

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf27k42-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-6: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES BANK 61

2016-2017
Microchip
Technology
Inc.

0

3DFFh	—	3DDFh	U2FIFO	3DBFh	_	3D9Fh	—	3D7Fh	-	3D5Fh	I2C2CON2	3D3Fh	—	3D1Fh	—
3DFEh	—	3DDEh	U2BRGH	3DBEh	_	3D9Eh	—	3D7Eh	_	3D5Eh	I2C2CON1	3D3Eh	—	3D1Eh	—
3DFDh	—	3DDDh	U2BRGL	3DBDh	_	3D9Dh	—	3D7Dh	_	3D5Dh	I2C2CON0	3D3Dh	—	3D1Dh	—
3DFCh	—	3DDCh	U2CON2	3DBCh	_	3D9Ch	—	3D7Ch	I2C1BTO	3D5Ch	I2C2ADR3	3D3Ch	—	3D1Ch	SPI1CLK
3DFBh	—	3DDBh	U2CON1	3DBBh	_	3D9Bh	—	3D7Bh	I2C1CLK	3D5Bh	I2C2ADR2	3D3Bh	—	3D1Bh	SPI1INTE
3DFAh	U1ERRIE	3DDAh	U2CON0	3DBAh	_	3D9Ah	_	3D7Ah	I2C1PIE	3D5Ah	I2C2ADR1	3D3Ah	—	3D1Ah	SPI1INTF
3DF9h	U1ERRIR	3DD9h	_	3DB9h	_	3D99h	_	3D79h	I2C1PIR	3D59h	I2C2ADR0	3D39h	—	3D19h	SPI1BAUD
3DF8h	U1UIR	3DD8h	U2P3L	3DB8h	—	3D98h	—	3D78h	I2C1STAT1	3D58h	I2C2ADB1	3D38h	—	3D18h	SPI1TWIDTH
3DF7h	U1FIFO	3DD7h	_	3DB7h	_	3D97h	_	3D77h	I2C1STAT0	3D57h	I2C2ADB0	3D37h	—	3D17h	SPI1STATUS
3DF6h	U1BRGH	3DD6h	U2P2L	3DB6h	—	3D96h	—	3D76h	I2C1ERR	3D56h	I2C2CNT	3D36h	—	3D16h	SPI1CON2
3DF5h	U1BRGL	3DD5h		3DB5h	—	3D95h	—	3D75h	I2C1CON2	3D55h	I2C2TXB	3D35h	—	3D15h	SPI1CON1
3DF4h	U1CON2	3DD4h	U2P1L	3DB4h	—	3D94h	—	3D74h	I2C1CON1	3D54h	I2C2RXB	3D34h	—	3D14h	SPI1CON0
3DF3h	U1CON1	3DD3h		3DB3h	—	3D93h	—	3D73h	I2C1CON0	3D53h		3D33h	—	3D13h	SPI1TCNTH
3DF2h	U1CON0	3DD2h	U2TXB	3DB2h	—	3D92h	—	3D72h	I2C1ADR3	3D52h		3D32h	—	3D12h	SPI1TCNTL
3DF1h	U1P3H	3DD1h		3DB1h	—	3D91h	—	3D71h	I2C1ADR2	3D51h		3D31h	—	3D11h	SPI1TXB
3DF0h	U1P3L	3DD0h	U2RXB	3DB0h	—	3D90h	—	3D70h	I2C1ADR1	3D50h		3D30h	—	3D10h	SPI1RXB
3DEFh	U1P2H	3DCFh	_	3DAFh	—	3D8Fh	_	3D6Fh	I2C1ADR0	3D4Fh	_	3D2Fh	_	3D0Fh	_
3DEEh	U1P2L	3DCEh		3DAEh	—	3D8Eh	_	3D6Eh	I2C1ADB1	3D4Eh	_	3D2Eh	_	3D0Eh	
3DEDh	U1P1H	3DCDh		3DADh	—	3D8Dh	_	3D6Dh	I2C1ADB0	3D4Dh	_	3D2Dh	_	3D0Dh	
3DECh	U1P1L	3DCCh		3DACh	—	3D8Ch	_	3D6Ch	I2C1CNT	3D4Ch	_	3D2Ch	_	3D0Ch	
3DEBh	U1TXCHK	3DCBh		3DABh	—	3D8Bh	_	3D6Bh	I2C1TXB	3D4Bh	_	3D2Bh	_	3D0Bh	
3DEAh	U1TXB	3DCAh		3DAAh	—	3D8Ah	—	3D6Ah	I2C1RXB	3D4Ah	—	3D2Ah	—	3D0Ah	—
3DE9h	U1RXCHK	3DC9h		3DA9h	—	3D89h	—	3D69h	—	3D49h	—	3D29h	—	3D09h	—
3DE8h	U1RXB	3DC8h		3DA8h	—	3D88h	—	3D68h	—	3D48h	—	3D28h	—	3D08h	—
3DE7h		3DC7h		3DA7h	—	3D87h	_	3D67h	—	3D47h	_	3D27h	_	3D07h	
3DE6h		3DC6h		3DA6h	—	3D86h	_	3D66h	I2C2BTO	3D46h	_	3D26h	_	3D06h	
3DE5h		3DC5h		3DA5h	—	3D85h	_	3D65h	I2C2CLK	3D45h	_	3D25h	_	3D05h	
3DE4h		3DC4h		3DA4h	—	3D84h	_	3D64h	I2C2PIE	3D44h	_	3D24h	_	3D04h	
3DE3h		3DC3h		3DA3h	—	3D83h	_	3D63h	I2C2PIR	3D43h	_	3D23h	_	3D03h	
3DE2h	U2ERRIE	3DC2h	_	3DA2h	—	3D82h	—	3D62h	I2C2STAT1	3D42h	—	3D22h	_	3D02h	—
3DE1h	U2ERRIR	3DC1h	_	3DA1h	—	3D81h	—	3D61h	I2C2STAT0	3D41h	—	3D21h	_	3D01h	—
3DE0h	U2UIR	3DC0h	_	3DA0h	—	3D80h		3D60h	I2C2ERR	3D40h	—	3D20h	—	3D00h	—
uond.	Unimplem	ented data	a memory location	ns and red	nisters read as '0'										

Lege Note 1:

Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

4.8.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom section of Bank 0, this mode maps the contents from a user defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see Section 4.5.4 "Access Bank"). An example of Access Bank remapping in this addressing mode is shown in Figure 4-8.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use direct addressing as before.

4.9 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 41.2 "Extended Instruction Set**".

FIGURE 4-8: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

10.4 Register Definitions: Voltage Regulator Control

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	
—	—	—	—	—		VREGPM	Reserved	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unchanged x		x = Bit is unkr	a = Bit is unknown -n/n = Value at POR and BOR/Value at all other					
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-2	Unimplement	ted: Read as ')'					
bit 1	VREGPM: Vo	Itage Regulato	r Power Mode	Selection bit				
	1 = Low-Pow	er Sleep mode	enabled in SI	eep ⁽²⁾				
	Draws lov	west current in	Sleep, slower	wake-up				
	0 = Normal P Draws hig	ower mode en gher current in	abled in Sleep Sleep, faster v	wake-up				
bit 0	Reserved: Re	ead as '1'. Mair	ntain this bit se	et.				

REGISTER 10-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

Note 1: Not present in LF parts.

2: See Section 44.0 "Electrical Specifications".

13.1.5 ERASING PROGRAM FLASH MEMORY

The minimum erase block is 64 words (refer to Table 5-4). Only through the use of an external programmer, or through ICSP™ control, can larger blocks of program memory be bulk erased. Word erase in the program memory array is not supported.

For example, when initiating an erase sequence from a microcontroller with erase row size of 64 words, a block of 64 words (128 bytes) of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The NVMCON1 register commands the erase operation. The REG<1:0> bits must be set to point to the Program Flash Memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

The NVM unlock sequence described in **Section 13.1.4 "NVM Unlock Sequence**" should be used to guard against accidental writes. This is sometimes referred to as a long write.

A long write is necessary for erasing program memory. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer.

13.1.5.1 Program Flash Memory Erase Sequence

The sequence of events for erasing a block of internal program memory is:

- 1. REG bits of the NVMCON1 register point to PFM
- 2. Set the FREE and WREN bits of the NVMCON1 register
- 3. Perform the unlock sequence as described in Section 13.1.4 "NVM Unlock Sequence"

If the PFM address is write-protected, the WR bit will be cleared and the erase operation will not take place, WRERR is signaled in this scenario.

The operation erases the memory row indicated by masking the LSBs of the current TBLPTR.

While erasing PFM, CPU operation is suspended and it resumes when the operation is complete. Upon completion the WR bit is cleared in hardware, the NVMIF is set and an interrupt will occur if the NVMIE bit is also set.

Write latch data is not affected by erase operations and WREN will remain unchanged.

Note 1: If a write or erase operation is terminated by an unexpected event, WRERR bit will set which user can check to decide whether a rewrite of the location(s) is needed.

- 2: WRERR is set if WR is written to '1' while TBLPTR points to a write-protected address.
- **3:** WRERR is set if WR is written to '1' while TBLPTR points to an invalid address location (Table 13-1).

R/W-0/	0 R/W-0/0	R/W/HC-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0
EN	TRIGEN	SGO	_	—	MREG	BURSTMD	BUSY
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimpler	mented bit, rea	d as '0'	
u = Bit is u	inchanged	x = Bit is unkno	own	-n/n = Value a	at POR and BC	OR/Value at all of	ther Resets
'1' = Bit is	set	'0' = Bit is clear	red	HC = Bit is cl	eared by hardv	vare	
bit 7	EN: Scanner 1 = Scanner 0 = Scanner	Enable bit ⁽¹⁾ is enabled is disabled					
bit 6	TRIGEN: Sca 1 = Scanner 0 = Scanner Refer Table 1	anner Trigger En trigger is enableo trigger is disableo 4-1.	able bit ⁽²⁾ 1 d				
bit 5	SGO: Scann 1 = When the to the CI 0 = Scanner	er GO bit ^(3, 4) CRC is ready, th RC peripheral. operations will no	e Memory ree ot occur	gion set by the N	MREG bit will b	e accessed and o	data is passed
bit 4-3	Unimplemer	nted: Read as '0'					
bit 2	MREG: Scan 1 = Scanner 0 = Scanner	iner Memory Reg address points to address points to	ion Select bi Data EEPR Program Fla	t ⁽²⁾ OM ash Memory			
bit 1	BURSTMD: \$ 1 = Memory a 0 = Memory a Refer Table 1	Scanner Burst M access request to access request to 4-1.	ode bit o the CPU Ar o the CPU Ar	biter is always t biter is depende	rue ent on the CRC	C request and Tri	igger
bit 0	BUSY: Scan 1 = Scanner 0 = Scanner	ner Busy Indicato cycle is in proces cycle is compete	or bit ss (or never sta	irted)			
Note 1: 2: 3:	Setting EN = 1 (S Scanner trigger se This bit can be cle occurring) or when	CANCON0 regist election can be so ared in software n CRCGO = 0 (C	ter) does not et using the S . It is cleared RCCON0 reg	affect any other CANTRIG regi in hardware wh gister).	r register conte ster. nen LADR>HAI	nt. DR (and a data c	cycle is not

REGISTER 14-11: SCANCONO: SCANNER ACCESS CONTROL REGISTER 0

- - 4: CRCEN and CRCGO bits (CRCCON0 register) must be set before setting the SGO bit.

x = bit is unknown u = bit is unchanged

KEGISTER 15-1: DMAXCONU: DMAX CONTROL REGISTER U											
R/W-0/0	R/W/HC-0/0	R/W/HS/HC-0/0	U-0	U-0	R/W/HC-0/0	U-0	R/HS/HC-0/0				
EN	SIRQEN	DGO	_	—	AIRQEN	—	XIP				
bit 7							bit 0				
Legend:											
R = Reada	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										

-n/n = Value at POR	0 = bit is cleared
and BOR/Value at all	
other Resets	

bit 7 EN: DMA Module Enable b	oit
-------------------------------	-----

- 1 = Enables module
- 0 = Disables module
- SIRQEN: Start of Transfer Interrupt Request Enable bits
 - 1 = Hardware triggers are allowed to start DMA transfers
 - 0 = Hardware triggers are not allowed to start DMA transfers

bit 5 DGO: DMA transaction bit

bit 6

- 1 = DMA transaction is in progress
- 0 = DMA transaction is not in progress
- bit 4-3 Unimplemented: Read as '0'

bit 2 AIRQEN: Abort of Transfer Interrupt Request Enable bits

- 1 = Hardware triggers are allowed to abort DMA transfers
- 0 = Hardware triggers are not allowed to abort DMA transfers

bit 1 Unimplemented: Read as '0'

- bit 0 XIP: Transfer in Progress Status bit
 - 1 = The DMAxBUF register currently holds contents from a read operation and has not transferred data to the destination.
 - 0 = The DMAxBUF register is empty or has successfully transferred data to the destination address

REGISTER 15-6: DMAxSSAU: DMAx SOURCE START ADDRESS UPPER REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			SSA<2	1:16>		
bit 7							bit 0

Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR 1 = bit is set 0 = bit is cleared x = bit is unknown and BOR/Value at all u = bit is unchanged u = bit is unchanged

bit 7-0 **SSA<21:16>:** Source Start Address bits

REGISTER 15-7: DMAxSPTRL: DMAx SOURCE POINTER LOW REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SPT	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	s '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 15-0 SPTR<7:0>: Current Source Address Pointer

REGISTER 15-8: DMAxSPTRH: DMAx SOURCE POINTER HIGH REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
			SPTF	R<15:8>							
bit 7	bit 7 bit (

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 5-0 SPTR<15:8>: Current Source Address Pointer

© 2017 Microchip Technology Inc.

REGISTER 20-3: TMR0L: TIMER0 COUNT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMR0	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMR0L<7:0>: TMR0 Counter bits <7:0>

REGISTER 20-4: TMR0H: TIMER0 PERIOD REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | TMR0H | 1<15:8> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 When MD16 = 0 **PR0<7:0>:**TMR0 Period Register Bits <7:0> When MD16 = 1 **TMR0H<15:8>:** TMR0 Counter bits <15:8>

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
T0CON0	EN	_	OUT	MD16		OUTPS<3:0>				
T0CON1		CS<2:0>		ASYNC		CKPS<3:0>				
TMR0L				TMR0	L<7:0>	303				
TMR0H				TMR0H	l<15:8>	303				

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Timer0.

	-			-			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC	CKPOL	CKSYNC			MODE<4:0>		
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is :	set	'0' = Bit is clea	ared				
bit 7	PSYNC: Time	erx Prescaler S	ynchronizatio	n Enable bit ^{(1, 2}	2)		
	1 = TxTMR	Prescaler Outpu	ut is synchroni	zed to Fosc/4	- / 4		
1.1.0		Prescaler Outpi	ut is not synch		C/4		
DIT 6	1 = Falling e	erx Clock Polar	ity Selection t	ol[(°)			
	0 = Rising e	dge of input clo	ck clocks time	r/prescaler			
bit 5	CKSYNC: Ti	merx Clock Syr	hchronization I	Enable bit ^(4, 5)			
	1 = ON regis	ster bit is synch	ronized to T21	MR_clk input			
	0 = ON regis	ster bit is not sy	nchronized to	T2TMR_clk inp	but		
bit 4-0	MODE<4:0>	: Timerx Contro	I Mode Select	ion bits ^(6,7)			
	See Table 22-	-1 for all operatir	ng modes.				
Note 1:	Setting this bit er	nsures that read	ling TxTMR w	ill return a valid	l data value.		
2:	When this bit is '	1', Timer2 cann	ot operate in S	Sleep mode.			
3:	CKPOL should n	ot be changed	while ON = 1.				
4:	Setting this bit er	nsures glitch-fre	e operation w	hen the ON is e	enabled or disa	bled.	
5:	When this bit is s set.	et then the time	er operation wi	Il be delayed by	y two TxTMR ir	put clocks afte	er the ON bit is
6:	Unless otherwise affecting the value	e indicated, all ie of TxTMR).	modes start u	upon ON = 1 a	nd stop upon (ON = 0 (stops	occur without

REGISTER 22-6: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TxTMR = TxPR, the next clock clears TxTMR, regardless of the operating mode.

26.2.4.2 Asynchronous Steering Mode

In Asynchronous mode (MODE<2:0> bits = 000, Register 26-1), steering takes effect at the end of the instruction cycle that writes to STR. In Asynchronous Steering mode, the output signal may be an incomplete waveform (Figure 26-10). This operation may be useful when the user firmware needs to immediately remove a signal from the output pin.

FIGURE 26-10: EXAMPLE OF ASYNCHRONOUS STEERING (MODE<2:0>= 000)

26.2.4.3 Start-up Considerations

The application hardware must use the proper external pull-up and/or pull-down resistors on the CWG output pins. This is required because all I/O pins are forced to high-impedance at Reset.

The POLy bits (Register 26-2) allow the user to choose whether the output signals are active-high or active-low.

© 2017 Microchip Technology Inc.

26.12 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as system clock and CWG clock, when the CWG is enabled and the input source is active, then the CPU will go idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

26.13 Configuring the CWG

- Ensure that the TRIS control bits corresponding to CWG outputs are set so that all are configured as inputs, ensuring that the outputs are inactive during setup. External hardware should ensure that pin levels are held to safe levels.
- 2. Clear the EN bit, if not already cleared.
- Configure the MODE<2:0> bits of the CWGx-CON0 register to set the output operating mode.
- 4. Configure the POLy bits of the CWGxCON1 register to set the output polarities.
- 5. Configure the ISM<4:0> bits of the CWGxISM register to select the data input source.
- 6. If a steering mode is selected, configure the STRx bits to select the desired output on the CWG outputs.
- Configure the LSBD<1:0> and LSAC<1:0> bits of the CWGxASD0 register to select the autoshutdown output override states (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state).
- If auto-restart is desired, set the REN bit of CWGxAS0.
- 9. If auto-shutdown is desired, configure the ASxE bits of the CWGxAS1 register to select the shutdown source.
- 10. Set the desired rising and falling dead-band times with the CWGxDBR and CWGxDBF registers.
- 11. Select the clock source in the CWGxCLKCON register.
- 12. Set the EN bit to enable the module.
- 13. Clear the TRIS bits that correspond to the CWG outputs to set them as outputs.

If auto-restart is to be used, set the REN bit and the SHUTDOWN bit will be cleared automatically. Otherwise, clear the SHUTDOWN bit in software to start the CWG.

GURE 28-2	2: FDC OUTPUT MODE OPERATION DIAGRAM
NCOx Clock Source	
NCOx Increment Value	4000h 4000h
NCOx Accumulator Value	00000h X 04000h X 08000h X 06000h X 00000h X 04000h X 08000h X 06000h X 04000h X 04000h X 08000h X 04000h X 08000h
NCO_overflow	
NCO_interrupt	
NCOx Output FDC Mode	
NCOx Output PF Mode NCOxPWS = - 000	
NCOx Output PF Mode NCOxPWS = - 001	

33.1 I²C Features

- Inter-Integrated Circuit (I²C) interface supports the following modes in hardware:
 - Master mode
 - Slave mode with byte NACKing
 - Multi-Master mode
- · Dedicated Address, Receive and Transmit buffers
- · Up to four Slave addresses matching
- General Call address matching
- 7-bit and 10-bit addressing with masking
- Start, Restart, Stop, Address, Write, and ACK Interrupts
- Clock Stretching hardware for:
 - RX Buffer Full
 - TX Buffer Empty
 - After Address, Write, and ACK
- Bus Collision Detection with arbitration
- Bus Timeout Detection
- SDA hold time selection
- I²C, SMBus 2.0, and SMBus 3.0 input level selections

33.2 I²C Module Overview

The I²C module provides a synchronous interface between the microcontroller and other I²C-compatible devices using the two-wire I²C serial bus. Devices communicate in a master/slave environment. The I²C bus specifies two signal connections:

- Serial Clock (SCL)
- Serial Data (SDA)

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors to the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one. Every transaction on the I²C bus has to be initiated by the Master.

Figure 33-2 shows a typical connection between a master and more than one slave.

FIGURE 33-2: I²C MASTER/SLAVE CONNECTIONS

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set HC =	Hardware clea	r

REGISTER 33-12: I2CxADR0: I²C ADDRESS 0 REGISTER

bit 7-0	ADR<7-0>: Address 1 bits
	MODE<2:0> = 00x 11x - 7-bit Slave/Multi-Master Modes
	ADR0<7:1>:7-bit Slave Address
	ADR0<0>: Unused in this mode; bit state is a don't care

MODE<2:0> = 01x - 10-bit Slave Modes ADR0<7:0>:Eight Least Significant bits of 10-bit address 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
I2CxBTO	—	—	_	-	—		BTO<2:0>		582
I2CxCLK	—	—	—	_	—		CLK<2:0>		581
I2CxPIE	CNTIE	ACKTIE	—	WRIE	ADRIE	PCIE	588		
I2CxPIR	CNTIF	ACKTIF	—	WRIF	ADRIF	PCIF	RSCIF	SCIF	587
I2CxERR	—	BTOIF	BCLIF	NACKIF	—	BTOIE	BCLIE	NACKIE	585
I2CxSTAT0	BFRE	SMA	MMA	R	D	—	—	—	583
I2CxSTAT1	TXWE	_	TXBE	_	RXRE	CLRBF	—	RXBF	584
I2CxCON0	EN	RSEN	S	CSTR	MDR		MODE<2:0>		577
I2CxCON1	ACKCNT	ACKDT	ACKSTAT	ACKT	—	RXOV	TXU	CSD	579
I2CxCON2	ACNT	GCEN	FME	ADB	SDAHT	<3:2>	BFRE	T<1:0>	580
I2CxADR0				A	DR<7:0>				589
I2CxADR1	ADR<7:1> —								590
I2CxADR2	ADR<7:0>								591
I2CxADR3				AI	DR<7:1>			—	592
I2CxADB0				AI	DB<7:0>				593
I2CxADB1				AI	DB<7:0>				594
I2CxCNT				CI	NT<7:0>				586
I2CxPIR	CNTIF	ACKTIF	—	WRIF	ADRIF	PCIF	RSCIF	SCIF	587
I2CxPIE	CNTIE	ACKTIE		WRIE	ADRIE	PCIE	RSCIE	SCIE	588
I2CxADR0	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	589
I2CxADR1	ADR14	ADR13	ADR12	ADR11	ADR10	ADR9	ADR8	_	590
I2CxADR2	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	591
I2CxADR3	ADR14	ADR13	ADR12	ADR11	ADR10	ADR9	ADR8	_	592
I2CxADB0	ADB7	ADB6	ADB5	ADB4	ADB3	ADB2	ADB1	ADB0	593
I2CxADB1	ADB7	ADB6	ADB5	ADB4	ADB3	ADB2	ADB1	ADB0	594

TABLE 33-18: SUMMARY OF REGISTERS FOR I²C 8-BIT MACRO

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the I^2C module.

INCF	Incremen	t f		INCI	sz	Increment	t f, skip if 0	
Syntax:	INCF f{,c	d {,a}}		Synta	ax:	INCFSZ f	{,d {,a}}	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	0 ≤ f ≤ 255 Operar d ∈ [0,1] a ∈ [0,1]		ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow de	est		Oper	ation:	$(f) + 1 \rightarrow de$	est,	
Status Affected:	C, DC, N,	OV, Z		01-1	- Aff t 1.	skip if result	t = 0	
Encoding:	0010	10da ff	ff ffff	Statu	s Anected:	None	11.1 66	
Description: Words: Cycles: Q Cycle Activity: Q1	ng:001010dafffffffftion:The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Literal eral Offset Mode" for details.1121Q2Q3Q4DecodeReadProcessWrite to		Enco	ding: ription:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.			
Decode	Read	Process	Write to	Word	ls:	1		
	register 'f'	Data	destination	Cycle	es:	1(2) Note: 3 cyc by a	cles if skip and 2-word instru	d followed ction.
Example.	tion	CNT, 1, 0		QC	vcle Activity:	·		
CNT	= FFh				Q1	Q2	Q3	Q4
Z C	= 0 = ? - 2				Decode	Read register 'f'	Process Data	Write to destination
After Instruction	n			lf sk	ip:	Ū.		
CNT	= 00h				Q1	Q2	Q3	Q4
C	= 1				No	No	No	No
DC	= 1			الح مار	operation	operation	operation	operation
				IT SK				04
					No	No	No	No
					operation	operation	operation	operation
					No	No	No	No
					operation	operation	operation	operation
				Exan	<u>nple</u> :	HERE I NZERO : ZERO :	INCFSZ CN	IT, 1, 0
					Before Instruct PC After Instruction CNT	ction = Address on = CNT + 1	; (HERE)	
					PC	= 0; = Address	(ZERO)	
					If CNT PC	≠ 0; = Address	(NZERO)	

41.2.2 EXTENDED INSTRUCTION SET

ADDULNK	Add Lite	eral to FS	SR2 and	Return		
Syntax:	ADDULNK k					
Operands:	$0 \le k \le 63$					
Operation:	FSR2 + k	$x \rightarrow FSR2$,			
	$(TOS) \rightarrow$	PC				
Status Affected:	None					
Encoding:	1110 1000 11kk kkkk					
Description:	The 6-bit contents executed TOS. The instru- execute; the secor This may case of th where f = only on F	literal 'k' i of FSR2 by loadin uction take a NOP is p nd cycle. be thoug ne ADDFS: 3 (binary SR2.	s added to A RETURN g the PC v ses two cyco performed ht of as a R instruction '11'); it op	o the is then with the cles to during special on, operates		
Words:	1					
Cycles:	2					

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No No		No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

Before Instruction							
FSR2	=	03FFh					
PC	=	0100h					
After Instruction							
FSR2	=	0422h					
PC	=	(TOS)					

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

TABLE 44-9: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS (CONTINUED)

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS21	F _{CY}	Instruction Frequency	—	Fosc/4	-	MHz	$\langle \rangle$		
OS22	T _{CY}	Instruction Period	62.5	1/F _{CY}	_	ns			

These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note** 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 10.0 "Power-Saving Operation Modes".
 - 3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 44.2 "Standard Operating Conditions".
 - 4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used

FIGURE 44-17: SPI SLAVE MODE TIMING (CKE = 1)

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Microchip Technology Drawing C04-103D Sheet 1 of 2