3IECWG3IECCP3IETMR6IE155PIR0IOCIFCRCIFSCANIFNVMIFCSWIFOSFIFHLVDIFSWIF137PIR1SMT1PWAFSMT1PAFAFSMT1FCHFADTFADFZCDIFINTOIF138PIR2ICC1FCRCIFSCANIFOTHADM1AIFDMA1ORIFDMAIONIFDMAISCNTF139PIR3TMR0IFU11FU11FU11FU11FU11FU11F141141PIR4CLC1FCWG1FNC01F-CCP1IFTMR2IFTMR6IFTMR1F141PIR512C2TXF12C3TXFDMA2AFDMA2ORIFDMA2CNTFDMA2SCNTFC2FINT1F142PIR6TMR3GFTMR3FU2FU2FU2TKFU2RXF12C2EF12C2IF143PIR7T145PIR8TMR3GFTMR3FV2FU2FU2TKFU2RXF12C2FF12C2IF144PIR9TMR3GFTMR3FSMT1PO145PIR10<	PIE6	TMR3GIE	TMR3IE	U2IE	U2EIE	U2TXIE	U2RXIE	I2C2EIE	I2C2IE	153
PIE8TIMRSGIETIMRSIE111 <td>PIE7</td> <td>_</td> <td>-</td> <td>INT2IE</td> <td>CLC2IE</td> <td>CWG2IE</td> <td>-</td> <td>CCP2IE</td> <td>TMR4IE</td> <td>154</td>	PIE7	_	-	INT2IE	CLC2IE	CWG2IE	-	CCP2IE	TMR4IE	154
PIE9 CLC3IE CWG3IE CCP3IE TMR6IE 155 PIE10 CLC3IE CCP3IE TMR6IE 155 PIR0 IOCIF CRCIF SCANIF IC CLC4IE CCP4IE 156 PIR0 SMT1PAUR SMT1PAUR SCANIF CIF ADTIF ADDIF ADDIF ADDIF MA10CNIF DMA1SCNTF 138 PIR2 12C1RXIF SP1IIF SP1ITXIF SP1IXIF DMA1AIF DMA1ORIF DMA1SCNTF 139 PIR3 TMR0IF U11F U1EIF U1XIF U1XIF U2RUF 12C21F 12C21F 12C21F 12C21F 141 PIR3 TMR3GIF TMR3IF CLC3IF CW31F CMA2CNTF DMA2CNTF DMA2CNTF CL2IF 141 PIR4 CLC1F TMR3IF TMR3IF TMR3IF TMR3IF TMR3IF 145 PIR7	PIE8	TMR5GIE	TMR5IE	-	—	-	—	—	—	155
PHE10 — — — — — CLC4HE CCP4HE 156 PIR0 IOCIF CRCH SCAMIF NVMIF CSWIF OSFIF HLVDIF SWITF 137 PIR1 SMT1PWAHF SMT1PRAF SMT1H C1IF ADTIF ADIF ZCDIF INTOIF 138 PIR2 IZC1RXIF SP114F SMT1VF DMA1ALF DMA1ALF DMA1ALF DMA1ALF DMA1ALF DMA1ALF IMATISCHTF 139 PIR3 TMR0IF U1IF U1EF UTXIF DMA2ACTF DMA2ACTF IMATISCHTF 12C1TKIF 12C1TKIF 141 PIR3 TMR3GIF TMR3F DM2ACFF DMA2ACTFF DMA2SCNTF C2EIF INTHF 141 PIR4 CLC1IF CWG1FF TMR3F TMR3FF C1C2IF CWG2FF CCP2IF TMRAFF 144 PIR4 TMR5GIF TMR3FF TMR3FF C1C2IF CWG3FF CCP3IF TMRAFF 145 <td< td=""><td>PIE9</td><td>_</td><td>-</td><td>-</td><td>—</td><td>CLC3IE</td><td>CWG3IE</td><td>CCP3IE</td><td>TMR6IE</td><td>155</td></td<>	PIE9	_	-	-	—	CLC3IE	CWG3IE	CCP3IE	TMR6IE	155
PIRO IOCIF CRCIF SCANIF NVMIF CSWIF OSFIF HLVDIF SWIF 137 PIR1 SMT1PWAIF SMT1PRAIF SMT1IF C1IF ADTF ADIF ZCIR INTOIF 138 PIR2 IZCIRXIF SPI1IF SPI1IF SPI1IF SPI1IF SPI1IF DMAISCITF DMAISCITF DMAISCITF 139 PIR3 TMR0IF UUIF UITXIF DMAISCITF DMAISCITF DMAISCITF 140 PIR4 CLCIFF CWGIFF NCOIFF CCP1F TMR3IFF TMR1F 141 PIR5 12C2TXF 12C2RXF DMA2AIF DMA2ORIF DMA2SCITF DMA2SCITF C2IF INT1F 142 PIR6 TMR3GIF TMR3F U2IF U2EIF U2TXIF U2RXIF 12C2IFF TMR1F 144 PIR6 TMR3GIF TMR3F U2IF C2IF CCP3IF TMR6IF 145 PIR9 - - - - - <td>PIE10</td> <td>_</td> <td>_</td> <td>-</td> <td>—</td> <td>-</td> <td>-</td> <td>CLC4IE</td> <td>CCP4IE</td> <td>156</td>	PIE10	_	_	-	—	-	-	CLC4IE	CCP4IE	156
PIR1 SMT1PWAIF SMT1IPRAIF SMT1IF C1IF ADIF ADIF ZCDIF INTOIF 138 PIR2 I2C1RXIF SP11IF SP11TXIF SP11XIF DMA1AIF DMA1ORIF DMA1DCNTIF DMA1SCNTF 139 PIR3 TMR0IF U1F U1EF U1TXIF URXIF I2C1EF I2C1F I2C1F I2C1F I2C1F IANT1F 141 PIR4 CLC1IF CWG1IF NC0IF — CCP1IF TMR1F IATT1F 142 PIR5 IZC2TXF IZC2RXF DMA2AIF DMA2ORIF DMA2SCNTF U2Z1F IXT1F 142 PIR6 TMR3GIF TMR3IF U2IF UZEIF UZEIF UZEXF UZEXF UZEXF UZEXF IXT1F 144 PIR6 TMR5GIF TMR5IF T — — — — — 145 PIR7 — — — — CLC1F CVEXF TMR4IF 144 <t< td=""><td>PIR0</td><td>IOCIF</td><td>CRCIF</td><td>SCANIF</td><td>NVMIF</td><td>CSWIF</td><td>OSFIF</td><td>HLVDIF</td><td>SWIF</td><td>137</td></t<>	PIR0	IOCIF	CRCIF	SCANIF	NVMIF	CSWIF	OSFIF	HLVDIF	SWIF	137
PIR2 IZC1RXIF SPI1T SPI1TXIF SPI1TXIF DMA1AIF DMA1ORIF DMA1DCNTIF DMA1SCNTIF 139 PIR3 TMR0IF U1IF U1EIF U1TXIF U1RXIF I2C1EIF I2C1IF I2C1TXIF 140 PIR4 CLC1IF CWG1IF NC01F — CCP1F TMR2IF TMR3IF TMR1F 141 PIR6 TMR3GIF TMR3IF U2EF DMA2CIFF DMA2SCNTF C2IF INT1F 142 PIR6 TMR3GIF TMR3IF U2E U2EIF U2RXIF U2RXIF IZC2IF TMR4F 144 PIR7 — — ITTTF CLC2IF CWG3IF CCP3IF TMR4F 144 PIR8 TMR5GIF TMR5IF — — — CCP3IF TMR6F 145 PIR9 — — — — CLC3IF CWG3IF CCP3IF TMR6F 145 PIR10 — CCIP SCANP NVMIP	PIR1	SMT1PWAIF	SMT1PRAIF	SMT1IF	C1IF	ADTIF	ADIF	ZCDIF	INT0IF	138
PIR3 TMR0IF U1IF U1EIF U1TXIF U1RXIF I2C1EIF I2C1IF I2C1TXIF 140 PIR4 CLC1IF CWG1IF NCO1IF — CCP1IF TMR2IF TMR1GIF TMR1IF 141 PIR5 I2C2TXF I2C2RXF DMA2AF DMA2ORIF DMA2SCNTIF C2F INT1GF 142 PIR6 TMR3GIF TMR3IF U2IF U2EIF U2TXIF U2RXIF I2C2EF I2C2IF 143 PIR7 — — ITMR3GIF TMR3IF — — — — — 145 PIR8 TMRSGIF TMRSIF — — — — — 145 PIR9 — — — — — — — 145 PIR10 — — — — CLC3IF CWG3IF CCP3IF TMR6IF 145 PIR10 IOCIP CRCIP SCANIP NVMIP CSWIP OSFIP HLVDIP SWIP 157 IPR1 SMT1PRAIP SMT1PRAIP S	PIR2	I2C1RXIF	SPI1IF	SPI1TXIF	SPI1RXIF	DMA1AIF	DMA10RIF	DMA1DCNTIF	DMA1SCNTIF	139
PIR4 CLC1IF CWG1IF NC01IF T CCP1IF TMR2IF TMR1GIF TMR1IF 141 PIR5 I2C2TXF I2C2RXF DMA2AIF DMA2ORIF DMA2CNTIF DMA2SCNTIF C2IF INT1IF 142 PIR6 TMR3GIF TMR3IF U2IF U2TXIF U2RXIF I2C2EIF I2C2IF 143 PIR7 - - - CCP2IF TMR4IF 144 PIR8 TMR5GIF TMR5IF - - - - - - 145 PIR9 - - - - - - - 145 PIR9 - - - - - - - 145 PIR10 - - - - - CLC3IF CWG3IF CC4IF 146 IPR0 IOCIP CRCIP SCANIP NVMIP CSWIP OSFIP HLVDIP SWIP 157 IPR1 <td< td=""><td>PIR3</td><td>TMR0IF</td><td>U1IF</td><td>U1EIF</td><td>U1TXIF</td><td>U1RXIF</td><td>I2C1EIF</td><td>I2C1IF</td><td>I2C1TXIF</td><td>140</td></td<>	PIR3	TMR0IF	U1IF	U1EIF	U1TXIF	U1RXIF	I2C1EIF	I2C1IF	I2C1TXIF	140
PIRSI2C2TXFI2C2RXFDMA2AIFDMA2ORIFDMA2DCNTIFDMA2DCNTIFDMA2SCNTIFC2IFINT1IF142PIR6TMR3GIFTMR3IFU2IFU2EIFU2TXIFU2RXIFI2C2EIFI2C2IF143PIR7———INT2IFCLC2IFCWG2IF—CCP2IFTMR4IF144PIR8TMR5GIFTMR5IF——————145PIR9————————145PIR10————————145PIR10IOCIPCRCIPSCANIPNVMIPCSWIPOSFIPHLVDIPSWIP157IPR1SMT1PMAPSMT1PANIPSMT1IPC1IPADIPADIPZCDIPINA1SCNTIP158IPR2I2C1RPSPI1IPSPI1IPSPI1RIPDMA1AIPDMA1ORIPDMA1DCNTIPDMA1SCNTIP159IPR3TMR0IPU1IPU1EIPU1TXIPU1RXIPI2C1EIPI2C1IPI2C1TXIP160IPR4CLC1IPCWG3IPNCO1IP—CCP1IPTMR1GIPTMR1IP161IPR5I2C2TXPI2C2XPDMA2AIPDMA2ORIPDMA2SCNTIPDMA2SCNTIPC2IPINT1IP162IPR6TMR3GIPTMR3IPU2IPU2EIPU2TXIPU2RXIPI2C2EIPI2C2IP163IPR6TMR3GIPTMR3IPO——————— <td< td=""><td>PIR4</td><td>CLC1IF</td><td>CWG1IF</td><td>NCO1IF</td><td>—</td><td>CCP1IF</td><td>TMR2IF</td><td>TMR1GIF</td><td>TMR1IF</td><td>141</td></td<>	PIR4	CLC1IF	CWG1IF	NCO1IF	—	CCP1IF	TMR2IF	TMR1GIF	TMR1IF	141
PIR6 TMR3GIF TMR3IF U2IF U2EIF U2TXIF U2CXIF I2C2EIF I2C2IF 143 PIR7 — — INT2IF CLC2IF CWG2IF — CCP2IF TMR4IF 144 PIR8 TMR5GIF TMR5IF — — — — CCP2IF TMR4IF 144 PIR8 TMR5GIF TMR5IF — — — — — — 145 PIR9 — — — — — — — — 145 PIR0 — — — — — — — 145 PIR0 — — — — — — CLC3IF CM31F CCP3IF TMR6IF 145 PIR10 — CRCIP SCANIP NVMIP CSWIP OSFIP HLVDIP SWIP 157 IPR1 SMT1PWAIP SMT1P SMT1P MIP IMA10P IMA10CN	PIR5	I2C2TXF	I2C2RXF	DMA2AIF	DMA2ORIF	DMA2DCNTIF	DMA2SCNTIF	C2IF	INT1IF	142
PIR7 — INT2IF CLC2IF CWG2IF — CCP2IF TMR4IF 144 PIR8 TMR5GIF TMR5IF — — — — — — 145 PIR9 — — — — — — — 145 PIR9 — — — — — — — 145 PIR0 — — — — — — — — 145 PIR0 — — — — — — — — 145 PIR10 — — — — — CLC3IF CWG3IF CCP3IF TMR6IF 145 IPR0 IOCIP CRCIP SCANIP NVMIP CSWIP OSFIP HLVDIP SWIP 157 IPR1 SMTPWAIP SMT1PAIP SMT1PAIP SMT1PAIP DMA1AIP DMA1DCNIP DMA1SCNTP DMA1SCNTP IDA 167 <td>PIR6</td> <td>TMR3GIF</td> <td>TMR3IF</td> <td>U2IF</td> <td>U2EIF</td> <td>U2TXIF</td> <td>U2RXIF</td> <td>I2C2EIF</td> <td>I2C2IF</td> <td>143</td>	PIR6	TMR3GIF	TMR3IF	U2IF	U2EIF	U2TXIF	U2RXIF	I2C2EIF	I2C2IF	143
PIR8TMR5GIFTMR5IF——————145PIR9————CLC3IFCWG3IFCCP3IFTMR6IF145PIR10—————CLC3IFCWG3IFCCP3IFTMR6IF145PIR10———————CLC4IFCCP4IF146IPR0IOCIPCRCIPSCANIPNVMIPCSWIPOSFIPHLVDIPSWIP157IPR1SMT1PWAIPSMT1PRAIPSMT1IPC1IPADTPADIPZCDIPINT0IP158IPR2I2C1RIPSP11IPSP11TIPSP11RIPDMA1AIPDMA1ORIPDMA10CNTIPDMA1SCNTIP159IPR3TMR0IPU11PU1EIPU1TXIPU1RXIPI2C1EIP12C1IP12C1TXIP160IPR4CLC1IPCWG1IPNCO1IP—CCP1IPTMR2IPTMR1GIPTMR1IP161IPR5I2C2TXPI2C2RXPDMA2AIPDMA2ORIPDMA2ORTIPDMA2SCNTIPC2IPINT1IP162IPR6TMR3GIPTMR3IPU2IPU2EIPU2TXIPU2RXIPI2C2EIPI2C2IP163IPR7——————————164IPR8TMR5GIPTMR3IPU2IPU2EIPU2TXIPU2RXIPI2C2EIP12C1P164IPR8TMR5GIPTMS1P———————16	PIR7	-	-	INT2IF	CLC2IF	CWG2IF	—	CCP2IF	TMR4IF	144
PIR9CLC3IFCWG3IFCCP3IFTMR6IF145PIR10CLC4IFCCP4IF146IPR0IOCIPCRCIPSCANIPNVMIPCSWIPOSFIPHLVDIPSWIP157IPR1SMT1PWAIPSMT1PAIPSM11PC1IPADTIPADIPZCDIPINT0IP158IPR212C1RIPSP11IPSP11TIPSP11RIPDMA1AIPDMA1ORIPDMA1DCNTIPDMA1SCNTIP159IPR3TMR0IPU1IPU1EIPU1TXIPU1RXIP12C1EIP12C1IP12C1TXIP160IPR4CLC1PCWG1IPNC01IP-CCP1IPTMR2IPTMR1GIPTMR1IP161IPR512C2TXP12C2RXPDMA2AIPDMA2ORIPDMA2DCNTIPDMA2SCNTIPC2IPINT1IP162IPR6TMR3GIPTMR3IPU2IPU2EIPU2TXIPU2RXIP12C2EIP12C2IP163IPR7164IPR8TMR5GIPTMR5IP164IPR9165IPR10166NTBASEU166NTBASEU166NTBASEL167NTBASEL-<	PIR8	TMR5GIF	TMR5IF	-	—	-	—	—	—	145
PIR10CLC4IFCCP4IF146IPR0IOCIPCRCIPSCANIPNVMIPCSWIPOSFIPHLVDIPSWIP157IPR1SMT1PWAIPSMT1PAIPSMT1PC1IPADTIPADIPZCDIPINTOIP158IPR2I2C1RIPSP11IPSP11IPSP1RIPDMA1AIPDMA1ORIPDMA1DCNTPDMA1SCNTP159IPR3TMR0IPU1IPU1EIPU1TXIPU1RXIPI2C1EIPI2C1IPI2C1TXIP160IPR4CLC1IPCWG1IPNCO1IPCCP1IPTMR2IPTMR1GIPTMR1IP161IPR5I2C2TXPI2C2RXPDMA2AIPDMA2ORIPDMA2DCNTIPDMA2SCNTIPC2IPINT1IP162IPR6TMR3GIPTMR3IPU2IPU2EIPU2TXIPU2RXIPI2C2EIPI2C2IP163IPR7164IPR8TMR5GIPTMR3IP164IPR8TMR5GIPTMR5IP165IPR10166IVTBASEU166IVTBASEL167IVTADU167IVTADL167IVTADL167IVTADL<	PIR9	-	-	-	—	CLC3IF	CWG3IF	CCP3IF	TMR6IF	145
IPR0IOCIPCRCIPSCANIPNVMIPCSWIPOSFIPHLVDIPSWIP157IPR1SMT1PWAIPSMT1PRAIPSMT1PC1IPADTIPADIPZCDIPINTOIP158IPR2I2C1RIPSPI1IPSPI1TIPSPI1RIPDMA1AIPDMA1ORPDMA1DCNTIPDMA1SCNTIP159IPR3TMR0IPU1IPU1EIPU1TXIPU1RXIPI2C1EIPI2C1IPI2C1TXIP160IPR4CLC1IPCWG1IPNCO1P—CCP1IPTMR2IPTMR1GIPTMR1IP161IPR5I2C2TXPI2C2RXPDMA2AIPDMA2ORIPDMA2ORIPDMA2SCNTIPC2IPINT1IP162IPR6TMR3GIPTMR3IPU2IPU2EIPU2TXIPU2RXIPI2C2EIPI2C2IP163IPR7IMTSIPCLC2IPCWG2IP-CCP3IPTMR4IP164IPR8TMRSGIPTMRSIP164IPR8TMRSGIPTMRSIP166IPR10166IPR8TMRSGIPTMRSIP166IPR8TMRSGIPTMRSIP166IPR8TMRSGIPTMRSIP166IPR8TMRSGIPTMRSIP166IFR8TMRSGIP	PIR10	_	-	-	—	-	—	CLC4IF	CCP4IF	146
IPR1 SMT1PWAIP SMT1PRAIP SMT1IP C1IP ADTIP ADIP ZCDIP INTOIP 158 IPR2 I2C1RIP SPI1IP SPI1TIP SPI1RIP DMA1AIP DMA1ORIP DMA1DCNTIP DMA1SCNTIP 159 IPR3 TMR0IP U1IP U1EIP U1TXIP U1RXIP I2C1EIP I2C1IP I2C1TXIP 160 IPR4 CLC1IP CWG1IP NC01IP — CCCP1IP TMR2IP TMR1GIP TMR1IP 161 IPR4 CLC1IP CWG1IP NC01IP — CCCP1IP TMR2IP TMR1GIP TMR1IP 161 IPR5 I2C2TXP I2C2RXP DMA2AIP DMA2ORIP DMA2CNTIP DMA2SCNTIP C2IP INT1IP 162 IPR6 TMR3GIP TMR3IP U2IP U2EIP U2TXIP U2RXIP I2C2EIP I2C2IP 163 IPR6 TMR5GIP TMR3IP — — — CC2G3IP TMR4IP 164 IPR9	IPR0	IOCIP	CRCIP	SCANIP	NVMIP	CSWIP	OSFIP	HLVDIP	SWIP	157
IPR2 I2C1RIP SPI1IP SPI1RIP DMA1AIP DMA1ORIP DMA1DCNTP DMA1SCNTIP 159 IPR3 TMR0IP U1IP U1EIP U1TXIP U1RXIP I2C1EIP I2C1IP I2C1TXIP 160 IPR4 CLC1IP CWG1IP NCO1IP — CCP1IP TMR2IP TMR1GIP TMR1IP 161 IPR4 I2C2TXP I2C2RXP DMA2AIP DMA2ORIP DMA2DCNTIP DM2SCNTIP C2IP INT1IP 162 IPR6 TMR3GIP TMR3IP U2IP U2EIP U2TXIP U2RXIP I2C2EIP I2C2IP 163 IPR7 — — INT2IP CLC2IP CWG2IP — CCP2IP TMR4IP 164 IPR8 TMR5GIP TMR5IP — — — — — 164 IPR9 — — — — CC3IP CWG3IP CCP3IP TMR6IP 165 IPR10 — — — —<	IPR1	SMT1PWAIP	SMT1PRAIP	SMT1IP	C1IP	ADTIP	ADIP	ZCDIP	INT0IP	158
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPR2	I2C1RIP	SPI1IP	SPI1TIP	SPI1RIP	DMA1AIP	DMA10RIP	DMA1DCNTIP	DMA1SCNTIP	159
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPR3	TMR0IP	U1IP	U1EIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP	160
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPR4	CLC1IP	CWG1IP	NCO1IP	—	CCP1IP	TMR2IP	TMR1GIP	TMR1IP	161
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPR5	I2C2TXP	I2C2RXP	DMA2AIP	DMA2ORIP	DMA2DCNTIP	DMA2SCNTIP	C2IP	INT1IP	162
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPR6	TMR3GIP	TMR3IP	U2IP	U2EIP	U2TXIP	U2RXIP	I2C2EIP	I2C2IP	163
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPR7	-	-	INT2IP	CLC2IP	CWG2IP	—	CCP2IP	TMR4IP	164
IPR9 - - - CLC3IP CWG3IP CCP3IP TMR6IP 165 IPR10 - - - - - CLC3IP CCP3IP TMR6IP 165 IPR10 - - - - - CLC4IP CCP4IP 165 IVTBASEU - - - - BASE<20:16> 166 IVTBASEL - - BASE<15:8> 166 165 IVTBASEL - - BASE<7:0> 166 167 IVTADU Image: Comparison of the c	IPR8	TMR5GIP	TMR5IP	-	—	-	—	—	—	164
IPR10 - - - - CCP4IP 165 IVTBASEU - - - - - 166 IVTBASEH - - - BASE<15:8> 166 IVTBASEL BASE<15:8> 166 IVTBASEL BASE<7:0> 166 IVTADU Image: Comparison of the temperature of temper	IPR9	-	-	-	—	CLC3IP	CWG3IP	CCP3IP	TMR6IP	165
IVTBASEU — — — BASE BASE 166 IVTBASEH BASE<15:8> 166 166 IVTBASEL BASE<7:0> 166 IVTADU Image: Comparison of the system of the sys	IPR10	_	_	_	-	_	-	CLC4IP	CCP4IP	165
IVTBASEH BASE<15:8> 166 IVTBASEL BASE<7:0> 166 IVTADU AD 167 IVTADH AD<15:8> 167 IVTADL AD<7:0> 167	IVTBASEU	_	_	-			BASE<20:16>			166
IVTBASEL BASE<7:0> 166 IVTADU AD AD 167 IVTADH AD AD 167 IVTADL AD AD<7:0> 167	IVTBASEH				BAS	E<15:8>				166
IVTADU AD AD 167 IVTADH AD<15:8> 167 IVTADL AD<7:0> 167	IVTBASEL				BAS	SE<7:0>				166
IVTADH AD<15:8> 167 IVTADL AD<7:0> 167	IVTADU						AD<20:16>			167
IVTADL AD<7:0> 167	IVTADH				AD	<15:8>				167
	IVTADL				AE)<7:0>				167
IVTLOCK — — — — — — — IVTLOCKED 168	IVTLOCK	—	—	—	—	_	—	—	IVTLOCKED	168

TABLE 9-3:	SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for interrupts.

FIGURE 10-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1	 	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKIN ⁽¹⁾			, 					
CLKOUT ⁽²⁾	\/	ļ	, , ,	Tost(3)		,///	,/	
Interrupt flag		1 1 		· · · ·	Interrupt Laten	cy ⁽⁴⁾		
GIE bit (INTCON reg.)		'	Processor in					
Instruction Flow		ا ا	, \/			, {	ا ا	, <u> </u>
PC)	(<u>PC</u>	X <u>PC+1</u>	<u>Х РС</u>	<u>+2</u>	PC + 2	<u>X PC+2</u>	<u> </u>	X <u>0005h</u>
Fetched	Inst(PC) = Sleep	Inst(PC + 1)	1	1	Inst(PC + 2)	1	Inst(0004h)	Inst(0005h)
Instruction {	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
Note 1: E	External clock. Hig	h. Medium. Low m	node assume	d.				

2: CLKOUT is shown here for timing reference.

3: TOST = 1024 TOSC. This delay does not apply to EC and INTOSC Oscillator modes.

4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

10.2.3 LOW-POWER SLEEP MODE

The PIC18F26/27/45/46/47/55/56/57K42 device family contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

The PIC18F26/27/45/46/47/55/56/57K42 devices allow the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register.

10.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

13.1.2 CONTROL REGISTERS

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the following registers:

- NVMCON1 register
- NVMCON2 register
- TABLAT register
- TBLPTR registers

13.1.2.1 NVMCON1 and NVMCON2 Registers

The NVMCON1 register (Register 13-1) is the control register for memory accesses. The NVMCON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading NVMCON2 will read all '0's.

The REG<1:0> control bits determine if the access will be to Data EEPROM Memory locations. PFM locations or User IDs, Configuration bits, Rev ID and Device ID. When REG<1:0> = 00, any subsequent operations will operate on the Data EEPROM Memory. When REG<1:0> = 10, any subsequent operations will operate on the program memory. When REG<1:0> = x1, any subsequent operations will operate on the Configuration bits, User IDs, Rev ID and Device ID.

The FREE bit allows the program memory erase operation. When the FREE bit is set, an erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled. This bit is applicable only to the PFM and not to data EEPROM.

When set, the WREN bit will allow a program/erase operation. The WREN bit is cleared on power-up.

The WRERR bit is set by hardware when the WR bit is set and is cleared when the internal programming timer expires and the write operation is successfully complete.

The WR control bit initiates erase/write cycle operation when the REG<1:0> bits point to the Data EEPROM Memory location, and it initiates a write operation when the REG<1:0> bits point to the PFM location. The WR bit cannot be cleared by firmware; it can only be set by firmware. Then the WR bit is cleared by hardware at the completion of the write operation.

The NVMIF Interrupt Flag bit is set when the write is complete. The NVMIF flag stays set until cleared by firmware.

13.1.2.2 TABLAT – Table Latch Register

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

13.1.2.3 TBLPTR – Table Pointer Register

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations on the TBLPTR affect only the low-order 21 bits.

13.1.2.4 Table Pointer Boundaries

TBLPTR is used in reads, writes and erases of the Program Flash Memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register.

When a TBLWT is executed the byte in the TABLAT register is written, not to memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (see Table 5-4). The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations.

When a program memory write is executed the entire holding register block is written to the memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during memory writes. For more detail, see Section 13.1.6 "Writing to Program Flash Memory".

Figure 13-3 describes the relevant boundaries of TBLPTR based on Program Flash Memory operations.

13.1.4 NVM UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the NVM from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- PFM Row Erase
- Write of PFM write latches to PFM memory
- Write of PFM write latches to User IDs
- Write to Data EEPROM Memory
- Write to Configuration Words

The unlock sequence consists of the following steps and must be completed in order:

- Write 55h to NVMCON2
- Write AAh to NMVCON2
- · Set the WR bit of NVMCON1

Once the WR bit is set, the processor will stall internal operations until the operation is complete and then resume with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

BCF BANKSEL	INTCON0,GIE	; Recommended so sequence is not interrupted
BSF	NVMCON1, WREN	; Enable write/erase
MOVLW	55h	; Load 55h
MOVWF	NVMCON2	; Step 1: Load 55h into NVMCON2
MOVLW	AAh	; Step 2: Load W with AAh
MOVWF	NVMCON2	; Step 3: Load AAh into NVMCON2
BSF	INTCON1,WR	; Step 4: Set WR bit to begin write/erase
BSF	INTCON0,GIE	; Re-enable interrupts
Note 1: Sec sho will	quence begins when NVMCO wm. If the timing of the steps 1 not take place.	N2 is written; steps 1-4 must occur in the cycle-accurate order to 4 is corrupted by an interrupt or a debugger Halt, the action

2: Opcodes shown are illustrative; any instruction that has the indicated effect may be used.

EXAMPLE 13-2: NVM UNLOCK SEQUENCE

15.5.3.1 Clearing the SIRQEN bit

Clearing the SIRQEN bit (DMAxCON1 register) stops the sampling of external start interrupt triggers, hence preventing further DMA Message transfers.

An example would be a communications peripheral with a level-triggered interrupt. The peripheral will continue to request data (because its buffer is empty) even though there is no more data to be moved. Disabling the SIRQEN bit prevents the DMA from processing these requests.

15.5.3.2 Source/Destination Stop

The SSTP and DSTP bits (DMAxCON0 register) determine whether or not to disable the hardware triggers (SIRQEN = 0) once a DMA message has completed.

When the SSTP bit is set and the DMAxSCNT = 0, then the SIRQEN bit will be cleared. Similarly, when the DSTP bit is set and the DMAxDCNT = 0, the SIRQEN bit will be cleared.

Note: The SSTP and DSTP bits are independent functions and do not depend on each other. It is possible for a message to be stopped by either counter at message end or both counters at message end.

15.6 Types of Hardware Triggers

The DMA has two different trigger inputs namely the Source trigger and the abort trigger. Each of these trigger sources is user configurable using the DMAxSIRQ and DMAxAIRQ registers.

Based on the source selected for each trigger, there are two types of requests that can be sent to the DMA.

- Edge triggers
- · Level triggers

15.6.1 EDGE TRIGGER REQUESTS

An Edge request occurs only once when a given module interrupt requirements are true.

15.6.2 LEVEL TRIGGER REQUESTS

A level request is asserted as long as the condition that causes the interrupt is true.

15.7 Types of Data Transfers

Based on the memory access capabilities of the DMA (See Table 15-1), the following sections discuss the different types of data movement between the Source and Destination Memory regions.

• N: 1

This type of transfer is common when sending predefined data packets (such as strings) through a single interface point (such as communications modules transmit registers).

• N: N

This type of transfer is useful for moving information out of the Program Flash or Data EEPROM to SRAM for manipulation by the CPU or other peripherals.

• 1: N

This type of transfer is common when bridging two different modules data streams together (communications bridge).

• 1: N

This type of transfer is useful for moving information from a single data source into a memory buffer (communications receive registers).

15.8 DMA Interrupts

Each DMA has its own set of four interrupt flags, used to indicate a range of conditions during data transfers. The interrupt flag bits can be accessed using the corresponding PIR registers (Refer to the Interrupt Section).

15.8.1 DMA SOURCE COUNT INTERRUPT

The DMAxSCNTIF source count interrupt flag is set every time the DMAxSCNT<11:0> reaches zero and is reloaded to its starting value.

15.8.2 DMA DESTINATION COUNT INTERRUPT

The DMAxDCNTIF destination count interrupt flag is set every time the DMAxDCNT<11:0> reaches zero and is reloaded to its starting value.

The DMA Source Count zero and Destination Count zero interrupts are used in conjunction to determine when to signal the CPU when the DMA Messages are completed.

15.8.3 ABORT INTERRUPT

The DMAxAIF abort interrupt flag is used to signal that the DMA has halted activity due to an abort signal from one of the abort sources. This is used to indicate that the transaction has been halted for some reason.

FIGURE 25-11: WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC18(L)F26/27/45/46/47/55/56/57K42

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWGxCON0	EN	LD	—	—	—		MODE<2:0>	•	424
CWGxCON1	—	_	IN	—	POLD	POLC	POLB	POLA	425
CWGxCLK	—	_	—	—	—	_	_	CS	426
CWGxISM	—	—	—	- ISM<4:0>				427	
CWGxSTR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	428
CWGxAS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0>	_	_	429
CWGxAS1	—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	430
CWGxDBR	—	_	DBR<5:0>					431	
CWGxDBF		_			DBF<	:5:0>			431

TABLE 26-2: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by CWG.

PIC18(L)F26/27/45/46/47/55/56/57K42

HS = Hardware set

HC = Hardware clear

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimpler	mented bit, read	as '0'		
u = Bit is unchanged $x = Bit is unknown$			-n/n = Value at POR and BOR/Value at all other Resets				

REGISTER 33-14: I2CxADR2: I²C ADDRESS 2 REGISTER

'0' = Bit is cleared

'1' = Bit is set

bit 7-0	ADR<7-0>: Address 2 bits
	MODE<2:0> = 000 110 - 7-bit Slave/Multi-Master Modes
	ADR<7:1>:7-bit Slave Address
	MODE<2:0> = 001 111 - 7-bit Slave/Multi-Master Modes with Masking
	ADR<7:1>:7-bit Slave Address
	MODE<2:0> = 010 - 10-Bit Slave Mode
	ADR<7:0>: Eight Least Significant bits of second 10-bit address
	MODE<2:0> = 011 - 10-Bit Slave Mode with Masking
	MSK0<7-0>: The received address byte is masked, then compared to I2CxADR0

36.6.5 BURST AVERAGE MODE

The Burst Average mode (ADMD = 011) acts the same as the Average mode in most respects. The one way it differs is that it continuously retriggers ADC sampling until the CNT value is greater than or equal to RPT, even if Continuous Sampling mode (see Section 36.6.8 "Continuous Sampling mode") is not enabled. This allows for a threshold comparison on the average of a short burst of ADC samples.

36.6.6 LOW-PASS FILTER MODE

The Low-pass Filter mode (ADMD = 100) acts similarly to the Average mode in how it handles samples (accumulates samples until CNT value greater than or equal to RPT, then triggers threshold comparison), but instead of a simple average, it performs a low-pass filter operation on all of the samples, reducing the effect of high-frequency noise on the average, then performs a threshold comparison on the results. (see Table 36-2 for a more detailed description of the mathematical operation). In this mode, the ADCRS bits determine the cut-off frequency of the low-pass filter (as demonstrated by Table 36-3).

36.6.7 THRESHOLD COMPARISON

At the end of each computation:

- The conversion results are latched and held stable at the end-of-conversion.
- The error is calculated based on a difference calculation which is selected by the ADCALC<2:0> bits in the ADCON3 register. The value can be one of the following calculations (see Register 36-4 for more details):
 - The first derivative of single measurements
 - The CVD result in CVD mode
 - The current result vs. a setpoint
 - The current result vs. the filtered/average result
 - The first derivative of the filtered/average value
 - Filtered/average value vs. a setpoint

The result of the calculation (ERR) is compared to the upper and lower thresholds, UTH<ADUTHH:ADUTHL> and LTH<ADLTHH:ADLTHL> registers, to set the

ADUTHR and ADLTHR flag bits. The threshold logic is selected by ADTMD<2:0> bits in the ADCON3 register. The threshold trigger option can be one of the following:

- Never interrupt
- Error is less than lower threshold
- Error is greater than or equal to lower threshold
- Error is between thresholds (inclusive)
- Error is outside of thresholds
- Error is less than or equal to upper threshold
- Error is greater than upper threshold

- Always interrupt regardless of threshold test results
- If the threshold condition is met, the threshold interrupt flag ADTIF is set.

Note 1:	The threshold		tests	are	signed
	operations.				
2:	If ADA	AOV is set,	a thresh	old int	errupt is
	signal	ed.			

36.6.8 CONTINUOUS SAMPLING MODE

Setting the CONT bit in the ADCON0 register automatically retriggers a new conversion cycle after updating the ADACC register. The GO bit remains set and re-triggering occurs automatically.

If ADSOI = 1, a threshold interrupt condition will clear GO and the conversions will stop.

36.6.9 DOUBLE SAMPLE CONVERSION

Double sampling is enabled by setting the ADDSEN bit of the ADCON1 register. When this bit is set, two conversions are required before the module will calculate threshold error (each conversion must still be triggered separately). The first conversion will set the ADMATH bit of the ADSTAT register and update ADACC, but will not calculate ERR or trigger ADTIF. When the second conversion completes, the first value is transferred to PREV (depending on the setting of ADPSIS) and the value of the second conversion is placed into ADRES. Only upon the completion of the second conversion is ERR calculated and ADTIF triggered (depending on the value of ADCALC).

38.7 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 44-17 and Table 44-19 for more details.

38.8 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 38-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

The maximum source impedance for analog sources is mentioned in Parameter AD08 in Table 44-15. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

41.1.1 STANDARD INSTRUCTION SET

ADD	FSR	Add Lite	Add Literal to FSR						
Synta	ax:	ADDFSR	f, k						
Oper	ands:	$0 \le k \le 63$	3						
		f ∈ [0, 1,	2]						
Oper	ation:	FSR(f) +	$k \rightarrow FSR$	(f)					
Statu	s Affected:	None	1						
Enco	ding:	1110	1000	ffk	k	kkkk			
Desc	ription:	The 6-bit contents	literal 'k' i of the FSI	s add R spe	ed to cifieo	o the d by 'f'.			
Word	ls:	1							
Cycle	es:	1							
QCy	cle Activity:								
-	-	Q1	Q2	Q3		Q4			
		Decod	Read	Pro	-	Write to			
		е	literal	ces	s	FSR			
			ʻk'	Dat	а				
		Decod	Read	Pro	-	Write to			
		е	literal	Ces	s	FSR			
ADD	After Instructio FSR2	on = 0422h	ral to W						
Synt	av.		k						
Oner	ands:	$\int \frac{1}{2} \mathbf{k} < 25^{1}$	ADDLVV K $0 < k < 255$						
Oper	ation:	(W) + k →	$U \ge K \ge 200$						
Statu	s Affected		$(vv) + v \rightarrow vv$						
Enco	dina:	0000	1111	kkl	c k	kkkk			
Doco	rintion:	The contor							
Desc	aipuon.	8-bit literal W.	'k' and th	e resi	ult is	placed in			
Word	ls:	1							
Cycle	es:	1							
0 C	vcle Activity								
30	, old 7 loll vity.	02	03			04			
	Doceda	Dood	Broco						
	Decode	literal 'k'	Data	35 3	vvr				

Example:			ADDLW	15h
Befor	e Ins	struct	ion	
	W	=	10h	
After	Instr	uctio	n	
,	W	=	25h	

ADDWF	ADD W to f					
Syntax:	ADDWF f {,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation:	(W) + (f) \rightarrow dest					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0010 01da ffff ffff					
Description.	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- orel Offset Mode" for details					
Words:	1					
Cycles:	1					

Q Cycle Activity:

Decode Read Process Write to register 'f' Data destination	Q1	Q2	Q3	Q4
register 'f' Data destination	Decode	Read	Process	Write to
0		register 'f'	Data	destination

Example: ADDWF REG, 0, 0

Before Instruction

W	=	17h
REG	=	0C2h
After Instruct	ion	
W	=	0D9h
REG	=	0C2h

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

TABLE 44-13:RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT
RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

Standard	I Operating	g Conditions (unless otherwise stated)					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2			μS	Δ
RST02*	Tioz	I/O high-impedance from Reset detection	_	_	2	μs	
RST03	Twdt	Watchdog Timer Time-out Period	_	16	_	ms	1:512 Prescaler
RST04*	Tpwrt	Power-up Timer Period	-	1 16 64	-	ms ms ms	PWRTS = 00 PWRTS = 01 PWRTS = 10
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)		1024		Tosc	
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.7 2.55 2.3 2.3 1.8	2.85 2.7 2.45 2.45 1.9	3.0 2.85 2.6 2.6 2.05	V V V V V	BORV = 00 BORV = 01 BORV = 10 BORV = 11 (PIC18Fxxx) BORV = 11 (PIC18LFxxx)
RST07	VBORHYS	Brown-out Reset Hysteresis	_	40	_	\m\ (
RST08	TBORDC	Brown-out Reset Response Time	_	3	_	µs \	
RST09	VLPBOR	Low-Power Brown-out Reset Voltage	1.8	1.9	2.5	V	P/C18LFXXX only

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

TABLE 44-14: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

aram. No.	Symbol	Characteristic	Min.	Typ†	Max.	Units	Conditions
LVD01	V _{DET}	Voltage Detection		1.85	\searrow	V	HLVDSEL<3:0>=0000
		<	$\langle \mathcal{A} \rangle$	2,06	_	V	HLVDSEL<3:0>=0001
			$ \neq $	2.26		V	HLVDSEL<3:0>=0010
			_/	2,47		V	HLVDSEL<3:0>=0011
		\land	_	~2.57		V	HLVDSEL<3:0>=0100
			\rightarrow	2.78		V	HLVDSEL<3:0>=0101
		/	$\bigvee \neq$	2.88		V	HLVDSEL<3:0>=0110
		$// \land$	/-	3.09	_	V	HLVDSEL<3:0>=0111
			` —	3.40		V	HLVDSEL<3:0>=1000
	(\square	_	3.60		V	HLVDSEL<3:0>=1001
		$\backslash \setminus \lor /$	_	3.71		V	HLVDSEL<3:0>=1010
			_	3.91		V	HLVDSEL<3:0>=1011
	$\langle \bigtriangledown \rangle$		_	4.12		V	HLVDSEL<3:0>=1100
	< < < <	_	_	4.32		V	HLVDSEL<3:0>=1101
		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		4.63	_	V	HLVDSEL<3:0>=1110

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 44-17: SPI SLAVE MODE TIMING (CKE = 1)

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-052C Sheet 1 of 2