

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf27k42-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.1 **Power-on Reset (POR)**

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

6.2 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- BOR is off when in Sleep
- BOR is controlled by software
- BOR is always off

Refer to Table 6-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV<1:0> bits in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Table 44-13 for more information.

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device startup is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

6.2.4 BOR AND BULK ERASE

BOR is forced ON during PFM Bulk Erase operations to make sure that a safe erase voltage is maintained for a successful erase cycle.

During Bulk Erase, the BOR is enabled at 2.45V for F and LF devices, even if it is configured to some other value. If VDD falls, the erase cycle will be aborted, but the device will not be reset.

TABLE 11-3: \$	SUMMARY OF REGISTERS ASSOCIATED WITH WINDOWED WATCHDOG TIMER
----------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
WDTCON0		_		PS<4:0> SEN						
WDTCON1			CS<2:0>		—	WINDOW<2:0>			183	
WDTPSL	PSCNT<7:0>									
WDTPSH	PSCNT<15:8>								184	
WDTTMR	WDTTMR<4:0> STATE PSCNT<17:16>							185		

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Windowed Watchdog Timer.

13.1.3 READING THE PROGRAM FLASH MEMORY

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The CPU operation is suspended during the read, and it resumes immediately after. From the user point of view, TABLAT is valid in the next instruction cycle.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word.

Figure 13-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 13-4: READS FROM PROGRAM FLASH MEMORY

EXAMPLE 13-1: READING A PROGRAM FLASH MEMORY WORD

	BCF BSF MOVLW MOVWE	NVMCON1, REG0 NVMCON1, REG1 CODE_ADDR_UPPER TBLPTPU	;;;	point to Program Flash Memory access Program Flash Memory Load TBLPTR with the base address of the word
	MOVLW	CODE ADDR HIGH	,	
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVFW	TABLAT, W	;	get data
	MOVF	WORD_ODD		

14.2 CRC Functional Overview

The CRC module can be used to detect bit errors in the program memory using the built-in memory scanner or through user input RAM memory. The CRC module can accept up to a 16-bit polynomial with up to a 16-bit seed value. A CRC calculated check value (or checksum) will then be generated into the CRCACC<15:0> registers for user storage. The CRC module uses an XOR shift register implementation to perform the polynomial division required for the CRC calculation.

EXAMPLE 14-1: CRC EXAMPLE

15.0 DIRECT MEMORY ACCESS (DMA)

15.1 Introduction

The Direct Memory Access (DMA) module is designed to service data transfers between different memory regions directly without intervention from the CPU. By eliminating the need for CPU-intensive management of handling interrupts intended for data transfers, the CPU now can spend more time on other tasks.

PIC18(L)F26/27/45/46/47/55/56/57K42 family has two DMA modules which can be independently programmed to transfer data between different memory locations, move different data sizes, and use a wide range of hardware triggers to initiate transfers. The two DMA registers can even be programmed to work together, in order to carry out more complex data transfers without CPU overhead.

Key features of the DMA module include:

- Support access to the following memory regions:
 - GPR and SFR space (R/W)
 - Program Flash Memory (R only)
 - Data EEPROM Memory (R only)
- Programmable priority between the DMA and CPU Operations. Refer to Section 3.1 "System Arbitration" for details.
- Programmable Source and Destination address
 modes
 - Fixed address
 - Post-increment address
 - Post-decrement address
- Programmable Source and Destination sizes
- Source and destination pointer register, dynamically updated and reloadable
- Source and destination count register, dynamically updated and reloadable
- Programmable auto-stop based on Source or Destination counter
- · Software triggered transfers
- Multiple user selectable sources for hardware triggered transfers
- Multiple user selectable sources for aborting DMA transfers

15.2 DMA Registers

The operation of the DMA module has the following registers:

- Control registers (DMAxCON0, DMAxCON1)
- Data buffer register (DMAxBUF)
- Source Start Address Register (DMAxSSAU:H:L)
- Source Pointer Register (DMAxSPTRU:H:L)
- · Source Message Size Register (DMAxSSZH:L)
- Source Count Register (DMAxSCNTH:L)
- Destination Start Address Register (DMAxDSAH:L)
- Destination Pointer Register (DMAxDPTRH:L)
- Destination Message Size Register (DMAxDSZH:L)
- Destination Count Register (DMAxDCNTH:L)
- Start Interrupt Request Source Register (DMAxSIRQ)
- Abort Interrupt Request Source Register (DMAxAIRQ)

These registers are detailed in Section 15.13 "Register definitions: DMA".

EXAMPLE 16-2: INITIALIZING PORTE

CLRF	PORTE	;Initialize PORTE by ;clearing output
CLRF	LATE	;data latches ;Alternate method
		;to clear output ;data latches
CLRF	ANSELE	;Configure analog pins ;for digital only
MOVLW	05h	;Value used to ;initialize data ;direction
MOVWF	TRISE	;Set RE<0> as input ;RE<1> as output ;RE<2> as input

16.3.2 PORTE ON 28-PIN DEVICES

For PIC18(L)F26/27K42 devices, PORTE is only available when Master Clear functionality is disabled (MCLRE = 0). In this case, PORTE is a single bit, inputonly port comprised of RE3 only. The pin operates as previously described. RE3 in PORTE register is a readonly bit and will read '1' when MCLRE = 1 (i.e., Master Clear enabled).

16.3.3 RE3 WEAK PULL-UP

The port RE3 pin has an individually controlled weak internal pull-up. When set, the WPUE3 bit enables the RE3 pin pull-up. When the RE3 port pin is configured as \overline{MCLR} , (CONFIG2L, MCLRE = 1 and CONFIG4H, LVP = 0), or configured for Low-Voltage Programming, (MCLRE = x and LVP = 1), the pull-up is always enabled and the WPUE3 bit has no effect.

16.3.4 INTERRUPT-ON-CHANGE

The interrupt-on-change feature is available only on the RE3 pin of PORTE for all devices. If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and interrupt-on-change on RE3 is not available. For further details refer to Section 18.0 "Interrupt-on-Change".

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
LATx7	LATx6	LATx5	LATx4	LATx3	LATx2	LATx1	LATx0				
bit 7							bit 0				
Legend:	Legend:										
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'								
'1' = Bit is set '0' = Bit is cleared			x = Bit is unknown								
-n/n = Value at POR and BOR/Value at all other Resets											

REGISTER 16-3: LATX: LATX REGISTER⁽¹⁾

bit 7-0 LATx<7:0>: Rx7:Rx0 Output Latch Value bits

Note 1: Writes to LATx are equivalent with writes to the corresponding PORTx register. Reads from LATx register return register values, not I/O pin values.

TABLE 16-4: LAT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
LATD ⁽¹⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0
LATE ⁽¹⁾	_	—	—	—	—	LATE2	LATE1	LATE0
LATF ⁽²⁾	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0

Note 1: Unimplemented in PIC18(L)F26/27K42.

2: Unimplemented in PIC18(L)F26/45/46/47K42.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	SLEW	PU<	:1:0>	—		TH<	1:0>
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7	Unimplemen	ted: Read as '	0'				
bit 6	SLEW: I ² C sp	pecific slew rate	e limiting is ena	abled			
	$1 = I^2 C spece$	cific slew rate li	miting is enab	led. Standard	pad slew limitin	g is disabled.	The SLRxy bit
	is ignore	ed. d CDIO Slow B	ata: anablad/a	lipphlad via SI	Dvv bit		
				ISableu via SL	KXY DIL		
DIT 5-4	11 = Reserv	, Pull-up Select	ion dits				
	10 = 10x cu	rrent of standa	d weak pull-up	C			
	01 = 2x curr	ent of standard	l weak pull-up				
	00 = Standa	ard GPIO weak	pull-up, enable	ed via WPUxy	bit		
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1-0	TH<1:0>: I ² C	Input Thresho	ld Selection bit	ts			
	11 = SMBus	s 3.0 (1.35 V) ir	nput threshold				
	10 = SMBus	s 2.0 (2.1 V) inp	out threshold				
		ecine input tine	ราบเนร				

REGISTER 16-9: RxyI2C: I²C PAD Rxy CONTROL REGISTER

00 = Standard GPIO Input pull-up, enabled via INLVLxy registers

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RB1I2C	_	SLEW	PU<1:0>		—	—	TH<1:0>	
RB2I2C		SLEW	PU<1:0>		—	—	TH<	1:0>
RC3I2C	_	SLEW	PU<	PU<1:0>		—	TH<	1:0>
RC4I2C	_	SLEW	PU<	PU<1:0>		—	TH<	1:0>
RD0I2C ⁽¹⁾		SLEW	PU<1:0>		—	—	TH<	1:0>
RD1I2C ⁽¹⁾	_	SLEW	PU<1:0>		_	_	TH<	1:0>

TABLE 16-10: I2C PAD CONTROL REGISTERS

Note 1: Unimplemented in PIC18(L)F26/27K42.

FIGURE 2

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 26-3: CWGxCLK: CWGx CLOCK INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
_	_	—	—	—	—	—	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

bit 0

CS: CWG Clock Source Selection bits

CS	CWG1	CWG2	CWG3
1	HFINTOSC ⁽¹⁾	HFINTOSC ⁽¹⁾	HFINTOSC ⁽¹⁾
0	Fosc	Fosc	Fosc

Note 1: HFINTOSC remains operating during Sleep.

28.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for applications that require frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse-Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 28-1 is a simplified block diagram of the NCO module.

28.8 NCO Control Registers

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	_	OUT	POL	_	_	_	PFM
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	EN: NCO1 Er	nable bit					
	1 = NCO1 mc	dule is enable	d				
h # 0			iu ai				
DIT 6	Unimplemen	ted: Read as	0				
bit 5	OUT: NCO1 (Displays the c	Output bit	value of the NO	CO1 module			
bit 4		Polarity					
1 = NCO1 output signal is inverted							
	0 = NCO1 output signal is not inverted						
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	PFM: NCO1 F	Pulse Frequen	cy Mode bit				
	1 = NCO1 op	erates in Pulse	Frequency m	ode	<u> </u>		
	0 = NCO1 operates in Fixed Duty Cycle mode, divide by 2						

REGISTER 28-1: NCO1CON: NCO CONTROL REGISTER

31.13 Checksum (UART1 only)

This section does not apply to the LIN mode, which handles checksums automatically.

The transmit and receive checksum adders are enabled when the C0EN bit in the UxCON2 register is set. When enabled, the adders accumulate every byte that is transmitted or received. The accumulated sum includes the carry of the addition. Software is responsible for clearing the checksum registers before a transaction and performing the check at the end of the transaction.

The following is an example of how the checksum registers could be used in the asynchronous modes.

31.13.1 TRANSMIT CHECKSUM METHOD

- 1. Clear the UxTXCHK register.
- 2. Set the COEN bit.
- 3. Send all bytes of the transaction output.
- 4. Invert UxTXCHK and send the result as the last byte of the transaction.

31.13.2 RECEIVE CHECKSUM METHOD

- 1. Clear the UxRXCHK register.
- 2. Set the COEN bit.
- 3. Receive all bytes in the transaction including the checksum byte.
- 4. Set MSb of UxRXCHK if 7-bit mode is selected.
- 5. Add 1 to UxRXCHK.
- 6. If the result is '0', the checksum passes, otherwise it fails.

The CERIF checksum interrupt flag is not active in any mode other than LIN.

31.14 Collision Detection

External forces that interfere with the transmit line are detected in all modes of operation with collision detection. Collision detection is always active when RXEN and TXEN are both set.

When the receive input is connected to the transmit output through either the same I/O pin or external circuitry, a character will be received for every character transmitted. The collision detection circuit provides a warning when the word received does not match the word transmitted. The TXCIF flag in the UxERRIR register is used to signal collisions. This signal is only useful when the TX output is looped back to the RX input and everything that is transmitted is expected to be received. If more than one transmitter is active at the same time, it can be assumed that the TX word will not match the RX word. The TXCIF detects this mismatch and flags an interrupt. The TXCIF bit will also be set in DALI mode transmissions when the received bit is missing the expected mid-bit transition.

Collision detection is always active, regardless of whether or not the RX input is connected to the TX output. It is up to the user to disable the TXCIE bit when collision interrupts are not required.

The software overhead of unloading the receive buffer of transmitted data is avoided by setting the RUNOVF bit in UxCON2 and ignoring the receive interrupt and letting the receive buffer overflow. When the transmission is complete, prepare for receiving data by flushing the receive buffer (see Section 31.11.2, FIFO Reset) and clearing the RXFOIF overflow flag in the UxERRIR register.

31.15 RX/TX Activity Timeout

The UART works in conjunction with the HLT timers to monitor activity on the RX and TX lines. Use this feature to determine when there has been no activity on the receive or transmit lines for a user specified period of time.

To use this feature, set the HLT to the desired timeout period by a combination of the HLT clock source, timer prescale value, and timer period registers. Configure the HLT to reset on the UART TX or RX line and start the HLT at the same time the UART is started. UART activity will keep resetting the HLT to prevent a full HLT period from elapsing. When there has been no activity on the selected TX or RX line for longer than the HLT period then an HLT interrupt will occur signaling the timeout event.

For example, the following register settings will configure HLT2 for a 5 ms timeout of no activity on U1RX:

- T2PR = 0x9C (156 prescale periods)
- T2CLKCON = 0x05 (500 kHz internal oscillator)
- T2HLT = 0x04 (free running, reset on rising edge)
- T2RST = 0x15 (reset on U1RX)
- T2CON = 0xC0 (Timer2 on with 1:16 prescale)

REGISTER	32-8: SPIxC	ON1: SPI CO	ONFIGURATI	ON REGIST	ER 1							
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0					
SMP	CKE	CKP	FST	_	SSP	SDIP	SDOP					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'						
bit 7	SMP: SPI Inp	ut Sample Pha	ase Control bit									
	Slave mode:											
	1 = Reserved											
	0 = SDI input	is sampled in	the middle of d	ata output tim	ie							
	Master mode:			-								
	1 = SDI input	is sampled at	the end of data	a output time								
	0 = SDI input	0 = SDI input is sampled in the middle of data output time										
bit 6	CKE: Clock Edge Select bit											
	1 = Output data changes on transition from active to idle clock state											
	0 = Output data changes on transition from idle to active clock state											
bit 5	CKP: Clock Polarity Select bit											
	1 = Idle state for SCK is high level											
	0 = Idle state for SCK is low level											
bit 4	FST: Fast Start Enable bit											
	Slave mode:											
	This bit is ignored											
	Master mode:											
	1 = Delay to first SCK may be less than $\frac{1}{2}$ baud period											
	0 = Delay to first SCK will be at least $\frac{1}{2}$ baud period											
bit 3	Unimplemen	ted: Read as '	0'									
bit 2	SSP: SS Input/Output Polarity Control bit											
	1 = SS is active-low											
	0 = SS is active-high											
bit 1	SDIP: SDI Inp	SDIP: SDI Input Polarity Control bit										
	1 = SDI input	1 = SDI input is active-low										
	0 = SDI input is active-high											
bit 0	SDOP: SDI O	utput Polarity	Control bit									
	1 = SDO outp	ut is active-low	v									
	0 = SDO output is active-high											

© 2017 Microchip Technology Inc.

36.7 Register Definitions: ADC Control

REGISTER 36-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/	0 R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W/HC-0	
ON	CONT	-	CS	-	FM	_	GO	
bit 7	÷		·		· ·		bit 0	
Legend:								
R = Reada	able bit	W = Writable	e bit	U = Unimple	emented bit, read	as '0'		
u = Bit is ι	unchanged	x = Bit is unk	known	-n/n = Value	e at POR and BOR	R/Value at al	I other Resets	
'1' = Bit is	set	'0' = Bit is cle	eared	HC = Bit is o	cleared by hardwa	are		
bit 7	ON: ADC Er	nable bit						
	1 = ADC is e	enabled						
	0 = ADC is c	disabled						
bit 6	CONT: ADC	Continuous O	peration Enable	e bit				
	1 = GO is re	etriggered upor	n completion of	each convers	ion trigger until A	DTIF is set (if ADSOI is set)	
	0 = ADC is	cleared upon c	completion of ea	ach conversio	n trigger			
bit 5	Unimpleme	nted: Read as	·0'					
bit 4	CS: ADC CI	ock Selection t	bit					
	1 = Clock s	upplied from FI	RC dedicated o	scillator				
	0 = Clock s	upplied by Fos	c, divided acco	rding to ADCI	_K register			
bit 3	Unimpleme	nted: Read as	'0'					
bit 2	FM: ADC re	sults Format/al	ignment Selecti	on				
1 = ADRES and PREV data are right-justified								
	0 = ADRES	and PREV dat	ta are left-justifi	ed, zero-filled				
bit 1	Unimpleme	nted: Read as	ʻ0'					
bit 0	GO: ADC Conversion Status bit ⁽¹⁾							
	⊥ = ADC co cleared	hversion cycle	s determined by	etting this bit	istarts an ADC c	conversion c	sycie. The dit is	
	0 = ADC cor	nversion compl	eted/not in proc	gress				
Note 1:	This bit requires	ON bit to be se	t.	•				
2:	If cleared by soft	ware while a co	onversion is in p	progress, the r	results of the conv	version up to	this point will	

2: If cleared by software while a conversion is in progress, the results of the conversion up to this point will be transferred to ADRES and the state machine will be reset, but the ADIF interrupt flag bit will not be set; filter and threshold operations will not be performed.

FIGURE 41-2:	41-2: General Format for Instructions (2/2)								
Cor	Control operations								
CAL	ALL, GOTO and Branch operations								
	15	87	0						
	OPCODI	E n<7:0> (lite	ral)	GOTO Label					
	15 12 11		0						
	1111	n<19:8> (literal)							
	n = 20-bit immed	liate value							
1	5	8 7	0						
	OPCODE	S n<7:0> (litera	I)	CALL MYFUNC					
1	5 12 11	•••	0						
	1111	n<19:8> (literal)							
-	S = Fa	st bit							
	F 44	10	0						
- -	5 11	10	0						
	OPCODE	n<10:0> (literal)		BRA MYFUNC					
1	5	8 7	0						
	OPCODE	n<7:0> (literal)		BC MYFUNC					
		•							

POP	Рор Тор о	f Return Sta	ack	PUS	н	Push Top	Push Top of Return Stack				
Syntax:	POP			Synta	ax:	PUSH	PUSH				
Operands:	None			Oper	ands:	None					
Operation:	$(TOS) \rightarrow bit$	bucket		Oper	ation:	$(\text{PC + 2}) \rightarrow$	TOS				
Status Affected:	None			Statu	s Affected:	None					
Encoding:	0000	0000 000	00 0110	Enco	ding:	0000	0000	0000	0101		
Description:	The TOS va stack and is then become was pushed This instruct the user to p stack to incc	lue is pulled c discarded. Th es the previou onto the retui ion is provide properly mana prporate a soft	off the return ne TOS value is value that rn stack. d to enable ige the return tware stack.	Desc Word	ription: Is:	The PC + 2 is pushed onto the top the return stack. The previous TOS value is pushed down on the stack This instruction allows implementir software stack by modifying TOS a then pushing it onto the return stac					
Words:	1			Cycle	es:	1					
Cycles:	1			QC	vcle Activity:						
Q Cycle Activity	:				Q1	Q2	Q3		Q4		
Q1 Decode	Q2 No operation	Q3 POP TOS value	Q4 No operation		Decode	PUSH PC + 2 onto return stack	No operatio	n oj	No peration		
Example:	POP GOTO	NEW		Exan	<u>iple:</u> Before Instru	PUSH					
Before Instruction TOS = 0031A2h Stack (1 level down) = 014332h				TOS PC		= 345 = 012	5Ah 24h				
After Instruction TOS = 014332h PC = NEW				After Instructi PC TOS Stack (1	on level down)	= 012 = 012 = 345	26h 26h 5Ah				

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3A98h	—				Reserved, m	aintain as '0'				
3A97h- 3A95h	—				Unimple	emented				
3A94h	INLVLF ⁽³⁾	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0	270
3A93h	SLRCONF ⁽³⁾	SLRCONF7	SLRCONF6	SLRCONF5	SLRCONF4	SLRCONF3	SLRCONF2	SLRCONF1	SLRCONF0	269
3A92h	ODCONF ⁽³⁾	ODCONF7	ODCONF6	ODCONF5	ODCONF4	ODCONF3	ODCONF2	ODCONF1	ODCONF0	268
3A91h	WPUF ⁽³⁾	WPUF7	WPUF6	WPUF5	WPUF4	WPUF3	WPUF2	WPUF1	WPUF0	267
3A90h	ANSELF ⁽³⁾	ANSELF7	ANSELF6	ANSELF5	ANSELF4	ANSELF3	ANSELF2	ANSELF1	ANSELF0	266
3A8Fh- 3A8Ah	—				Unimple	emented				
3A89h	_				Reserved, m	aintain as '0'				
3A88h	_				Reserved, m	aintain as '0'				
3A87h	IOCEF	—	—	—	—	IOCEF3	—	—	—	287
3A86h	IOCEN		_	—	—	IOCEN3	—	—	_	287
3A85h	IOCEP		_	—	—	IOCEP3	—	—	_	287
3A84h	INLVLE	—	_	—	_	INLVLE3	INLVLE2 ⁽²⁾	INLVLE1 ⁽²⁾	INLVLE0 ⁽²⁾	270
3A83h	SLRCONE ⁽²⁾			_	_	_	SRLE2 ⁽²⁾	SRLE1 ⁽²⁾	SRLE0 ⁽²⁾	269
3A82h	ODCONE ⁽²⁾		_	—	—	—	ODCE2 ⁽²⁾	ODCE1 ⁽²⁾	ODCE0 ⁽²⁾	268
3A81h	WPUE			_	—	WPUE3	WPUE2 ⁽²⁾	WPUE1 ⁽²⁾	WPUE0 ⁽²⁾	267
3A80h	ANSELE ⁽²⁾	ANSELE7	ANSELE6	ANSELE5	ANSELE4	ANSELE3	ANSELE2	ANSELE1	ANSELE0	266
3A7Fh- 3A7CH	—		Unimplemented							
3A7Bh	RD1I2C ⁽²⁾		IOCEN3	P	U		_		263	
3A7Ah	RD0I2C ⁽²⁾		IOCEN3	P	U	—	—		ТН	263
3A79h	—				Reserved, m	aintain as '0'				
3A78h	—				Reserved, m	aintain as '0'				
3A77h- 3A75h	_				Unimple	emented				
3A74h	INLVLD ⁽²⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	270
3A73h	SLRCOND ⁽²⁾	SRLD7	SRLD6	SRLD5	SRLD4	SRLD3	SRLD2	SRLD1	SRLD0	269
3A72h	ODCOND ⁽²⁾	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	268
3A71h	WPUD ⁽²⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	267
3A70h	ANSELD ⁽²⁾	ANSELD7	ANSELD6	ANSELD5	ANSELD4	ANSELD3	ANSELD2	ANSELD1	ANSELD0	266
3A6Fh- 3A6Ch	_				Unimple	emented				
3A6Bh	RC4I2C		SLEW	P	U	—	—		TH	263
3A6Ah	RC3I2C	_	SLEW	P	U	_	_		ТН	263
3A69h	_				Reserved, m	aintain as '0'				
3A68h	—			T	Reserved, m	aintain as '0'	r	1		
3A67h	IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	287
3A66h	IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	287
3A65h	IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	287
3A64h	INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	270
3A63h	SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	269
3A62h	ODCONC	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	268
3A61h	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	267
3A60h	ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	266
3A5Fh - 3A5Ch	-				Unimple	emented				

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

Note

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3989h	IPR9	—	—	—	_	CLC3IP	CWG3IP	CCP3IP	TMR6IP	165
3988h	IPR8	TMR5GIP	TMR5IP	_	_	—	_	—	—	164
3987h	IPR7		_	INT2IP	CLC2IP	CWG2IP	-	CCP2IP	TMR4IP	164
3986h	IPR6	TMR3GIP	TMR3IP	U2IP	U2EIP	U2TXIP	U2RXIP	I2C2EIP	I2C2IP	163
3985h	IPR5	I2C2TXIP	I2C2RXIP	DMA2AIP	DMA2ORIP	DMA2DCN- TIP	DMA2SCN- TIP	C2IP	INT1IP	162
3984h	IPR4	CLC1IP	CWG1IP	NCO1IP	—	CCP1IP	TMR2IP	TMR1GIP	TMR1IP	161
3983h	IPR3	TMR0IP	U1IP	U1EIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP	160
3982h	IPR2	I2C1RXIP	SPI1IP	SPI1TXIP	SPI1RXIP	DMA1AIP	DMA10RIP	DMA1DCN- TIP	DMA1SCNTIP	159
3981h	IPR1	SMT1PWAIP	SMT1PRAIP	SMT1IP	C1IP	ADTIP	ADIP	ZCDIP	INT0IP	158
3980h	IPR0	IOCIP	CRCIP	SCANIP	NVMIP	CSWIP	OSFIP	HLVDIP	SWIP	157
397Fh - 397Eh	—				Unimple	emented				
397Dh	SCANTRIG	—	—	—	—		T	SEL		226
397Ch	SCANCON0	EN	TRIGEN	SGO	_	_	MREG	BURSTMD	BUSY	222
397Bh	SCANHADRU	—	—			F	IADR			224
397Ah	SCANHADRH				HA	DR				225
3979h	SCANHADRL				HA	DR		225		
3978h	SCANLADRU		—			L	ADR	223		
3977h	SCANLADRH		LADR						223	
3976h	SCANLADRL	LADR							224	
3975h - 396Ah	—				Unimple	emented				
3969h	CRCCON1		DLEI	N			P	LEN	_	218
3968h	CRCCON0	EN	CRCGO	BUSY	ACCM	—	—	SHIFTM	FULL	218
3967h	CRCXORH	X15	X14	X13	X12	X11	X10	X9	X8	221
3966h	CRCXORL	X7	X6	X5	X4	X3	X2	X1	_	221
3965h	CRCSHIFTH	SHFT15	SHFT14	SHFT13	SHFT12	SHFT11	SHFT10	SHFT9	SHFT8	220
3964h	CRCSHIFTL	SHFT7	SHFT6	SHFT5	SHFT4	SHFT3	SHFT2	SHFT1	SHFT0	220
3963h	CRCACCH	ACC15	ACC14	ACC13	ACC12	ACC11	ACC10	ACC9	ACC8	219
3962h	CRCACCL	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0	220
3961h	CRCDATH	DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8	219
3960h	CRCDATL	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	219
395Fh	WDTTMR			WDTTMR			STATE	PS	SCNT	185
395Eh	WDTPSH				PS	CNT				184
395Dh	WDTPSL				PS	CNT				184
395Ch	WDTCON1	—		CS		—		WINDOW		183
395Bh	WDTCON0	—	—			PS			SEN	182
395Ah - 38A0h	—				Unimple	emented				
389Fh	IVTADU				A	D				167
389Eh	IVTADH				A	D				167
389Dh	IVTADL				A	D				167
389Ch - 3891h	—				Unimple	emented				
3890h	PRODH_SHAD				PRO	DDH				125
388Fh	PRODL_SHAD				PR	DDL				125
388Eh	FSR2H_SHAD		_			F	SR2H			125

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

own, u angea, unimpiemente

Note 1: Unimplemented in LF devices.

Unimplemented in PIC18(L)F26/27K42. 2:

Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

4: Unimplemented in PIC18(L)F45/55K42.

46.0 PACKAGING INFORMATION

Package Marking Information

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.