
Microchip Technology - PIC18LF27K42-E/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 128KB (64K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 28-VQFN Exposed Pad

Supplier Device Package 28-QFN (6x6)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf27k42-e-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf27k42-e-ml-4390423
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F26/27/45/46/47/55/56/57K42

4.4.2 INSTRUCTIONS IN PROGRAM

MEMORY

The program memory is addressed in bytes.
Instructions are stored as either two bytes or four bytes
in program memory. The Least Significant Byte of an
instruction word is always stored in a program memory
location with an even address (LSb = 0). To maintain
alignment with instruction boundaries, the PC
increments in steps of two and the LSb will always read
‘0’ (see Section 4.2.4 “Program Counter”).

Figure 4-2 shows an example of how instruction words
are stored in the program memory.

The CALL and GOTO instructions have the absolute
program memory address embedded into the
instruction. Since instructions are always stored on word
boundaries, the data contained in the instruction is a
word address. The word address is written to PC<20:1>,
which accesses the desired byte address in program
memory. Instruction #2 in Figure 4-2 shows how the
instruction GOTO 0006h is encoded in the program
memory. Program branch instructions, which encode a
relative address offset, operate in the same manner. The
offset value stored in a branch instruction represents the
number of single-word instructions that the PC will be
offset by. Section 41.0 “Instruction Set Summary”
provides further details of the instruction set.

4.4.3 MULTI-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word
instructions: CALL, MOVFF, GOTO and LFSR and two
three-word instructions: MOVFFL and MOVSFL. In all
cases, the second and the third word of the instruction
always has ‘1111’ as its four Most Significant bits; the
other 12 bits are literal data, usually a data memory
address.

The use of ‘1111’ in the four MSbs of an instruction
specifies a special form of NOP. If the instruction is
executed in proper sequence – immediately after the
first word – the data in the second word is accessed
and used by the instruction sequence. If the first word
is skipped for some reason and the second or third
word is executed by itself, a NOP is executed instead.
This is necessary for cases when the multi-word
instruction is preceded by a conditional instruction that
changes the PC. Example 4-4 shows how this works.

FIGURE 4-2: INSTRUCTIONS IN PROGRAM MEMORY
Word Address

LSB = 1 LSB = 0 
Program Memory
Byte Locations 

000000h
000002h
000004h
000006h

Instruction 1: MOVLW 055h 0Fh 55h 000008h
Instruction 2: GOTO 0006h EFh 03h 00000Ah

F0h 00h 00000Ch
Instruction 3: MOVFF 123h, 456h C1h 23h 00000Eh

F4h 56h 000010h
Instruction 4: MOVFFL 123h, 456h 00h 60h 000012h

F4h 8Ch 000014h
F4h 56h 000016h

000018h
00001Ah
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 42

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 7-7: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0

EXTOEN HFOEN MFOEN LFOEN SOSCEN ADOEN — —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 EXTOEN: External Oscillator Manual Request Enable bit
1 = EXTOSC is explicitly enabled, operating as specified by FEXTOSC
0 = EXTOSC could be enabled by requesting peripheral

bit 6 HFOEN: HFINTOSC Oscillator Manual Request Enable bit
1 = HFINTOSC is explicitly enabled, operating as specified by OSCFRQ (Register 7-5)
0 = HFINTOSC could be enabled by requesting peripheral

bit 5 MFOEN: MFINTOSC (500 kHz/31.25 kHz) Oscillator Manual Request Enable bit (Derived from
HFINTOSC)
1 = MFINTOSC is explicitly enabled
0 = MFINTOSC could be enabled by requesting peripheral

bit 4 LFOEN: LFINTOSC (31 kHz) Oscillator Manual Request Enable bit
1 = LFINTOSC is explicitly enabled
0 = LFINTOSC could be enabled by requesting peripheral

bit 3 SOSCEN: Secondary Oscillator Manual Request Enable bit
1 = Secondary Oscillator is explicitly enabled, operating as specified by SOSCPWR
0 = Secondary Oscillator could be enabled by requesting peripheral

bit 2 ADOEN: ADC Oscillator Manual Request Enable bit
1 = ADC oscillator is explicitly enabled
0 = ADC oscillator could be enabled by requesting peripheral

bit 1-0 Unimplemented: Read as ‘0’
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 109

PIC18(L)F26/27/45/46/47/55/56/57K42

9.3 Interrupt Priority
The final priority level for any pending source of interrupt
is determined first by the user-assigned priority of that
source in the IPRx register, then by the natural order
priority within the IVT. The sections below detail the
operation of Interrupt priorities.

9.3.1 USER (SOFTWARE) PRIORITY

User-assigned interrupt priority is enabled by setting
the IPEN bit in the INTCON0 register (Register 9-1).
Each peripheral interrupt source can be assigned a
high or low priority level by the user. The user-
assignable interrupt priority control bits for each
interrupt are located in the IPRx registers (Registers 9-
25 through 9-35).

The interrupts are serviced based on predefined
interrupt priority scheme defined below.

1. Interrupts set by the user as high-priority
interrupt have higher precedence of execution.
High-priority interrupts will override a low-priority
request when:

a) A low priority interrupt has been requested or its
request is already pending.

b) A low- and high-priority interrupt are triggered
concurrently, i.e., on the same instruction cycle(1).

c) A low-priority interrupt was requested and the
corresponding Interrupt Service Routine is
currently executing. In this case, the lower
priority interrupt routine will complete executing
after the high-priority interrupt has been
serviced(2).

2. Interrupts set by the user as a low priority have
the lower priority of execution and are
preempted by any high-priority interrupt.

3. Interrupts defined with the same software priority
cannot preempt or interrupt each other.
Concurrent pending interrupts with the same user
priority are resolved using the natural order priority.
(when MVECEN = ON) or in the order the interrupt
flag bits are polled in the ISR (when MVECEN =
OFF).

Note 1: When a high priority interrupt preempts a
concurrent low priority interrupt, the GIEL
bit may be cleared in the high priority
Interrupt Service Routine. If the GIEL bit
is cleared, the low priority interrupt will
NOT be serviced even if it was originally
requested. The corresponding interrupt
flag needs to be cleared in user code.

2: When a high priority interrupt is
requested while a low priority Interrupt
Service Routine is executing, the GIEL bit
may be cleared in the high priority
Interrupt Service Routine. The pending
low priority interrupt will resume even if
the GIEL bit is cleared.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 118


 2016

-2017 M
icrochip T

echnology In
c.

Prelim
inary

D
S

40
001919B

-pa
ge 122

PIC
18(L)F26/27/45/46/47/55/56/57K

42

9.4

A h
of
pri
ex
Fig

If a
se
pri

FIG RUPT PENDING

Rev. 10-000267C
9/12/2016

Main routine

xecuted
.2 SERVING A HIGH PRIORITY INTERRUPT WHILE A LOW
PRIORITY INTERRUPT PENDING

igh priority interrupt request will always take precedence over any interrupt
a lower priority. The high priority interrupt is acknowledged first, then the low-
ority interrupt is acknowledged. Upon a return from the high priority ISR (by
ecuting the RETFIE instruction), the low priority interrupt is serviced, see
ure 9-3.

ny other high priority interrupts are pending and enabled, then they are
rviced before servicing the pending low priority interrupt. If no other high
ority interrupt requests are active, the low priority interrupt is serviced.

URE 9-3: INTERRUPT EXECUTION: HIGH PRIORITY INTERRUPT WITH A LOW PRIORITY INTER

Low Priority
Interrupt

Main Code Main Code Execution Halted

Low Interrupt
received

Low ISR

High ISR High ISR

Main routine

Low ISR

High Priority
Interrupt High Interrupt

received

RETFIE Executed

RETFIE E

High Interrupt
cleared

Low Interrupt
cleared

PIC18(L)F26/27/45/46/47/55/56/57K42

9.5 Context Saving
The Interrupt controller supports a two-level deep
context saving (Main routine context and Low ISR
context). Refer to state machine shown in Figure 9-6
for details.

The Program Counter (PC) is saved on the dedicated
device PC stack. CPU registers saved include STATUS,
WREG, BSR, FSR0/1/2, PRODL/H and PCLATH/U.

After WREG has been saved to the context registers,
the resolved vector number of the interrupt source to be
serviced is copied into WREG. Context save and
restore operation is completed by the interrupt
controller based on current state of the interrupts and
the order in which they were sent to the CPU.

Context save/restore works the same way in both
states of MVECEN. When IPEN = 0, there is only one
level interrupt active. Hence, only the main context is
saved when an interrupt is received.

9.5.1 ACCESSING SHADOW REGISTERS

The Interrupt controller automatically saves the context
information in the shadow registers available in Bank
56. Both the saved context values (i.e., main routine
and low ISR) can be accessed using the same set of
shadow registers. By clearing the SHADLO bit in the
SHADCON register (Register 9-43), the CPU register
values saved for main routine context can accessed,
and by setting the SHADLO bit of the CPU register,
values saved for low ISR context can accessed. Low
ISR context is automatically restored to the CPU
registers upon exiting the high ISR. Similarly, the main
context is automatically restored to the CPU registers
upon exiting the low ISR.

The Shadow registers in Bank 56 are readable and
writable, so if the user desires to modify the context,
then the corresponding shadow register should be
modified and the value will be restored when exiting the
ISR. Depending on the user’s application, other
registers may also need to be saved.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 125


 2016

-2017 M
icrochip T

echnology In
c.

Prelim
inary

D
S

40
001919B

-pa
ge 129

PIC
18(L)F26/27/45/46/47/55/56/57K

42

FIG

Rev. 10-000269B
9/12/2016

+2

OP

Y+4

Inst @ Y+2

Y+6

Inst @ Y+4

9 10 11

MAINOP
URE 9-8: INTERRUPT TIMING DIAGRAM - TWO WORD INSTRUCTION

System
Clock

Program
Counter Y Y+2 Y+2 0x82 0x218 0x21A 0x21C

Inst @ Y(1) FNOP FNOP FNOP Inst @ 0x218 Inst @ 0x21AInstruction
Register

Interrupt

Y

FN

RETFIE

Vector
Number 1

IVTBASE 0x80

Program Memory
0x82 0x86

Interrupt Location = Interrupt vector table entry << 2
 = 0x86 << 2 = 0x218

1 2 3 4 5 6 7 8

Y+2

Inst @ Y(1)

Routine MAIN ISRFNOP FN

BCF

Note 1: Instruction @ Y is a Two-cycle instruction.

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 9-11: PIR8: PERIPHERAL INTERRUPT REGISTER 8(1)

R/W/HS-0/0 R/W/HS-0/0 U-0 U-0 U-0 U-0 U-0 U-0

TMR5GIF TMR5IF — — — — — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Bit is set in hardware

bit 7 TMR5GIF: TMR5 Gate Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 6 TMR5IF: TMR5 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 5-0 Unimplemented: Read as ‘0’

Note 1: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding
enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are
clear prior to enabling an interrupt.

REGISTER 9-12: PIR9: PERIPHERAL INTERRUPT REGISTER 9(1)

U-0 U-0 U-0 U-0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0

— — — — CLC3IF CWG3IF CCP3IF TMR6IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-4 Unimplemented: Read as ‘0’

bit 3 CLC3IF: CLC3 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 2 CWG3IF: CWG3 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 1 CCP3IF: CCP3 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 0 TMR6IF: TMR6 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

Note 1: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding
enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are
clear prior to enabling an interrupt.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 145

PIC18(L)F26/27/45/46/47/55/56/57K42

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY

MOVLW D'64’ ; number of bytes in erase block
MOVWF COUNTER
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L
MOVLW CODE_ADDR_UPPER ; Load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL

READ_BLOCK
TBLRD*+ ; read into TABLAT, and inc
MOVF TABLAT, W ; get data
MOVWF POSTINC0 ; store data
DECFSZ COUNTER ; done?
BRA READ_BLOCK ; repeat

MODIFY_WORD
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L
MOVLW NEW_DATA_LOW ; update buffer word
MOVWF POSTINC0
MOVLW NEW_DATA_HIGH
MOVWF INDF0

ERASE_BLOCK
MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL
BCF NVMCON1, REG0 ; point to Program Flash Memory
BSF NVMCON1, REG1 ; point to Program Flash Memory
BSF NVMCON1, WREN ; enable write to memory
BSF NVMCON1, FREE ; enable Erase operation
BCF INTCON0, GIE ; disable interrupts
MOVLW 55h

Required MOVWF NVMCON2 ; write 55h
Sequence MOVLW AAh

MOVWF NVMCON2 ; write 0AAh
BSF NVMCON1, WR ; start erase (CPU stall)
BSF INTCON0, GIE ; re-enable interrupts
TBLRD*- ; dummy read decrement
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L

WRITE_BUFFER_BACK
MOVLW BlockSize ; number of bytes in holding register
MOVWF COUNTER
MOVLW D’64’/BlockSize ; number of write blocks in 64 bytes
MOVWF COUNTER2
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 201

PIC18(L)F26/27/45/46/47/55/56/57K42

13.1.6.2 Write Verify

Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit. Since
program memory is stored as a full page, the stored
program memory contents are compared with the
intended data stored in RAM after the last write is
complete.

FIGURE 13-10: PROGRAM FLASH
MEMORY VERIFY
FLOWCHART

13.1.6.3 Unexpected Termination of Write
Operation

If a write is terminated by an unplanned event, such as
loss of power or an unexpected Reset, the memory
location just programmed should be verified and
reprogrammed if needed. If the write operation is
interrupted by a MCLR Reset or a WDT Time-out Reset
during normal operation, the WRERR bit will be set
which the user can check to decide whether a rewrite
of the location(s) is needed.

13.1.6.4 Protection Against Spurious Writes

A write sequence is valid only when both the following
conditions are met, this prevents spurious writes which
might lead to data corruption.

1. The WR bit is gated through the WREN bit. It is
suggested to have the WREN bit cleared at all
times except during memory writes. This
prevents memory writes if the WR bit gets set
accidentally.

2. The NVM unlock sequence must be performed
each time before a write operation.

13.2 Device Information Area, Device
Configuration Area, User ID,
Device ID and Configuration Word
Access

When REG<1:0> = 0b01 or 0b11 in the NVMCON1
register, the Device Information Area, the Device
Configuration Area, the User IDs, Device ID/
Revision ID and Configuration Words can be
accessed. Different access may exist for reads and
writes (see Table 13-1).

13.2.1 Reading Access

The user can read from these blocks by setting the
REG bits to 0b01 or 0b11. The user needs to load the
address into the TBLPTR registers. Executing a
TBLRD after that moves the byte pointed to the
TABLAT register. The CPU operation is suspended
during the read and resumes after. When read access
is initiated on an address outside the parameters listed
in Table 13-1, the TABLAT register is cleared, reading
back ‘0’s.

13.2.2 Writing Access

The WREN bit in NVMCON1 must be set to enable
writes. This prevents accidental writes to the CONFIG
words due to errant (unexpected) code execution. The
WREN bit should be kept clear at all times, except
when updating the CONFIG words. The WREN bit is
not cleared by hardware. The WR bit will be inhibited
from being set unless the WREN bit is set.

Start
Verify Operation

This routine assumes that the last
row of data written was from an

image saved on RAM. This image
will be used to verify the data

currently stored in PFM

Fail
Verify Operation

Last word ?

NVMDAT =
RAM image ?

Read Operation(1)

End
Verify Operation

No

No

Yes

Yes

Rev. 10-000051B
12/4/2015
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 204

PIC18(L)F26/27/45/46/47/55/56/57K42

14.8 Scanner Module Overview
The Scanner allows segments of the Program Flash
Memory or Data EEPROM, to be read out (scanned) to
the CRC Peripheral. The Scanner module interacts
with the CRC module and supplies it data one word at
a time. Data is fetched from the address range defined
by SCANLADR registers up to the SCANHADR
registers.

The Scanner begins operation when the SGO bit is set
(SCANCON0 Register) and ends when either SGO is
cleared by the user or when SCANLADR increments
past SCANHADR. The SGO bit is also cleared by
clearing the EN bit (CRCCON0 register).

14.9 Configuring the Scanner
The scanner module may be used in conjunction with
the CRC module to perform a CRC calculation over a
range of program memory or Data EEPROM
addresses. In order to set up the scanner to work with
the CRC, perform the following steps:

1. Set up the CRC module (See Section 14.7
“Configuring the CRC”) and enable the
Scanner module by setting the EN bit in the
SCANCON0 register.

2. Choose which memory region the Scanner
module should operate on and set the MREG bit
of the SCANCON0 register appropriately.

3. If trigger is used for scanner operation, set the
TRIGEN bit of the SCANCON0 register and
select the trigger source using SCANTRIG
register. Select the trigger source using
SCANTRIG register and then set the TRIGEN
bit of the SCANCON0 register. See Table 14-1
for Scanner Operation.

4. If Burst mode of operation is desired, set the
BURSTMD bit (SCANCON0 register). See
Table 14-1 for Scanner Operation.

5. Set the SCANLADRL/H/U and SCANHADRL/H/
U registers with the beginning and ending
locations in memory that are to be scanned.

6. Select the priority level for the Scanner module
(See Section 3.1 “System Arbitration”) and
lock the priorities (See Section 3.1.1 “Priority
Lock”).

7. Both CRCEN and CRCGO bits must be enabled
to use the scanner. Setting the SGO bit will start
the scanner operation.

14.10 Scanner Interrupt
The scanner will trigger an interrupt when the
SCANLADR increments past SCANHADR. The
SCANIF bit can only be cleared in software.

14.11 Scanning Modes
The interaction of the scanner with the system
operation is controlled by the priority selection in the
System Arbiter (see Section 3.2 “Memory Access
Scheme”). Additionally, BURSTMD and TRIGEN also
determine the operation of the Scanner.

14.11.1 TRIGEN = 0, BURSTMD = 0

In this case, the memory access request is granted to
the scanner if no other higher priority source is
requesting access.

All sources with lower priority than the scanner will get
the memory access cycles that are not utilized by the
scanner.

14.11.2 TRIGEN = 1, BURSTMD = 0

In this case, the memory access request is generated
when the CRC module is ready to accept.

The memory access request is granted to the scanner
if no other higher priority source is requesting access.
All sources with lower priority than the scanner will get
the memory access cycles that are not utilized by the
scanner.
The memory access request is granted to the scanner
if no other higher priority source is requesting access.
All sources with lower priority than the scanner will get
the memory access cycles that are not utilized by the
scanner.

14.11.3 TRIGEN = x, BURSTMD = 1

In this case, the memory access is always requested
by the scanner.

The memory access request is granted to the scanner
if no other higher priority source is requesting access.
The memory access cycles will not be granted to lower
priority sources than the scanner until it completes
operation i.e. SGO = 0 (SCANCON0 register)

Note: If TRIGEN = 1 and BURSTMD = 1, the
user should ensure that the trigger source
is active for the Scanner operation to
complete.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 217

PIC18(L)F26/27/45/46/47/55/56/57K42
16.0 I/O PORTS
The PIC18(L)F26/27/45/46/47/55/56/57K42 devices
have six I/O ports, allocated as shown in Table 16-1.

Each port has ten registers to control the operation.
These registers are:

• PORTx registers (reads the levels on the pins of
the device)

• LATx registers (output latch)
• TRISx registers (data direction)
• ANSELx registers (analog select)
• WPUx registers (weak pull-up)
• INLVLx (input level control)
• SLRCONx registers (slew rate control)
• ODCONx registers (open-drain control)

Most port pins share functions with device peripherals,
both analog and digital. In general, when a peripheral
is enabled on a port pin, that pin cannot be used as a
general purpose output; however, the pin can still be
read.

The Data Latch (LATx registers) is useful for
read-modify-write operations on the value that the I/O
pins are driving.

A write operation to the LATx register has the same
effect as a write to the corresponding PORTx register.
A read of the LATx register reads of the values held in
the I/O PORT latches, while a read of the PORTx
register reads the actual I/O pin value.

Ports that support analog inputs have an associated
ANSELx register. When an ANSELx bit is set, the
digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels
on the pin between a logic high and low from causing
excessive current in the logic input circuitry. A
simplified model of a generic I/O port, without the
interfaces to other peripherals, is shown in Figure 16-1.

FIGURE 16-1: GENERIC I/O PORT
OPERATION

16.1 I/O Priorities
Each pin defaults to the PORT data latch after Reset.
Other functions are selected with the peripheral pin
select logic. See Section 17.0 “Peripheral Pin Select
(PPS) Module” for more information.

Analog input functions, such as ADC and comparator
inputs, are not shown in the peripheral pin select lists.
These inputs are active when the I/O pin is set for
Analog mode using the ANSELx register. Digital output
functions may continue to control the pin when it is in
Analog mode.

Analog outputs, when enabled, take priority over digital
outputs and force the digital output driver into a
high-impedance state.

The pin function priorities are as follows:

1. Configuration bits

2. Analog outputs (disable the input buffers)

3. Analog inputs

4. Port inputs and outputs from PPS

16.2 PORTx Registers
In this section, the generic names such as PORTx,
LATx, TRISx, etc. can be associated with PORTA,
PORTB, and PORTC. The functionality of PORTE is
different compared to other ports and is explained in a
separate section.

TABLE 16-1: PORT ALLOCATION TABLE
FOR PIC18(L)F26/27/45/46/47/
55/56/57K42 DEVICES

Device

PO
R

TA

PO
R

TB

PO
R

TC

PO
R

TD

PO
R

TE

PO
R

TF

PIC18(L)F26K42 • • • •(1)

PIC18(L)F27K42 • • • •(1)

PIC18(L)F45K42 • • • • •(2)

PIC18(L)F46K42 • • • • •(2)

PIC18(L)F47K42 • • • • •(2)

PIC18(L)F55K42 • • • • •(2) •

PIC18(L)F56K42 • • • • •(2) •

PIC18(L)F57K42 • • • • •(2) •

Note 1: Pin RE3 only.
2: Pins RE0, RE1, RE2 and RE3 only.

QD

CK

Write LATx

Data Register

I/O pin
Read PORTx

Write PORTx

TRISx
Read LATx

Data Bus

To digital peripherals

ANSELx

VDD

VSS

To analog peripherals
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 259

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 19-8: PMD7: PMD CONTROL REGISTER 7
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0

— — — — — — DMA2MD DMA1MD

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-2 Unimplemented: Read as ‘0’

bit 1 DMA2MD: Disable DMA2 Module bit

1 = DMA2 module disabled
0 = DMA2 module enabled

bit 0 DMA1MD: Disable DMA1 Module bit

1 = DMA1 module disabled
0 = DMA1 module enabled

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH PERIPHERAL MODULE DISABLE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page

PMD0 SYSCMD FVRMD HLVDMD CRCMD SCANMD NVMMD CLKRMD IOCMD 290

PMD1 NCO1MD TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD TMR1MD TMR0MD 291

PMD2 — DACMD ADCMD — — CMP2MD CMP1MD ZCDMD 292

PMD3 PWM8MD PWM7MD PWM6MD PWM5MD CCP4MD CCP3MD CCP2MD CCP1MD 293

PMD4 CWG3MD CWG2MD CWG1MD — — — — — 294

PMD5 — — U2MD U1MD — SPI1MD I2C2MD I2C1MD 295

PMD6 — — SMT1MD CLC4MD CLC3MD CLC2MD CLC1MD DSMMD 295

PMD7 — — — — — — DMA2MD DMA1MD 297

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by peripheral module disable.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 297

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 21-4: TxGATE: TIMERx GATE ISM REGISTER
U-0 U-0 U-0 R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W-0/u

— — — GSS<4:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared u = unchanged

bit 7-5 Unimplemented: Read as ‘0’

bit 4-0 GSS<4:0>: Timerx Gate Source Selection bits

GSS
Timer1 Timer3 Timer5

Gate Source Gate Source Gate Source

11111-11011 Reserved Reserved Reserved

11010 CLC4_out CLC4_out CLC4_out

11001 CLC3_out CLC3_out CLC3_out

11000 CLC2_out CLC2_out CLC2_out

10111 CLC1_out CLC1_out CLC1_out

10110 ZCDOUT ZCDOUT ZCDOUT

10101 CMP2OUT CMP2OUT CMP2OUT

10100 CMP1OUT CMP1OUT CMP1OUT

10011 NCO1OUT NCO1OUT NCO1OUT

10010-10001 Reserved Reserved Reserved

10000 PWM8OUT PWM8OUT PWM8OUT

01111 PWM7OUT PWM7OUT PWM7OUT

01110 PWM6OUT PWM6OUT PWM6OUT

01101 PWM5OUT PWM5OUT PWM5OUT

01100 CCP4OUT CCP4OUT CCP4OUT

01011 CCP3OUT CCP3OUT CCP3OUT

01010 CCP2OUT CCP2OUT CCP2OUT

01001 CCP1OUT CCP1OUT CCP1OUT

01000 SMT1_match SMT1_match SMT1_match

00111 TMR6OUT (postscaled) TMR6OUT (postscaled) TMR6OUT (postscaled)

00110 TMR5 overflow TMR5 overflow Reserved

00101 TMR4OUT (postscaled) TMR4OUT (postscaled) TMR4OUT (postscaled)

00100 TMR3 overflow Reserved TMR3 overflow

00011 TMR2OUT (postscaled) TMR2OUT (postscaled) TMR2OUT (postscaled)

00010 Reserved TMR1 overflow TMR1 overflow

00001 TMR0 overflow TMR0 overflow TMR0 overflow

00000 Pin selected by T1GPPS Pin selected by T3GPPS Pin selected by T5GPPS
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 316

PIC18(L)F26/27/45/46/47/55/56/57K42

 0

 1

 0

 1

ter
x

ter
PR

et
TABLE 22-1: TIMER2 OPERATING MODES

Mode
MODE<4:0> Output

Operation Operation
Timer Control

<4:3> <2:0> Start Reset Stop

Free
Running
Period

00

000

Period
Pulse

Software gate (Figure 22-6) ON = 1 — ON = 0

001
Hardware gate, active-high

(Figure 22-7)
ON = 1 &

TMRx_ers = 1
— ON = 0 or

TMRx_ers =

010 Hardware gate, active-low
ON = 1 &

TMRx_ers = 0
— ON = 0 or

TMRx_ers =

011

Period
Pulse
with

Hardware
Reset

Rising or Falling Edge Reset

ON = 1

TMRx_ers ↕

ON = 0100 Rising Edge Reset (Figure 22-8) TMRx_ers ↑

101 Falling Edge Reset TMRx_ers ↓

110 Low Level Reset TMRx_ers = 0
ON = 0 or

TMRx_ers =

111
High Level Reset (Figure 22-9)

TMRx_ers = 1
ON = 0 or

TMRx_ers =

One-shot 01

000 One-Shot Software Start (Figure 22-10) ON = 1 —

ON = 0
or

Next clock af
TMRx = PR

(Note 2)

001
Edge

Triggered
Start

(Note 1)

Rising Edge Start (Figure 22-9)
ON = 1 &

TMRx_ers ↑
—

010 Falling Edge Start
ON = 1 &

TMRx_ers ↓
—

011 Any eEdge Start
ON = 1 &

TMRx_ers ↕
—

100
Edge

Triggered
Start
and

Hardware
Reset

(Note 1)

Rising Edge Start &
Rising Edge Reset (Figure 22-12)

ON = 1 &
TMRx_ers ↑

TMRx_ers ↑

101
Falling Edge Start &
Falling Edge Reset

ON = 1 &
TMRx_ers ↓

TMRx_ers ↓

110
Rising Edge Start &

Low Level Reset (Figure 22-13)
ON = 1 &

TMRx_ers ↑
TMRx_ers = 0

111
Falling Edge Start &

High Level Reset
ON = 1 &

TMRx_ers ↓
TMRx_ers = 1

Monostable

10

000 Reserved

001
Edge

Triggered
Start

(Note 1)

Rising Edge Start
(Figure 22-12)

ON = 1 &
TMRx_ers ↑

— ON=0
or

Next clock af
TxTMR = Tx

(Note 3)

010 Falling Edge Start
ON = 1 &

TMRx_ers ↓
—

011 Any Edge Start
ON = 1 &

TMRx_ers ↕
—

Reserved 100 Reserved

Reserved 101 Reserved

One-shot

110
Level

Triggered
Start
and

Hardware
Reset

High Level Start &
Low Level Reset (Figure 22-13)

ON = 1 &
TMRx_ers = 1

TMRx_ers = 0
ON = 0 or

Held in Res
(Note 2)111

Low Level Start &
High Level Reset

ON = 1 &
TMRx_ers = 0

TMRx_ers = 1

Reserved 11 xxx Reserved

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.
2: When TxTMR = TxPR then the next clock clears ON and stops TxTMR at 00h.
3: When TxTMR = TxPR then the next clock stops TxTMR at 00h but does not clear ON.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 321

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 27-3: PROGRAMMABLE LOGIC FUNCTIONS

lcxg1

lcxg2

lcxg3

lcxg4

lcxq

AND-OR OR-XOR

MODE<2:0> = 000 MODE<2:0> = 001
4-input AND S-R Latch

MODE<2:0> = 010 MODE<2:0> = 011

lcxg1

lcxg2

lcxg3

lcxg4

lcxq

S

R

Q lcxq
lcxg1

lcxg2

lcxg3

lcxg4

lcxg1

lcxg2

lcxg3

lcxg4

lcxq

1-Input D Flip-Flop with S and R 2-Input D Flip-Flop with R

J-K Flip-Flop with R 1-Input Transparent Latch with S and R

MODE<2:0> = 100 MODE<2:0> = 101

MODE<2:0> = 110 MODE<2:0> = 111

D

R

Q lcxq

lcxg1

lcxg2

lcxg3

lcxg4
D

R

QS

lcxg1

lcxg2

lcxg3

lcxg4

lcxq

J

R

Q

K

lcxg1

lcxg2

lcxg3

lcxg4

lcxq
D

R

QS

LE

lcxq

lcxg1

lcxg2

lcxg3

lcxg4

Rev. 10-000122B
9/13/2016
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 439

PIC18(L)F26/27/45/46/47/55/56/57K42

35.2 Temperature Calculation
This section describes the steps involved in calculating
the die temperature, TMEAS:

1. Obtain the ADC count value of the measured
analog voltage: The analog output voltage,
VMEAS is converted to a digital count value by
the Analog to Digital Converter (ADC) and is
referred to as ADCMEAS.

2. Obtain the ADC count value, ADCDIA at 90
degrees, from the DIA table. This parameter is
TSLR2 for the low range setting or TSHR2 for
the high range setting of the temperature
indicator module.

3. Obtain the output analog voltage (in mV) value
of the Fixed Reference Voltage (FVR) for 2x
setting, from the DIA Table. This parameter is
FVRA2X in the DIA table (Table 5-3).

4. Obtain the value of the temperature indicator
voltage sensitivity, parameter Mv, from Table 44-
27 for the corresponding range setting.

Equation 35-1 provides an estimate for the die
temperature based on the above parameters.

EQUATION 35-1: SENSOR TEMPERATURE

35.2.1 CALIBRATION

35.2.1.1 Higher-Order Calibration

If the application requires more precise temperature
measurement, additional calibrations steps will be
necessary. For these applications, two-point or three-
point calibration is recommended.

35.2.2 TEMPERATURE RESOLUTION

The resolution of the ADC reading, Ma (°C/count),
depends on both the ADC resolution N and the
reference voltage used for conversion, as shown in
Equation 35-2. It is recommended to use the smallest
VREF value, such as the ADC FVR1 Output Voltage for
2x setting (FVRA2X) value from the DIA. Refer to
Table 5-3 for DIA location.

35.3 ADC Acquisition Time
To ensure accurate temperature measurements, the
user must wait a certain minimum acquisition time
(parameter TS01 in Table 44-27) for the ADC value to
settle, after the ADC input multiplexer is connected to
the temperature indicator output, before the conversion
is performed.TMEAS 90

ADCMEAS ADCDIA–  FVRA2X

2
N

1–  Mv
---+=

Where:
ADCMEAS = ADC reading at temperature being
estimated
ADCDIA = ADC reading stored in the DIA
FVRA2X = FVR value stored in the DIA for 2x setting
N = Resolution of the ADC
Mv = Temperature Indicator voltage sensitivity (mV/°C)

Note: Refer to Table 44-19 for FVR reference
voltage accuracy.

Note: It is recommended to take the average of
10 measurements of ADCmeas to reduce
noise and improve accuracy.

TABLE 35-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR(1)

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on page

FVRCON EN RDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0> 597

Legend: — = Unimplemented location, read as ‘0’. Shaded cells are unused by the temperature indicator module.
Note 1: It is recommended to take the average of ten measurements of ADCMEAS to reduce noise and improve

accuracy.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 599

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 36-29: ADERRH: ADC SETPOINT ERROR REGISTER HIGH
R-x R-x R-x R-x R-x R-x R-x R-x

ERR<15:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ERR<15:8>: ADC Setpoint Error MSB. Upper byte of ADC Setpoint Error. Setpoint Error calculation
is determined by CALC bits of ADCON3, see Register 36-4 for more details.

REGISTER 36-30: ADERRL: ADC SETPOINT ERROR LOW BYTE REGISTER
R-x R-x R-x R-x R-x R-x R-x R-x

ERR<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ERR<7:0>: ADC Setpoint Error LSB. Lower byte of ADC Setpoint Error calculation is determined by
CALC bits of ADCON3, see Register 36-4 for more details.

REGISTER 36-31: ADLTHH: ADC LOWER THRESHOLD HIGH BYTE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

LTH<15:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 LTH<15:8>: ADC Lower Threshold MSB. LTH and UTH are compared with ERR to set the ADUTHR
and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by
the results of this comparison.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 633

PIC18(L)F26/27/45/46/47/55/56/57K42
39.0 HIGH/LOW-VOLTAGE DETECT
(HLVD)

The PIC18(L)F26/27/45/46/47/55/56/57K42 family of
devices has a High/Low-Voltage Detect module (HLVD).
This is a programmable circuit that sets both a device
voltage trip point and the direction of change from that
point (positive going, negative going or both). If the
device experiences an excursion past the trip point in
that direction, an interrupt flag is set. If the interrupt is
enabled, the program execution branches to the
interrupt vector address and the software responds to
the interrupt.

Complete control of the HLVD module is provided
through the HLVDCON0 and HLVDCON1 register. This
allows the circuitry to be “turned off” by the user under
software control, which minimizes the current
consumption for the device.

The module’s block diagram is shown in Figure 39-1.

Since the HLVD can be software enabled through the
EN bit, setting and clearing the enable bit does not
produce a false HLVD event glitch. Each time the HLVD
module is enabled, the circuitry requires some time to
stabilize. The RDY bit (HLVDCON0<4>) is a read-only
bit used to indicate when the band gap reference
voltages are stable.

The module can only generate an interrupt after the
module is turned ON and the band gap reference
voltages are ready.

The INTH and INTL bits determine the overall
operation of the module. When INTH is set, the module
monitors for rises in VDD above the trip point set by the
HLVDCON1 register. When INTL is set, the module
monitors for drops in VDD below the trip point set by the
HLVDCON1 register. When both the INTH and INTL
bits are set, any changes above or below the trip point
set by the HLVDCON1 register can be monitored.

The OUT bit can be read to determine if the voltage is
greater than or less than the voltage level selected by
the HLVDCON1 register.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 651

PIC18(L)F26/27/45/46/47/55/56/57K42

MOVF Move f

Syntax: MOVF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: f  dest

Status Affected: N, Z

Encoding: 0101 00da ffff ffff

Description: The contents of register ‘f’ are moved to
a destination dependent upon the
status of ‘d’. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
Location ‘f’ can be anywhere in the
256-byte bank.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 41.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write W

Example: MOVF REG, 0, 0

Before Instruction
REG = 22h
W = FFh

After Instruction
REG = 22h
W = 22h

MOVFF Move f to f

Syntax: MOVFF fs,fd

Operands: 0  fs  4095
0  fd  4095

Operation: (fs)  fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register ‘fs’ are
moved to destination register ‘fd’.
Location of source ‘fs’ can be anywhere
in the 4096-byte data space (000h to
FFFh) and location of destination ‘fd’
can also be anywhere from 000h to
FFFh.
MOVFF has curtailed the
source and destination range to the
lower 4 Kbyte space of memory (Banks
1 through 15). For everything else, use
MOVFFL.

Words: 2

Cycles: 2 (3)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

(src)

Process
Data

No
operation

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVFF REG1, REG2

Before Instruction
REG1 = 33h
REG2 = 11h

After Instruction
REG1 = 33h
REG2 = 33h
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 687

PIC18(L)F26/27/45/46/47/55/56/57K42

77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
83

gister
 page
3BC8h -
3AEBh

— Unimplemented

3AEAh U2CTSPPS — — — U2CTSPPS 2
3AE8h U2RXPPS — — — U2RXPPS 2
3AE7h U1CTSPPS — — — U1CTSPPS 2
3AE5h U1RXPPS — — — U1RXPPS 2
3AE4h I2C2SDAPPS — — — I2C2SDAPPS 2
3AE3h I2C2SCLPPS — — — I2C2SCLPPS 2
3AE2h I2C1SDAPPS — — — I2C1SDAPPS 2
3AE1h I2C1SCLPPS — — — I2C1SCLPPS 2
3AE0h SPI1SSPPS — — — SPI1SSPPS 2
3ADFh SPI1SDIPPS — — — SPI1SDIPPS 2
3ADEh SPI1SCKPPS — — — SPI1SCKPPS 2
3ADDh ADACTPPS — — — ADACTPPS 2
3ADCh CLCIN3PPS — — — CLCIN3PPS 2
3ADBh CLCIN2PPS — — — CLCIN2PPS 2
3ADAh CLCIN1PPS — — — CLCIN1PPS 2
3AD9h CLCIN0PPS — — — CLCIN0PPS 2
3AD8h MD1SRCPPS — — — MD1SRCPPS 2
3AD7h MD1CARHPPS — — — MD1CARHPPS 2
3AD6h MD1CARLPPS — — — MD1CARLPPS 2
3AD5h CWG3INPPS — — — CWG3INPPS 2
3AD4h CWG2INPPS — — — CWG2INPPS 2
3AD3h CWG1INPPS — — — CWG1INPPS 2
3AD2h SMT1SIGPPS — — — SMT1SIGPPS 2
3AD1h SMT1WINPPS — — — SMT1WINPPS 2
3AD0h CCP4PPS — — — CCP4PPS 2
3ACFh CCP3PPS — — — CCP3PPS 2
3ACEh CCP2PPS — — — CCP2PPS 2
3ACDh CCP1PPS — — — CCP1PPS 2
3ACCh T6INPPS — — — T6INPPS 2
3ACBh T4INPPS — — — T4INPPS 2
3ACAh T2INPPS — — — T2INPPS 2
3AC9h T5GPPS — — — T5GPPS 2
3AC8h T5CLKIPPS — — — T5CLKIPPS 2
3AC7h T3GPPS — — — T3GPPS 2
3AC6h T3CLKIPPS — — — T3CLKIPPS 2
3AC5h T1GPPS — — — T1GPPS 2
3AC4h T1CLKIPPS — — — T1CLKIPPS 2
3AC3h T0CLKIPPS — — — T0CLKIPPS 2
3AC2h INT2PPS — — — INT2PPS 2
3AC1h INT1PPS — — — INT1PPS 2
3AC0h INT0PPS — — — INT0PPS 2
3ABFh PPSLOCK — — — — — — — PPSLOCKED 2
3ABEh — Reserved, maintain as ‘0’

3ABDh -
3A9Ah

— Unimplemented

3A99h — Reserved, maintain as ‘0’

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Re
on

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.
3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.
4: Unimplemented in PIC18(L)F45/55K42.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 725

