

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf27k42-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.2.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 32.768 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during runtime using clock switching. Refer to Section 7.3 "Clock Switching" for more information.

Two power modes are available for the secondary oscillator. These modes are selected with the SOSCPWR (OSCCON3<6>). Clearing this bit selects the lower Crystal Gain mode which provides lowest microcontroller power consumption. Setting this bit enables a higher Gain mode to support faster crystal start-up or crystals with higher ESR.

FIGURE 7-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for PIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	—	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	EXTOEN: Ext	ternal Oscillato	r Manual Requ	uest Enable bit				
	1 = EXTOS(C is explicitly e	nabled, operat	ing as specified	d by FEXTOSC	;		
hit C			tor Monuel Do					
DILO	HFUEN: HFINI USU USUBLIATOR MANUAL Request Enable bit							
	0 = HFINTO	SC could be e	nabled by requ	lesting periphe	ral		5)	
bit 5	MFOEN: MF	INTOSC (500	kHz/31.25 kHz	z) Oscillator M	Ianual Reques	t Enable bit (Derived from	
	HFINTOSC)							
	1 = MFINTOSC is explicitly enabled							
1.11.4			nabled by requ	lesting periphe				
Dit 4	1 - LEINTO	NUSC (31 KHz	2) Uscillator Ma	anual Request	Enable bit			
	1 = LFINTO	SC is explicitly SC could be ei	nabled by requ	estina periphe	ral			
bit 3	SOSCEN: Se	condary Oscill	ator Manual R	equest Enable	bit			
	1 = Seconda	ary Oscillator is	explicitly enal	bled, operating	as specified by	y SOSCPWR		
	0 = Seconda	ary Oscillator c	ould be enable	ed by requestin	g peripheral			
bit 2	ADOEN: ADO	C Oscillator Ma	nual Request	Enable bit				
	1 = ADC oscillation	cillator is explic	itly enabled					
	0 = ADC osci	cillator could be	e enabled by re	equesting perip	neral			
bit 1-0	Unimplemen	ted: Read as '	0'					

REGISTER 7-7: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

8.1 Clock Source

The input to the reference clock output can be selected using the CLKRCLK register.

8.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (EN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

8.2 **Programmable Clock Divider**

The module takes the clock input and divides it based on the value of the DIV<2:0> bits of the CLKRCON register (Register 8-1).

The following configurations can be made based on the DIV<2:0> bits:

- · Base Fosc value
- · Fosc divided by 2
- Fosc divided by 4
- Fosc divided by 8
- Fosc divided by 16
- · Fosc divided by 32
- Fosc divided by 64
- Fosc divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the DIV<2:0> bits should only be changed when the module is disabled (EN = 0).

8.3 Selectable Duty Cycle

The DC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the DC<1:0> bits should only be changed when the module is disabled (EN = 0).

Note: The DC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

8.4 Operation in Sleep Mode

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal. No change should occur in the module from entering or exiting from Sleep.

9.3.2 NATURAL ORDER (HARDWARE) PRIORITY

When more than one interrupt with the same user specified priority level are requested, the priority conflict is resolved by using a method called "Natural Order Priority". Natural order priority is a fixed priority scheme that is based on the Interrupt Vector Table. Table 9-2 shows the natural order priority and the interrupt vector number assigned for each source.

TABLE 9-2:INTERRUPT VECTORPRIORITY TABLE

Vector Number	Interrupt Source		Vector Number	Interrupt Source
0	Software Interrupt	1	42	DMA2SCNT
1	HLVD	1	43	DMA2DCNT
2	OSF]	44	DMA2OR
3	CSW		45	DMA2A
4	NVM		46	I2C2RX
5	SCAN		47	I2C2TX
6	CRC		48	I2C2
7	IOC		49	I2C2E
8	INT0		50	U2RX
9	ZCD		51	U2TX
10	AD		52	U2E
11	ADT		53	U2
12	C1	1	54	TMR3
13	SMT1		55	TMR3G
14	SMT1PRA	1	56	TMR4
15	SMT1PWA		57	CCP2
16	DMA1SCNT		58	—
17	DMA1DCNT		59	CWG2
18	DMA1OR		60	CLC2
19	DMA1A		61	INT2
20	SPI1RX		62	—
21	SPI1TX		63	_
22	SPI1		64	_
23	I2C1RX		65	_
24	I2C1TX		66	_
25	I2C1		67	_
26	I2C1E		68	_
27	U1RX		69	_
28	U1TX	1	70	TMR5
29	U1E	1	71	TMR5G
30	U1	1	72	TMR6
31	TMR0		73	CCP3
32	TMR1	1	74	CWG3
33	TMR1G		75	CLC3
34	TMR2	1	76	_
35	CCP1		77	_
36	_	İ	78	_
37	NCO	l	79	_
38	CWG1	1	80	CCP4
39	CLC1	1	81	CLC4
40	INT1	1	-	L
/1	C2	1		

The natural order priority scheme has vector interrupt 0 as the highest priority and vector interrupt 81 as the lowest priority.

For example, when two concurrently occurring interrupt sources that are both designated high priority using the IPRx register will be resolved using the natural order priority (i.e., the interrupt with a lower corresponding vector number will preempt the interrupt with the higher vector number).

The ability for the user to assign every interrupt source to high or low priority levels means that the user program can give an interrupt with a low natural order priority a higher overall priority level.

9.4 Interrupt Operation

All pending interrupts are indicated by the flag bit being equal to a '1' in the PIRx register. All pending interrupts are resolved using the priority scheme explained in Section 9.3 "Interrupt Priority".

Once the interrupt source to be serviced is resolved, the program execution vectors to the resolved interrupt vector addresses, as explained in **Section 9.2** "Interrupt Vector Table (IVT)". The vector number is also stored in the WREG register. Most of the flag bits are required to be cleared by the application software, but in some cases, device hardware clears the interrupt automatically. Some flag bits are read-only in the PIRx registers, these flags are a summary of the source interrupts and the corresponding interrupt flags of the source must be cleared.

A valid interrupt can be either a high or low priority interrupt when in main routine or a high priority interrupt when in low priority Interrupt Service Routine. Depending on order of interrupt requests received and their relative timing, the CPU will be in the state of execution indicated by the STAT bits of the INTCON1 register (Register 9-2).

The State machine shown in Figure 9-1 and the subsequent sections detail the execution of interrupts when received in different orders.

Note: The state of GIEH/L is not changed by the hardware when servicing an interrupt. The internal state machine is used to keep track of execution states. These bits can be manipulated in the user code resulting in transferring execution to the main routine and ignoring existing interrupts.

R-0/0	R-0/0	U-0	U-0	U-0	U-0	U-0	U-0
STAT	<1:0>	—	—	—	—	—	—
bit 7							bit 0
Legend:							
HC = Bit is clea	ared by hardwa	are					
						(0)	

REGISTER 9-2: INTCON1: INTERRUPT CONTROL REGISTER 1

HC = Bit is cleared by hardwareR = Readable bitW = Writable bitu = Bit is unchangedx = Bit is unknown'1' = Bit is set'0' = Bit is clearedq = Value depends on condition

bit 7-6 STAT<1:0>: Interrupt State Status bits

11 = High priority ISR executing, high priority interrupt was received while a low priority ISR was executing

10 = High priority ISR executing, high priority interrupt was received in main routine

01 = Low priority ISR executing, low priority interrupt was received in main routine

00 = Main routine executing

bit 5-0 Unimplemented: Read as '0'

14.2 CRC Functional Overview

The CRC module can be used to detect bit errors in the program memory using the built-in memory scanner or through user input RAM memory. The CRC module can accept up to a 16-bit polynomial with up to a 16-bit seed value. A CRC calculated check value (or checksum) will then be generated into the CRCACC<15:0> registers for user storage. The CRC module uses an XOR shift register implementation to perform the polynomial division required for the CRC calculation.

EXAMPLE 14-1: CRC EXAMPLE

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			HADR<	15:8> ^(1, 2)			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 14-16: SCANHADRH: SCAN HIGH ADDRESS HIGH BYTE REGISTER

bit 7-0 HADR<15:8>: Scan End Address bits^(1, 2)

Most Significant bits of the address at the end of the designated scan

Note 1: Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).

2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 14-17: SCANHADRL: SCAN HIGH ADDRESS LOW BYTE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			HADR<	<7:0>(1, 2)			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit		U = Unimplem	ented bit, read as	'0'	
u = Bit is unchan	iged	x = Bit is unknov	vn	-n/n = Value at	POR and BOR/V	alue at all other l	Resets
'1' = Bit is set		'0' = Bit is cleare	d				

bit 7-0 HADR<7:0>: Scan End Address bits^(1, 2)

Least Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - 2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

x = bit is unknown u = bit is unchanged

REGISTE	KEGISTER 15-1: DMAXCONU: DMAX CONTROL REGISTER 0									
R/W-0/0	R/W/HC-0/0	R/W/HS/HC-0/0	U-0	U-0	R/W/HC-0/0	U-0	R/HS/HC-0/0			
EN	SIRQEN	DGO	_	—	AIRQEN	—	XIP			
bit 7							bit 0			
Legend:	Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										

-n/n = Value at POR	0 = bit is cleared
and BOR/Value at all	
other Resets	

bit 7 EN: DMA Module Enable b	oit
-------------------------------	-----

- 1 = Enables module
- 0 = Disables module
- SIRQEN: Start of Transfer Interrupt Request Enable bits
 - 1 = Hardware triggers are allowed to start DMA transfers
 - 0 = Hardware triggers are not allowed to start DMA transfers

bit 5 DGO: DMA transaction bit

bit 6

- 1 = DMA transaction is in progress
- 0 = DMA transaction is not in progress
- bit 4-3 Unimplemented: Read as '0'

bit 2 AIRQEN: Abort of Transfer Interrupt Request Enable bits

- 1 = Hardware triggers are allowed to abort DMA transfers
- 0 = Hardware triggers are not allowed to abort DMA transfers

bit 1 Unimplemented: Read as '0'

- bit 0 XIP: Transfer in Progress Status bit
 - 1 = The DMAxBUF register currently holds contents from a read operation and has not transferred data to the destination.
 - 0 = The DMAxBUF register is empty or has successfully transferred data to the destination address

REGISTER 15-3: DMAxBUF: DMAx DATA BUFFER REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
BUF7	BUF6	BUF5	BUF4	BUF3	BUF2	BUF1	BUF0
bit 7							bit 0

Legend: R = Readable bit

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged		

bit 7-0 BUF<7:0>: DMA Internal Data Buffer bits

DMABUF<7:0>

These bits reflect the content of the internal data buffer the DMA peripheral uses to hold the data being moved from the source to destination.

REGISTER 15-4: DMAxSSAL: DMAx SOURCE START ADDRESS LOW REGISTER

	-0/0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			SSA<7:0>			
bit 7						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 SSA<7:0>: Source Start Address bits

REGISTER 15-5: DMAxSSAH: DMAx SOURCE START ADDRESS HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			SSA	<15:8>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 SSA<15:8>: Source Start Address bits

DMAxSIRQ DMAxAIRQ	Trigger Source	Level Triggered
0	Reserved	
1	LVD	No
2	OSF	No
3	CSW	No
4	NVM	No
5	SCAN	No
6	CRC	No
7	IOC	Yes
8	INT0	No
9	ZCD	No
10	AD	No
11	ADT	No
12	CMP1	No
13	SMT1	No
14	SMT1PRA	No
15	SMT1PWA	No
16	DMA1SCNT	No
17	DMA1DCNT	No
18	DMA10R	No
19	DMA1A	No
20	SPI1RX	Yes
21	SPI1TX	Yes
22	SPI1	Yes
23	I2C1RX	Yes
24	I2C1TX	Yes
25	I2C1	Yes
26	I2C1E	Yes
27	U1RX	Yes
28	U1TX	Yes
29	U1E	Yes
30	U1	No
31	TMR0	No
32	TMR1	No
33	TMR1G	No
34	TMR2	No
35	CCP1	No
36	Reserved	
37	NCO	No
38	CWG1	No
39	CLC1	No
40	INT1	No
41	CMP2	No

TABLE 15-2: DMAXSIRQ AND DMAXAIRQ INTERRUPT SOURCES	TABLE 15-2:	DMAxSIRQ AND DMAxAIRQ INTERRUPT SOURCES
---	-------------	---

DMAxSIRQ DMAxAIRQ	Trigger Source	Level Triggered
42	DMA2SCNT	No
43	DMA2DCNT	No
44	DMA2OR	No
45	DMA2A	No
46	I2C2RX	Yes
47	I2C2TX	Yes
48	I2C2	Yes
49	I2C2E	Yes
50	U2RX	Yes
51	U2TX	Yes
52	U2E	Yes
53	U2	No
54	TMR3	No
55	TMR3G	No
56	TMR4	No
57	CCP2	No
58	Reserved	
59	CWG2	No
60	CLC2	No
61	INT2	No
62	Reserved	
63	Reserved	
64	Reserved	
65	Reserved	
66	Reserved	
67	Reserved	
68	Reserved	
69	Reserved	1
70	TMR5	No
71	TMR5G	No
72	TMR6	No
73	CCP3	No
74	CWG3	No
75	CLC3	No
76	Reserved	
77	Reserved	
78	Reserved	
79	Reserved	
80	CCP4 No	
81	CLC4	NO
82	Reserved	
127		

Note 1: All trigger sources that are not Level-triggered are Edge-triggered.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSELx7	ANSELx6	ANSELx5	ANSELx4	ANSELx3	ANSELx2	ANSELx1	ANSELx0
bit 7							bit 0

REGISTER 16-4: ANSELX: ANALOG SELECT REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0''1' = Bit is set'0' = Bit is clearedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0

- ANSELx<7:0>: Analog Select on Pins Rx<7:0>
- 1 = Digital Input buffers are disabled.
- 0 = ST and TTL input devices are enabled

TABLE 16-5: ANALOG SELECT PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELA	ANSELA7	ANSELA6	ANSELA5	ANSELA4	ANSELA3	ANSELA2	ANSELA1	ANSELA0
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0
ANSELD ⁽¹⁾	ANSELD7	ANSELD6	ANSELD5	ANSELD4	ANSELD3	ANSELD2	ANSELD1	ANSELD0
ANSELE ⁽¹⁾	—	—	_	_	—	ANSELE2	ANSELE1	ANSELE0
ANSELF ⁽²⁾	ANSELF7	ANSELF6	ANSELF5	ANSELF4	ANSELF3	ANSELF2	ANSELF1	ANSELF0

Note 1: Unimplemented in PIC18(L)F26/27K42.

2: Unimplemented in PIC18(L)F26/45/46/47K42.

REGISTER 21-4: TxGATE: TIMERx GATE ISM REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	—	_			GSS<4:0>		
bit 7		·					bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **GSS<4:0>:** Timerx Gate Source Selection bits

	Timer1	Timer3	Timer5
655	Gate Source	Gate Source	Gate Source
11111-11011	Reserved	Reserved	Reserved
11010	CLC4_out	CLC4_out	CLC4_out
11001	CLC3_out	CLC3_out	CLC3_out
11000	CLC2_out	CLC2_out	CLC2_out
10111	CLC1_out	CLC1_out	CLC1_out
10110	ZCDOUT	ZCDOUT	ZCDOUT
10101	CMP2OUT	CMP2OUT	CMP2OUT
10100	CMP10UT	CMP1OUT	CMP10UT
10011	NCO10UT	NCO10UT	NCO10UT
10010-10001	Reserved	Reserved	Reserved
10000	PWM8OUT	PWM8OUT	PWM8OUT
01111	PWM7OUT	PWM7OUT	PWM7OUT
01110	PWM6OUT	PWM6OUT	PWM6OUT
01101	PWM5OUT	PWM5OUT	PWM5OUT
01100	CCP4OUT	CCP4OUT	CCP4OUT
01011	CCP3OUT	CCP3OUT	CCP3OUT
01010	CCP2OUT	CCP2OUT	CCP2OUT
01001	CCP10UT	CCP10UT	CCP10UT
01000	SMT1_match	SMT1_match	SMT1_match
00111	TMR6OUT (postscaled)	TMR6OUT (postscaled)	TMR6OUT (postscaled)
00110	TMR5 overflow	TMR5 overflow	Reserved
00101	TMR4OUT (postscaled)	TMR4OUT (postscaled)	TMR4OUT (postscaled)
00100	TMR3 overflow	Reserved	TMR3 overflow
00011	TMR2OUT (postscaled)	TMR2OUT (postscaled)	TMR2OUT (postscaled)
00010	Reserved	TMR1 overflow	TMR1 overflow
00001	TMR0 overflow	TMR0 overflow	TMR0 overflow
00000	Pin selected by T1GPPS	Pin selected by T3GPPS	Pin selected by T5GPPS

FIGURE 25-6: PERIOD AND DUTY-CYCLE REPEAT ACQUISITION MODE TIMING DIAGRAM

25.7 Interrupts

The SMT can trigger an interrupt under three different conditions:

- PW Acquisition Complete
- PR Acquisition Complete
- Counter Period Match

The interrupts are controlled by the PIR and PIE registers of the device.

25.7.1 PW AND PR ACQUISITION INTERRUPTS

The SMT can trigger interrupts whenever it updates the SMT1CPW and SMT1CPR registers, the circumstances for which are dependent on the SMT mode, and are discussed in each mode's specific section. The SMT1CPW interrupt is controlled by SMT1PWAIF and SMT1PWAIE bits in the respective PIR and PIE registers. The SMT1CPR interrupt is controlled by the SMT1PRAIF and SMT1PRAIE bits, also located in the respective PIR and PIE registers.

In synchronous SMT modes, the interrupt trigger is synchronized to the SMT1CLK. In Asynchronous modes, the interrupt trigger is asynchronous. In either mode, once triggered, the interrupt will be synchronized to the CPU clock.

25.7.2 COUNTER PERIOD MATCH INTERRUPT

As described in Section 25.1.2 "Period Match interrupt", the SMT will also interrupt upon SMT1TMR, matching SMT1PR with its period match limit functionality described in Section 25.3 "Halt Operation". The period match interrupt is controlled by SMT1IF and SMT1IE, located in the respective PIR and PIE registers.

26.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 26-14.

26.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

26.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWGxAS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event. The SHUTDOWN bit indicates when a shutdown condition exists. The bit may be set or cleared in software or by hardware.

26.10.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the specified override levels without software delay. The override levels are selected by the LSBD<1:0> and LSAC<1:0> bits of the CWGxAS0 register (Register 26-6). Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Pin selected by CWGxPPS
- Timer2 postscaled output
- Timer4 postscaled output
- · Timer6 postscaled output
- · Comparator 1 output
- Comparator 2 output
- · CLC2 output

Shutdown input sources are individually enabled by the ASxE bits of the CWGxAS1 register (Register 26-7).

Note:	Shutdown inputs are level sensitive, not
	edge sensitive. The shutdown state
	cannot be cleared, except by disabling
	auto-shutdown, as long as the shutdown
	input level persists.

26.10.1.3 Pin Override Levels

The levels driven to the CWG outputs during an autoshutdown event are controlled by the LSBD<1:0> and LSAC<1:0> bits of the CWGxAS0 register (Register 26-6). The LSBD<1:0> bits control CWGxB/ D output levels, while the LSAC<1:0> bits control the CWGxA/C output levels.

26.10.1.4 Auto-Shutdown Interrupts

When an auto-shutdown event occurs, either by software or hardware setting SHUTDOWN, the CWGxIF flag bit of the respective PIR register is set.

26.11 Auto-Shutdown Restart

After an auto-shutdown event has occurred, there are two ways to resume operation:

- · Software controlled
- Auto-restart

In either case, the shutdown source must be cleared before the restart can take place. That is, either the shutdown condition must be removed, or the corresponding ASxE bit must be cleared.

26.11.1 SOFTWARE-CONTROLLED RESTART

If the REN bit of the CWGxAS0 register is clear (REN = 0), the CWG module must be restarted after an auto-shutdown event through software.

Once all auto-shutdown sources are removed, the software must clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.

Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

26.11.2 AUTO-RESTART

If the REN bit of the CWGxAS0 register is set (REN = 1), the CWG module will restart from the shutdown state automatically.

Once all auto-shutdown conditions are removed, the hardware will automatically clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.

Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

FIGURE 33-7: $I^{2}C$ SLAVE, 7-BIT ADDRESS, RECEPTION WITH I2CxCNT (ACKTIE = 1, ADRIE = 0, WRIE = 0)

PIC18(L)F26/27/45/46/47/55/56/57K42

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	_				ACT<4:0>					
bit 7		•					bit 0			
-										
Legend:										
R = Readable b	it	W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'				
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clear								
L										
bit 7-5	Unimplemente	d: Read as '0'								
bit 4-0	ADACT<4:0>:	Auto-Conversion	Trigger Select	Bits						
	11111 = Reser	ved, do not use								
	•									
	•									
	11110 = Reser	ved do not use								
	11101 = Software write to ADPCH									
	11100 = Reserved, do not use									
	11011 = Software read of ADRESH									
	11010 = Software read of ADERRH									
	11001 = CLC4	_out								
	11000 = CLC3_out									
	10111 = CLC2	_out								
	10110 = CLC1	_out								
10101 = Logical OR of all Interrupt-on-change Interrupt Flags										
	10100 = CMP2	2_out								
	10011 = CIVIP 1 10010 = NCO1	l out								
	10001 = PWM8_out									
	10000 = PWM7_out									
	01111 = PWM6_out									
$01110 = PWM5_out$ $01101 = CCP4 trigger$										
01100 = CCP3_trigger										
	01011 = CCP2_trigger									
	01010 = CCP1_trigger									
	01001 = SM11	_uiggei								
	00111 = TMR5	5_overflow								
	00110 = TMR4	_postscaled								
	00101 = TMR3	3_overflow								
	00100 = IMR2	_posiscaled								
	00010 = TMR0	_overflow								
	00001 = Pin se	elected by ADAC	TPPS							
	00000 = Extern	nal Trigger Disab	led							

REGISTER 36-35: ADACT: ADC AUTO CONVERSION TRIGGER CONTROL REGISTER

Mnemonic, Operands		Description		Cycles	16-Bit Instruction Word				Status
					MSb			LSb	Affected
ADDULNK	k	Add FSR2 with (k) & ret	urn	2	1110	1000	11kk	kkkk	None
MOVSF	z _s , f _d	Move z _s (source) to	1st word	2	1110	1011	0 z z z	ZZZZ	None
		f _d (destination)	2nd word	2	1111	ffff	ffff	ffff	
MOVSFL	z _s , f _d	Opcode	1st word		0000	0000	0000	0010	None
		Move z _s (source) to	2nd word	3	1111	XXXZ	ZZZZ	zzff	
		f _d (full destination)	3rd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to	1st word		1110	1011	1zzz	ZZZZ	None
		z _d (destination)	2nd word	2	1111	XXXX	XZZZ	ZZZZ	
PUSHL	k	Push literal to POSTDEC2		1	1110	1010	kkkk	kkkk	None
SUBULNK	k	Subtract (k) from FSR2 & return		2	1110	1001	11kk	kkkk	None

TABLE 41-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3: Only available when extended instruction set is enabled.

4: f_s and f_d do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.

TABLE 44-26: I²C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic		Min. Max		Units	Conditions	
SP100*	Тнідн	Clock high time	100 kHz mode	4000	-	ns	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	600	—	ns	Device must operate at a minimum of 10 MHz	
			1 MHz module	260	—	ns	Device must operate at a minimum of 10 MHz	
SP101* Ti	TLOW	Clock low time	100 kHz mode	4700	-	ns	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1300	—	ns	Device must operate at a minimum of 10 MHz	
			1 MHz module	500	—	_	Device must operate at a minimum of 10 MHz	
SP102*	TR	SDA and SCL rise time	100 kHz mode	_	1000	ns		
			400 kHz mode	20	300	ns	CB is specified to be from 10-400 pF	
			1 MHz module	_	120	ns		
SP103*	TF	SDA and SCL fall time	100 kHz mode	_	250	ns		
			400 kHz mode	20 X (VDD/ 5.5V)	250	ns	CB is specified to be from 10-400 pF	
			1 MHz module	20 X (VDD/ 5.5V)	120	ns		
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns		
			400 kHz mode	0		ns		
			1 MHz module	0		ns		
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	(2)	
			400 kHz mode	100	_	ns		
			1 MHz module	50	—	ns		
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	_	3450	ns	(1)	
			400 kHz mode	_	900	ns		
			1 MHz module	_	450	ns		
SP110*	TBUF	Bus free time	100 kHz mode	4700	_	ns	Time the bus must be free	
			400 kHz mode	1300	—	ns	before a new transmission can start	
			1 MHz module	500	_	ns		
SP111	Св	Bus capacitive loading		—	400	pF		

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2