

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k42t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Allocation Tables

bit bit <th>TABLE 1</th> <th>:</th> <th></th> <th>28-PIN ALI</th> <th colspan="10">28-PIN ALLOCATION TABLE (PIC18(L)F2XK42)</th>	TABLE 1	:		28-PIN ALI	28-PIN ALLOCATION TABLE (PIC18(L)F2XK42)															
Image: Problem in the system in theresystem in the system in there and the system in the s	0/1	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	I²C	SPI	UART	WSD	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
Image: Probability of the p	RA0	2	27	ANA0	—	—	C1IN0- C2IN0-	-	_	_		_	_	-	-	CLCIN0 ⁽¹⁾	_	-	IOCA0	—
Image Image <t< td=""><td>RA1</td><td>3</td><td>28</td><td>ANA1</td><td>-</td><td>—</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>—</td><td>_</td><td>—</td><td>—</td><td>CLCIN1⁽¹⁾</td><td>-</td><td>-</td><td>IOCA1</td><td>-</td></t<>	RA1	3	28	ANA1	-	—		-	-	-	-	—	_	—	—	CLCIN1 ⁽¹⁾	-	-	IOCA1	-
R4 6 3 ANA4 MDCARH ⁰ TOCKI ⁰ MDCARH ⁰ TOCKI ⁰ MDCARH ⁰ TOCKI ⁰ </td <td>RA2</td> <td>4</td> <td>1</td> <td>ANA2</td> <td>VREF-</td> <td>DAC1OUT1</td> <td></td> <td>I</td> <td>-</td> <td>—</td> <td>-</td> <td>-</td> <td>—</td> <td>—</td> <td>—</td> <td>-</td> <td>—</td> <td>-</td> <td>IOCA2</td> <td>—</td>	RA2	4	1	ANA2	VREF-	DAC1OUT1		I	-	—	-	-	—	—	—	-	—	-	IOCA2	—
RAS 7 4 ANAS NDSRC ¹⁰ ICCAS RA6 10 7 ANAG ICCAS ICCAS <td>RA3</td> <td>5</td> <td>2</td> <td>ANA3</td> <td>VREF+</td> <td>_</td> <td>C1IN1+</td> <td> </td> <td>_</td> <td>_</td> <td> </td> <td>MDCARL⁽¹⁾</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>IOCA3</td> <td>_</td>	RA3	5	2	ANA3	VREF+	_	C1IN1+		_	_		MDCARL ⁽¹⁾	_	_	_	_	_	_	IOCA3	_
RA6 10 7 ANA6	RA4	6	3	ANA4	_	_		_	_	_	-	MDCARH ⁽¹⁾	T0CKI ⁽¹⁾	_	_	_	_	_	IOCA4	_
Image: Normal Section	RA5	7	4	ANA5	_	_	_	-	_	SS1 ⁽¹⁾	_	MDSRC ⁽¹⁾	_	_	_	_	_	-	IOCA5	—
Image: Constraint of the state of	RA6	10	7	ANA6	-	-	-	-	-	-	-	-	-	-	-	—			IOCA6	
Image: Constraint of the state of	RA7	9	6	ANA7	_	—	_	-	—	_	_	—	_	—	—	—	_	-	IOCA7	
Image: Normal Section Sectin Section Section Section Section Section Section S	RB0	21	18	ANB0	—	-	C2IN1+	ZCD	-	—	-	-	—	CCP4 ⁽¹⁾	CWG1IN ⁽¹⁾	-	—	-		—
Image: Normal system Image: N	RB1	22	19	ANB1	—	—		1	SCL2 ^(3,4)	_	-	—	—	—	CWG2IN ⁽¹⁾	—	_	_		—
RB4 25 24 ANB4 ADCACT ⁽¹⁾ TGG ⁽¹⁾ TGG ⁽¹⁾	RB2	23	20	ANB2	—	-	-	I	SDA2 ^(3,4)	—	-	-	—	—	CWG3IN ⁽¹⁾	-	—	-		—
ADCACT ⁽¹⁾	RB3	24	21	ANB3	—	-		—	—	_	—	—	_	-	-	-	—	—	IOCB3	—
RB6 27 24 ANB6 CLCIN2 ⁽¹⁾ IOCB6 ICSPCLK	RB4	25	22	ANB4 ADCACT ⁽¹⁾	—	—	—	—	—	—	—	-	T5G ⁽¹⁾	—	—	—	—	—	IOCB4	—
	RB5	26	23	ANB5	_	—	_	-	_	_	_	_	T1G ⁽¹⁾	CCP3 ⁽¹⁾	—	—	_	_	IOCB5	—
RB7 28 25 ANB7 - DAC10UT2 RX2 ⁽¹⁾ - T6IN(1) CLCIN3 ⁽¹⁾ IOCB7 ICSPDAT	RB6	27	24	ANB6	—		_	—	_	_	CTS2 ⁽¹⁾	_	_	_	_		_	_	IOCB6	ICSPCLK
	RB7	28	25	ANB7	—	DAC10UT2	_	_	_		RX2 ⁽¹⁾	_	T6IN(1)	—	—	CLCIN3 ⁽¹⁾	-	-	IOCB7	ICSPDAT

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All output signals shown in this row are PPS remappable.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins can be configured for I²C and SMB[™] 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUs input buffer thresholds.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

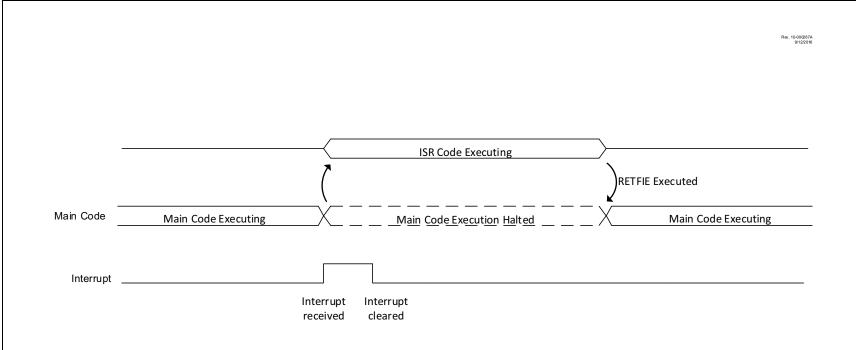
- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

	PC<21:0>	PC<21:0>	PC<21:0>	7		
	† 1	\$	¢ I	_		
Note 1	Stack (31 levels)	Stack (31 levels)	Stack (31 levels)	Note 1		
	•		★	_		
00 0000h	Reset Vector	Reset Vector	Reset Vector	00 0000h		
•••	•••	•••	•••	•••		
00 0008h	Interrupt Vector High ⁽²⁾	Interrupt Vector High ⁽²⁾	Interrupt Vector High ⁽²⁾	00 0008h		
•••	• • •	• • •	• • •	•••		
00 0018h	Interrupt Vector Low ⁽²⁾	Interrupt Vector Low ⁽²⁾	Interrupt Vector Low ⁽²⁾	00 0018h		
00 001Ah •	Program Flash Memory (16 KW) ⁽³⁾			00 001Ah •		
00 7FFFh	(WV)	Program Flash Memory (32 KW) ⁽³⁾		00 7FFF		
00 8000h		KVV). /	Program Flash Memory (64 KW) ⁽³⁾	00 8000h •		
00 FFFFh				00 FFFF		
01 0000h	Reserved ⁽⁴⁾			01 0000h		
01 FFFFh		Reserved ⁽⁴⁾		01 FFFF		
02 0000h 1F FFFFh			Reserved ⁽⁴⁾	02 0000h 1F FFFFh		
20 0000		User IDs (8 Words) ⁽⁵⁾		20 0000h		
20 000Fh				20 000Fh		
20 0010h	Personal					
2F FFFFh	Reserved					
30 0000h	Configuration Words (5 Words) ⁽⁵⁾					
30 0009h	Configuration Words (5 Words)(**					
30 000Ah	Descend					
30 FFFFh		Reserved				
31 0000h				31 0000h		
31 00FFh	Data EEPROM (256 Bytes)			••• 31 00FFh		
31 0100h		Data EEPRO	M (1024Bytes)	31 0100h		
•••				•••		
31 03FFh	Reserved			31 03FFh		
31 0400h		Rese	erved	31 0400h		
3E FFFFh				3E FFFF		
3F 0000h		Device Information Area ^{(5),(7)}		3F 0000h		
3F 003Fh				3F 003Fh		
3F0040h		Reserved		3F0040h		
3F FEFFh				3F FEFFI		
3F FF00h	Device C	onfiguration Information (5 Word	(5),(6),(7)	3F FF00h		
3F FF09h		. .		3F FF09h		
3F FF0Ah		Reserved		3F FF0Ah		
3F FFFBh		Reserved		3F FFFB		
3F FFFCh		Revision ID (1 Word) ^{(5),(6),(7)}		3F FFFCI		
3F FFFDh		Revision ID (1 word)		3F FFFD		
3F FFFEh				3F FFFEI		
3F FFFFh		Device ID (1 Word) ^{(5),(6),(7)}		3F FFFF		
Note 1: 2: 3:	00 0008h location is used as the memory by programming the IVT Storage area Flash is implemented	anel, apart from all user memory pa reset default for the IVTBASE regis BASE register. ed as the last 128 Words of user FI he region is read as '0'.	ster, the vector table can be reloca	ated in the		


TABLE 4-1: PROGRAM AND DATA EEPROM MEMORY MAP

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_			TUN	<5:0>		
bit 7							bit (
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
		Maximum freque	quency Tuning	DITS			

9.4.1 SERVING A HIGH OR LOW PRIORITY INTERRUPT WHEN MAIN ROUTINE CODE IS EXECUTING

When a high or low priority interrupt is requested when the main routine code is executing, the main routine execution is halted and the ISR is addressed, see Figure 9-2. Upon a return from the ISR (by executing the RETFIE instruction), the main routine resumes execution.

FIGURE 9-2: INTERRUPT EXECUTION: HIGH/LOW PRIORITY INTERRUPT WHEN EXECUTING MAIN ROUTINE

R-0/0	R-0/0	R-0/0	R-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0		
I2C1RXIF ⁽²	²⁾ SPI1IF ⁽³⁾	SPI1TXIF ⁽⁴⁾	SPI1RXIF ⁽⁴⁾	DMA1AIF	DMA10RIF	DMA1DCNTIF	DMA1SCNTIF		
bit 7							bit (
Legend:									
R = Reada		W = Writable		•	ented bit, read				
u = Bit is u	-		Bit is unknown -n/n = Value at POR and BOR/Value at all other F						
'1' = Bit is s	set	'0' = Bit is cle	ared	HS = Hardwar	e set				
bit 7	I2C1RXIF:	² C1 Receive Ir	nterrupt Flag b	it(2)					
		ot has occurred							
	0 = Interrup	ot event has no	t occurred						
bit 6		1 Interrupt Flag	-						
		ot has occurred							
	-	ot event has no		(4)					
bit 5		SPI1 Transmit I		DIL					
		ot has occurred ot event has no							
bit 4	•	SPI1 Receive I		oit(4)					
		ot has occurred	1 0						
		ot event has no							
bit 3	DMA1AIF: DMA1 Abort Interrupt Flag bit								
	1 = Interrup	ot has occurred	(must be clea	red by software	e)				
	•	ot event has no							
bit 2		: DMA1 Overru	•	•					
	-		-	red by software	e)				
bit 1		ot event has no		t Interrupt Flag	hit				
				red by software					
		ot event has no		incu by softward	-)				
bit 0	•	FIF: DMA1 Sou		errupt Flag bit					
				red by software	e)				
	0 = Interrup	ot event has no	toccurred	-					
		e global enable				the state of its co priate interrupt fla			
2:	-	2CxRXIF are r	ead-only bits.	To clear the inte	errupt condition	, the CLRBF bit i	n I2CxSTAT1		
3:	SPIxIF is a rea	d-only bit. To c	lear the interru	pt condition, al	l bits in the SPI	kINTF register m	ust be cleared		

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REGISTER 2⁽¹⁾

4: SPIxTXIF and SPIxRXIF are read-only bits and cannot be set/cleared by the software.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
I2C1RXIP	SPI1IP	SPI1TXIP	SPI1RXIP	DMA1AIP	DMA10RIP	DMA1DCNTIP	DMA1SCNTIP				
bit 7				•			bit 0				
Legend:											
R = Readab		W = Writable		-	ented bit, read a						
u = Bit is und	•		x = Bit is unknown -n/n = Value at POR and BOR/Value at all other								
'1' = Bit is se	et	'0' = Bit is cle	ared								
		201 0									
bit 7	I2C1RXIP: I ² C1 Receive Interrupt Priority bit										
	1 = High priority 0 = Low priority										
bit 6	0 = Low priority SPI1IP: SPI1 Transmit Interrupt Priority bit										
	1 = High priority										
	0 = Low priority										
bit 5	SPI1TXIP: I ² C1 Transmit Interrupt Priority bit										
	1 = High priority										
	0 = Low priority										
bit 4	SPI1RXIP: SPI1 Receive Interrupt Priority bit										
	1 = High priority 0 = Low priority										
bit 3			ansmit Interru	int Priority bit							
	DMA1AIP: DMA1 Abort Transmit Interrupt Priority bit 1 = High priority										
	0 = Low priority										
bit 2	DMA10RIP	: DMA1 Overru	un Interrupt P	riority bit							
	1 = High pr										
	0 = Low pri	-									
bit 1			tination Coun	t Interrupt Prior	ity bit						
	 1 = High priority 0 = Low priority 										
bit 0	-	-	irce Count Int	terrupt Priority b	it						
	1 = High pr										
	1 = High phoney 0 = Low priority										

REGISTER 9-27: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

REGISTER 15-15: DMAxDSAH: DMAx DESTINATION START ADDRESS HIGH REGISTER

		-	-							
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
DSA<15:8>										
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 DSA<15:8>: Destination Start Address bits

REGISTER 15-16: DMAxDPTRL: DMAx DESTINATION POINTER LOW REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
DPTR<7:0>											
bit 7							bit 0				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

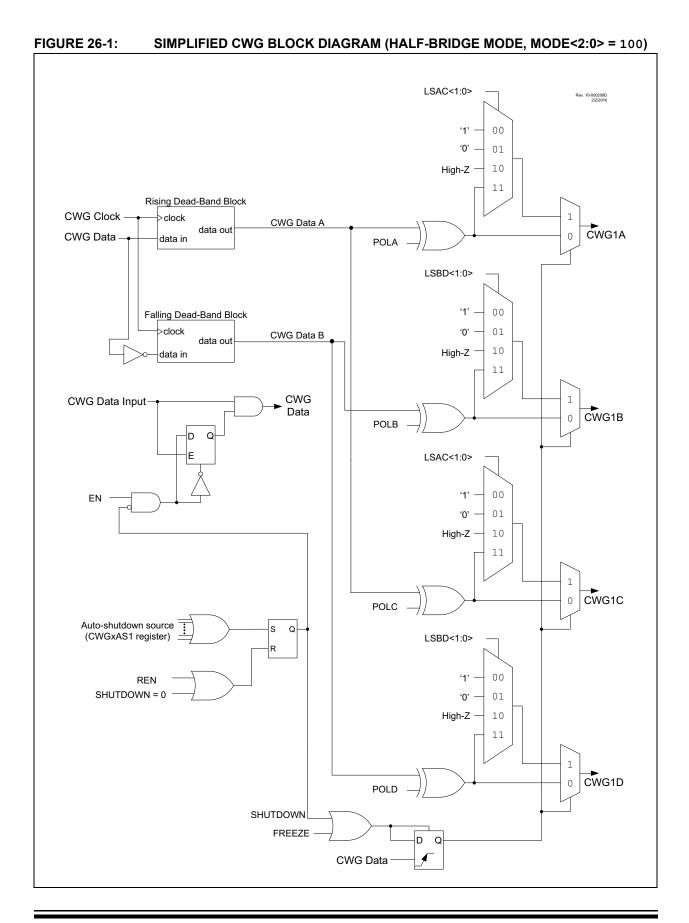
bit 7-0 DPTR<7:0>: Current Destination Address Pointer

REGISTER 15-17: DMAxDPTRH: DMAx DESTINATION POINTER HIGH REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
DPTR<15:8>										
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 **DPTR<15:8>:** Current Destination Address Pointer


© 2017 Microchip Technology Inc.

22.5.1 SOFTWARE GATE MODE

The timer increments with each clock input when ON = 1and does not increment when ON = 0. When the T2TMR count equals the T2PR period count the timer resets on the next clock and continues counting from 0. Operation with the ON bit software controlled is illustrated in Figure 22-4. With T2PR = 5, the counter advances until T2TMR = 5, and goes to zero with the next clock.

MODE	060000	
TMRx_clk		
Instruction ⁽¹⁾ ——(BSF)	(BCF)	
ON		
TxPR	5	
TxTMR 0 1	$2 \left(3 \right) \left(4 \right) \left(5 \right) \left(0 \right) \left(1 \right) \left(2 \right) \left(3 \right) \left(4 \right) \left(5 \right) \left(0 \right) \left(1 \right) \left(2 \right) \left(3 \right) \left(4 \right) \left(5 \right) \left(0 \right) \left(1 \right) \left(2 \right) \left(3 \right) \left(4 \right) \left(5 \right) \left(0 \right) \left(1 \right) \left(2 \right) \left(3 \right) \left(4 \right) \left(5 \right) \left(0 \right) \left(1 \right) \left(2 \right) \left(3 \right) \left(4 \right) \left(5 \right) \left(0 \right) \left(1 \right) \left(2 \right) \left(3 \right) \left(4 \right) \left(5 \right) \left(0 \right) \left(1 \right) \left(2 \right) \left(3 \right) \left(4 \right) \left(5 \right) \left($) (1)
TMRx_postscaled		
PWM Duty Cycle	3	
PWM Output		

TABLE 30-2:	MD1SRC SELECTION MUX
	CONNECTIONS

MS<4:0>	>	Connection
1 1111	31-	Reserved
-	23	
1 0111		
1 0110	22	SPI1 SDO
1 0101	21	Reserved
1 0100	20	UART2 TX
1 0011	19	UART1 TX
1 0010	18	CLC4 OUT
1 0001	17	CLC3 OUT
1 0000	16	CLC2 OUT
0 1111	15	CLC1 OUT
0 1110	14	CMP2 OUT
0 1101	13	CMP1 OUT
0 1100	12	NCO1 OUT
0 1011	11	Reserved
0 1010	10	Reserved
0 1001	9	PWM8 OUT
0 1000	8	PWM7 OUT
0 0111	7	PWM6 OUT
0 0110	6	PWM5 OUT

TABLE 30-2: MD1SRC SELECTION MUX CONNECTIONS

MS<4:0>	>	Connection
0 0101	5	CCP4 OUT
0 0100	4	CCP3 OUT
0 0011	3	CCP2 OUT
0 0010	2	CCP1 OUT
0 0001	1	DSM1 BIT
0 0000	0	Pin selected by MDSRCPPS

TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2		Bit 1	Bit 0	Register on Page
MD1CON0	EN	_	OUT	OPOL	—	— — ВІТ		BIT	469
MD1CON1	—	_	CHPOL	CHSYNC	_	- CLPOL CL		CLSYNC	470
MD1CARH	—	_	_	—	_	CHS<2:0>			471
MD1CARL	—	_	_	—	_	— CLS<2:0>			
MDSRC	_	_	—	—		472			

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

32.3 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SPIxCON0<2:0>, SPIxCON1<7:4>, SPIxCON1<2:0>, and SPIxCON2<2:0>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- · Slave mode (SCK is the clock input)
- · Clock Polarity (Idle state of SCK)
- Input, Output, and Slave Select Polarity
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on first/second edge of SCK)
- · Clock Rate (Master mode only)
- Slave Select Mode (Master or Slave mode)
- MSB-First or LSB-First
- Receive/Transmit Modes
 - Full duplex
 - Receive-without-transmit
 - Transmit-without-receive
- Transfer Counter Mode (Transmit-without-receive mode)

32.3.1 ENABLING AND DISABLING THE SPI MODULE

To enable the serial peripheral, the SPI enable bit (EN in SPIxCON0) must be set. To reset or reconfigure SPI mode, clear the EN bit, re-initialize the SSPxCONx registers and then set the EN bit. Setting the EN bit enables the SPI inputs and outputs: SDI, SDO, SCK(out), SCK(in), SS(out), and SS(in). All of these inputs and outputs are steered by PPS, and thus must have their functions properly mapped to device pins to function (see Section 17.0 "Peripheral Pin Select (PPS) Module"). In addition, SS(out) and SCK(out) must have the pins they are steered to set as outputs (TRIS bits must be '0') in order to properly output. Clearing the TRIS bit of the SDO pin will cause the SPI module to always control that pin, but is not necessary for SDO functionality. (see Section 32.3.5 "Input and Output Polarity Bits"). Configurations selected by the following registers should not be changed while the EN bit is set:

- SPIxBAUD
- SPIxCON1
- · SPIxCON0 (except to clear the EN bit)

Clearing the EN bit aborts any transmissions in progress, disables the setting of interrupt flags by hardware, and resets the FIFO occupancy (see Section 32.3.3 "Transmit and Receive FIFOs" for more FIFO details).

32.3.2 BUSY BIT

While a data transfer is in progress, the SPI module sets the BUSY bit of SPIxCON2. This bit can be polled by the user to determine the current status of the SPI module, and to know when a communication is complete. The following registers/bits should not be written by software while the BUSY bit is set:

- SPIxTCNTH/L
- SPIxTWIDTH
- SPIxCON2
- The CLRBF bit of SPIxSTATUS
- Note: It is also not recommended to read SPIx-TCNTH/L while the BUSY bit is set, as the value in the registers may not be a reliable indicator of the Transfer Counter. Use the Transfer Count Zero Interrupt Flag (the TCZIF bit of SPIxINTF) to accurately determine that the Transfer Counter has reached zero.

bit 3	 MDR: Master Data Request (Master pause) 1 = Master state mechine pauses until data is read/written to proceed (SCL is output held low) 0 = Master clocking of data is enabled.
	MMA = 1 & RXBF = 1 pause_for_rx - Set by hardware on 7th falling SCL edge - User must read from I2CRXB to release SCL MMA = 1 & TXBE = 1 & I2CCNT!= 0 pause_for_tx - Set by hardware on 8th falling SCL edge - User must write to I2CTXB to release SCL ADB = 1 - I2CCNT is ignored for the high and low address in 10-bit mode pause_for_restart - Set by hardware on 9th falling SCL edge RSEN = 1 & MMA = 1 & I2CCNT = 0 ACKSTAT = 1
bit 2-0	- User must set START or write to I2CTXB to release SCL and shift Restart onto bus MODE<2:0>: I ² C Mode Select bits
bit 2-0	$111 = I^2 C$ Muti-Master mode (SMBus 2.0 Host), ⁽⁵⁾
	Works as both mode<2:0> = 001 and mode<2:0> = 100
	110 = I ² C Muti-Master mode (SMBus 2.0 Host), ⁽⁵⁾
	Works as both mode<2:0> = 000 and mode<2:0> = 100
	$101 = I^2 C$ Master mode, 10-bit address
	 100 = I²C Master mode, 7-bit address 11 = I²C Slave mode, one 10-bit address with masking
	$011 = 1^{\circ}$ C Slave mode, one to bit address with masking $010 = 1^{\circ}$ C Slave mode, two 10-bit address
	$001 = 1^2 C$ Slave mode, two 7-bit address with masking
	$000 = I^2 C$ Slave mode, four 7-bit address
Note 1:	SDA and SCL pins must be configured for open-drain with internal or external pull-up
	SDA and SCL pins must be selected as both input and output in PPS
	CSTR can be set by more than one hardware source, all sources must be addressed by user software before the SCL line is released. CSTR is a module status bit, and does not show the true bus state.
4:	SMA is set on the same SCL edge as CSTR for a matching received address

- 5: In this mode, ADRIE should be set, this allows an interrupt to clear the BCLIF condition and allow the ACK of matching address.
- 6: In 10-bit Slave mode, when ADB = 1, CSTR will set when the high address has not been read out of I2CxRXB before the low address is shifted in.

37.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DATA<4:0> bits of the DAC1CON1 register.

The DAC output voltage can be determined by using Equation 37-1.

37.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 44-18.

37.3 DAC Voltage Reference Output

The unbuffered DAC voltage can be output to the DAC1OUTn pin(s) by setting the respective DACOEn bit(s) of the DAC1CON0 register. Selecting the DAC reference voltage for output on either DAC1OUTn pin automatically overrides the digital output buffer, the weak pull-up and digital input threshold detector functions of that pin.

EQUATION 37-1: DAC OUTPUT VOLTAGE

<u>IF DACEN = 1</u>

$$DACx_output = \left((VREF+ - VREF-) \times \frac{DATA[4:0]}{2^5} \right) + VREF-$$

Note: See the DAC1CON0 register for the available VSOURCE+ and VSOURCE- selections.

Reading the DAC1OUTn pin when it has been configured for DAC reference voltage output will always return a '0'.

Note: The unbuffered DAC output (DAC1OUTn) is not intended to drive an external load.

37.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Windowed Watchdog Timer Time-out, the contents of the DAC1CON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

37.5 Effects of a Reset

A device Reset affects the following:

- DAC1 is disabled.
- DAC1 output voltage is removed from the DAC1OUTn pin(s).
- The DAC1R<4:0> range select bits are cleared.

41.0 INSTRUCTION SET SUMMARY

PIC18(L)F26/27/45/46/47/55/56/57K42 devices incorporate the standard set of PIC18 core instructions, as well as an extended set of instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

41.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC[®] MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two-program memory locations and two that require three-program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

The PIC18 instruction set summary in Table 41-3 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 41-1 shows the opcode field descriptions.

Most **byte-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The literal instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The control instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the four MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 41-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 41-3, lists the standard instructions recognized by the Microchip Assembler (MPASMTM).

Section 41.1.1 "Standard Instruction Set" provides a description of each instruction.

SUBULNK Subtract Literal from FSR2 and Return

Synta	ax:	SUBULNK k							
Oper	ands:	$0 \le k \le 63$							
Oper	ation:	FSR2 – k -	$FSR2 - k \rightarrow FSR2$						
		$(TOS) \rightarrow P$	C						
Statu	s Affected:	None							
Enco	ding:	1110	100)1	11kk	kkkk			
Desc	ription:	The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.							
Word	ls:	1							
Cycle	es:	2							
Q Cycle Activity:									
	Q1	Q2			Q3	Q4			
	Decode	Rea registe			ocess Data	Write to destination			
	No	No			No	No			

Example: SUBULNK 23h

Operation

Operation

Operation

Operation

Before Instruction							
=	03FFh						
=	0100h						
on							
=	03DCh						
=	(TOS)						
	= = on =						

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3A98h	_	Reserved, maintain as '0'								
3A97h- 3A95h	_				Unimple	mented				
3A94h	INLVLF ⁽³⁾	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0	270
3A93h	SLRCONF ⁽³⁾	SLRCONF7	SLRCONF6	SLRCONF5	SLRCONF4	SLRCONF3	SLRCONF2	SLRCONF1	SLRCONF0	269
3A92h	ODCONF ⁽³⁾	ODCONF7	ODCONF6	ODCONF5	ODCONF4	ODCONF3	ODCONF2	ODCONF1	ODCONF0	268
3A91h	WPUF ⁽³⁾	WPUF7	WPUF6	WPUF5	WPUF4	WPUF3	WPUF2	WPUF1	WPUF0	267
3A90h	ANSELF ⁽³⁾	ANSELF7	ANSELF6	ANSELF5	ANSELF4	ANSELF3	ANSELF2	ANSELF1	ANSELF0	266
3A8Fh- 3A8Ah	—				Unimple	mented				
3A89h	—				Reserved, m	aintain as '0'				
3A88h	—				Reserved, m	aintain as '0'				
3A87h	IOCEF	—	—	_	_	IOCEF3	_	_	—	287
3A86h	IOCEN	—	_	_	—	IOCEN3	—	_	—	287
3A85h	IOCEP	_	_	_	—	IOCEP3	—		—	287
3A84h	INLVLE	—	—	_	—	INLVLE3	INLVLE2 ⁽²⁾	INLVLE1 ⁽²⁾	INLVLE0 ⁽²⁾	270
3A83h	SLRCONE ⁽²⁾			_	_	_	SRLE2 ⁽²⁾	SRLE1 ⁽²⁾	SRLE0 ⁽²⁾	269
3A82h	ODCONE ⁽²⁾			_	_	_	ODCE2 ⁽²⁾	ODCE1 ⁽²⁾	ODCE0 ⁽²⁾	268
3A81h	WPUE	_	_	_	_	WPUE3	WPUE2(2)	WPUE1 ⁽²⁾	WPUE0(2)	267
3A80h	ANSELE ⁽²⁾	ANSELE7	ANSELE6	ANSELE5	ANSELE4	ANSELE3	ANSELE2	ANSELE1	ANSELE0	266
3A7Fh- 3A7CH	—		Unimplemented							
3A7Bh	RD1I2C ⁽²⁾	—	IOCEN3	P	U	_	_		ТН	263
3A7Ah	RD0I2C ⁽²⁾	—	IOCEN3	Р	U				ТН	263
3A79h	—				Reserved, m	aintain as '0'				
3A78h	—				Reserved, m	aintain as '0'				
3A77h- 3A75h	—				Unimple	mented				
3A74h	INLVLD ⁽²⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	270
3A73h	SLRCOND ⁽²⁾	SRLD7	SRLD6	SRLD5	SRLD4	SRLD3	SRLD2	SRLD1	SRLD0	269
3A72h	ODCOND ⁽²⁾	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	268
3A71h	WPUD ⁽²⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	267
3A70h	ANSELD ⁽²⁾	ANSELD7	ANSELD6	ANSELD5	ANSELD4	ANSELD3	ANSELD2	ANSELD1	ANSELD0	266
3A6Fh- 3A6Ch	—				Unimple	mented				
3A6Bh	RC4I2C	—	SLEW	Р	U	_	—		TH	263
3A6Ah	RC3I2C	—	SLEW	Р	U	_	_		ТН	263
3A69h	—				Reserved, m	aintain as '0'				
3A68h	—				Reserved, m	aintain as '0'				
3A67h	IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	287
3A66h	IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	287
3A65h	IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	287
3A64h	INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	270
3A63h	SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	269
3A62h	ODCONC	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	268
3A61h	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	267
3A60h	ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	266
3A5Fh - 3A5Ch	—				Unimple	mented				

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

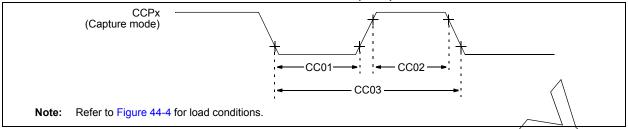
1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

Note


TABLE 44-7: MEMORY PROGRA	MMING SPECIFICATIONS
---------------------------	----------------------

Standard	Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic Min. Typ† Max. Unit		Units	Conditions				
Data EE	PROM Me	emory Specifications							
MEM20	ED	DataEE Byte Endurance	100k	_	_	E/W	-40°C ≤ TA ≤ +85°C		
MEM21	T _{D_RET}	Characteristic Retention	—	40		Year	Provided no other specifications are violated		
MEM22	N _{D_REF}	Total Erase/Write Cycles before Refresh	1M 500k	10M 	_	E/W	-40°C ≤ TA ≤ +60°C -40°C ≤ TA ≤ +85°C		
MEM23	$V_{D_{RW}}$	VDD for Read or Erase/Write operation	VDDMIN		VDDMAX	٧<			
MEM24	T_{D_BEW}	Byte Erase and Write Cycle Time		4.0	5.0	ms			
Program	Flash Me	emory Specifications				\sim			
MEM30	E _P	Memory Cell Endurance	10k		- /	EN	-40°C		
MEM32	T _{P_RET}	Characteristic Retention	_	40 <	1	Year	Provided no other specifications are violated		
MEM33	V _{P_RD}	VDD for Read operation	VDDMIN		VDBMAX	V V			
MEM34	$V_{P_{REW}}$	VDD for Row Erase or Write operation		L L) v			
MEM35	T _{P_REW}	Self-Timed Row Erase or Self-Timed Write	$\overline{}$	80	2.5	ms			

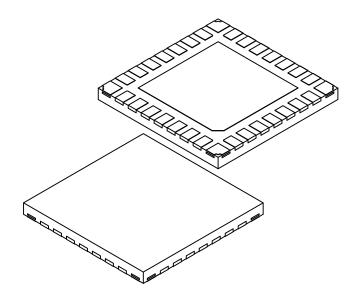
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Memory Cell Endurance for the Program memory is defined as: One Row Erase operation and one Self-Timed Write.

FIGURE 44-13: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 44-22: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units				
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	_	- /	ns				
			With Prescaler	20	_	_	ns				
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	_	_ /	ns	\sim			
			With Prescaler	20			\ns				
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	$\left\{ \right\}$	Y	ns	N = prescale value			


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

© 2017 Microchip Technology Inc.

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimensior	l Limits	MIN	NOM	MAX			
Number of Pins	N	28					
Pitch	е	0.65 BSC					
Overall Height	Α	0.40	0.50	0.60			
Standoff	A1	0.00 0.02		0.05			
Terminal Thickness	(A3)	0.127 REF					
Overall Width	E	6.00 BSC					
Exposed Pad Width	E2		4.00				
Overall Length	D	6.00 BSC					
Exposed Pad Length	D2		4.00				
Terminal Width	b	0.35	0.40	0.45			
Corner Pad	b1	0.55	0.60	0.65			
Corner Pad, Metal Free Zone	b2	0.15	0.20	0.25			
Terminal Length	L	0.55	0.60	0.65			
Terminal-to-Exposed Pad	K	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 4. Outermost portions of corner structures may vary slightly.

Microchip Technology Drawing C04-0209 Rev C Sheet 2 of 2