

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf27k42-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P
Ĭ
Q
18
3(
F
Ň
6
12
Z
4
<u>с</u>
14
9
4
71
3
С С
6
X
2
Σ
Ň

O/I	48-Pin TQFP	48-Pin UQFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	I ² C	IdS	UART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RC2	40	40	ANC2	—	-	-	—	—	—	—	_	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	_	—	—	—	IOCC2	-
RC3	41	41	ANC3	_	-	—	—	SCL1 ^(3,4)	SCK1 ⁽¹⁾	—		T2IN ⁽¹⁾	-	_	_	_	—	IOCC3	—
RC4	46	46	ANC4	_	_	-	—	SDA1 ^(3,4)	SDI1 ⁽¹⁾	-	_	-	—	_	_	_	_	IOCC4	_
RC5	47	47	ANC5	—	_	—	—	_	—	—	_	T4IN ⁽¹⁾	—	_	—	—	—	IOCC5	_
RC6	48	48	ANC6	_	_	—	_	—	_	CTS1 ⁽¹⁾	-	-	—		_	_	_	IOCC6	_
RC7	1	1	ANC7	_	_	—	_	—	_	RX1 ⁽¹⁾	-	-	—	-	_	_	_	IOCC7	—
RD0	42	42	AND0	_	_	—	—	(4)	_	_		_	—	l	_	_	_	_	_
RD1	43	43	AND1	-	-	-	—	(4)	_	_		-	_		—	-	—	—	_
RD2	44	44	AND2	_	_	—	—	—	—	_		_	—	l	_	—	_	_	_
RD3	45	45	AND3	_	_	_	_	—	_	_		_	_		_	_	_	_	_
RD4	2	2	AND4	_	_	_	—	—	—	—		_	—		_	—	—	_	—
RD5	3	3	AND5	-	_	—	-	—	_	—		-	—		_	_	_	-	_
RD6	4	4	AND6	_	_	—	_	—	_	_	-	-	—		_	_	_	_	_
RD7	5	5	AND7	_	_	—	_	—	_	—	-	-	—	-	_	_	_	_	—
RE0	27	27	ANE0	_	_	—	_	—	_	_	-	-	—		_	_	_	_	_
RE1	28	28	ANE1	_	_	—	—	—	_	—	-	-	—	-	_	_	_	_	—
RE2	29	29	ANE2	_	_	—	_	—	_	_	-	-	—		_	_	_	_	_
RE3	20	20	—	-	_	-	-	-	-	-	—	-	-	-	-	—	—	IOCE3	MCLR VPP
RF0	36	36	ANF0	_	_	-	_	-	_	_	_	-	_	_	-	_	_	_	—
RF1	37	37	ANF1	_	—	—	_	_	_	_		_	_		—	_	_	_	_
RF2	38	38	ANF2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
RF3	39	39	ANF3	_	—	—	_	—		_	_	_	_	-	—	_	_	_	_
RF4	12	12	ANF4	_	_	_	_	_	—	_	l	_	_	l	—	_	_	_	_
RF5	13	13	ANF5	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_
RF6	14	14	ANF6	_	_	_	_	_		_		_	_		_	_	_	_	_
RF7	15	15	ANF7	—	_	_	-	_	—	_		_	_	l	—	_	—	_	_
Note	1:											other PORTx pin							

48-PIN ALLOCATION TABLE FOR PIC18(L)F5XK42 (CONTINUED)

2: All output signals shown in this row are PPS remappable.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins can be configured for I²C and SMBTM 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4/RD0/RD1 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

TABLE 3:

Features	PIC18(L)F26K42	PIC18(L)F27K42	PIC18(L)F45K42	PIC18(L)F46K42	PIC18(L)F47K42	PIC18(L)F55K42	PIC18(L)F56K42	PIC18(L)F57K42
Program Memory (Bytes)	65536	131072	32768	65536	131072	32768	65536	131072
Program Memory (Instructions)	32768	65536	16384	32768	65536	16384	32768	65536
Data Memory (Bytes)	4096	8192	2048	4096	8192	2048	4096	8192
Data EEPROM Memory (Bytes)	1024	1024	256	1024	1024	256	1024	1024
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	48-pin TQFP 48-pin UQFN	48-pin TQFP 48-pin UQFN	48-pin TQFP 48-pin UQFN
I/O Ports	A,B,C,E ⁽¹⁾	A,B,C,E ⁽¹⁾	A,B,C,D, E ⁽¹⁾	A,B,C,D, E ⁽¹⁾	A,B,C,D, E ⁽¹⁾	A,B,C,D, E ⁽¹⁾ , F	A,B,C,D, E ⁽¹⁾ , F	A,B,C,D, E ⁽¹⁾ , F
12-Bit Analog-to-Digital Conversion Module (ADC ²) with Computation Accelerator	5 internal 24 external	5 internal 24 external	5 internal 35 external	5 internal 35 external	5 internal 35 external	5 internal 43 external	5 internal 43 external	5 internal 43 external
Capture/Compare/ PWM Modules (CCP)		·			4			
10-Bit Pulse-Width Modulator (PWM)					4			
Timers (16-/8-bit)				4	/3			
Serial Communications			1 UA	RT, 1 UART with DM	/IX/DALI/LIN, 2 I ² C, ²	1 SPI		
Complementary Waveform Generator (CWG)					3			
Zero-Cross Detect (ZCD)					1			
Data Signal Modulator (DSM)					1			
Signal Measurement Timer (SMT)					1			
5-bit Digital to Analog Converter (DAC)					1			
Numerically Controlled Oscillator (NCO)					1			

3.2.3 ISR PRIORITY > PERIPHERAL PRIORITY > MAIN PRIORITY

In this case, interrupt routines and peripheral operation (DMAx, Scanner) will stall the CPU. Interrupt will preempt peripheral operation. This results in lowest interrupt latency and highest throughput for the peripheral to access the memory.

3.2.4 PERIPHERAL 1 PRIORITY > ISR PRIORITY > MAIN PRIORITY > PERIPHERAL 2 PRIORITY

In this case, the Peripheral 1 will stall the execution of the CPU. However, Peripheral 2 can access the memory in cycles unused by Peripheral 1.

The operation of the System Arbiter is controlled through the following registers:

REGISTER 3-1: ISRPR: INTERRUPT SERVICE ROUTINE PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			—		ISRPR<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 ISRPR<2:0>: Interrupt Service Routine Priority Selection bits

REGISTER 3-2: MAINPR: MAIN ROUTINE PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-1/1
—	—	—	—	—	I	MAINPR<2:0>	
bit 7							bit 0

Legend:

3		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 MAINPR<2:0>: Main Routine Priority Selection bits

REGISTER 3-3: DMA1PR: DMA1 PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0
—	—	—	_	_	[DMA1PR<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 DMA1PR<2:0>: DMA1 Priority Selection bits

REGISTER 5	-6: CONFIG	SURATION V	VORD 3H (30 0005	h)									
U-1	U-1	R/W-1	R/W-1	R/V	V-1 R/W-1	R/W-1	R/W-1							
_	—	V	WDTCCS<2:	0>		WDTCWS<2	:0>							
bit 7							bit							
Legend:														
R = Readable	bit	W = Writable	hit	11 = 11	nimplemented bit,	read as '1'								
-n = Value for		'1' = Bit is set			it is cleared	x = Bit is u	nknown							
			•											
bit 7-6	Unimplement	ed: Read as '1	,											
bit 5-3	WDTCCS<2:0	>: WDT Input	Clock Select	or bits										
	If WDTE<1:0>	Fuses = 2'b0	00:											
	These bits are	ignored.												
	Otherwise:	Otherwise: 000 = WDT reference clock is the 31.0 kHz LFINTOSC												
	001 = WDT re 010 = WDT re				TOSC									
	010 – WDTTe 011 = Reserve													
	•		.1											
	•													
	110 = Reserve	ed (default to L	FINTOSC)											
	111 = Software	e control												
bit 2-0	WDTCWS<2:0	>: WDT Wind	ow Select bit	S										
			Wind	ow at PC	DR	Software	Keyed							
	WDTCWS<2:0)> Value	Window Percent o		Window Openie Percent of Tim		Access Required?							
	000	000	87.	5	12.5									
	001	001	75		25									
	010	010	62.	5	37.5									
	011	011	50		50	No	Yes							

37.5

25

n/a

n/a

62.5

75

100 100

Yes

© 2017 Microchip Technology Inc.

100

101

110

111

100

101

111

111

No

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	—	—	—	—	—	_	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit
	If BOREN ≠ 01:
	SBOREN is read/write, but has no effect on the BOR.
	<u>If BOREN = 01:</u>
	1 = BOR Enabled
	0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'

BORRDY: Brown-out Reset Circuit Ready Status bit

bit 0

- 1 = The Brown-out Reset Circuit is active and armed
- 0 = The Brown-out Reset Circuit is disabled or is warming up

9.7.1 ABORTING INTERRUPTS

If the last instruction before the interrupt controller vectors to the ISR from main routine clears the GIE, PIE or PIR bit associated with the interrupt, the controller executes one force NOP cycle before it returns to the main routine.

Figure 9-10 illustrates the sequence of events when a peripheral interrupt is asserted and then cleared on the last executed instruction cycle.

If the GIE, PIE or PIR bit associated with the interrupt is cleared prior to vectoring to the ISR, then the controller continues executing the main routine.

FIGURE 9-10: INTERRUPT TIMING DIAGRAM - ABORTING INTERRUPTS

						Rev. 10-002269D 7/6/2018
		2	3	4	5	
Instruction Clock						
Program Counter	X	X+2	X+2	X+4	X+6	
Instruction Register		Inst @ X ⁽¹⁾	FNOP	Inst @ X+2	Inst @ X+4	
Interrupt						
Routine	MAII	N	FNOP	X MA	N	\rangle

Note 1: Inst @ X clears the interrupt flag, Example BCF INTCON0, GIE.

10.4 Register Definitions: Voltage Regulator Control

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1		
_	—	—		_	—	VREGPM	Reserved		
bit 7									
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'			
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is se	et	'0' = Bit is cle	ared						
bit 7-2	Unimplemen	ted: Read as '	0'						
bit 1	VREGPM: Vo	ltage Regulato	r Power Mode	e Selection bit					
	1 = Low-Pow	ver Sleep mode	enabled in S	leep ⁽²⁾					
	Draws lowest current in Sleep, slower wake-up								
		ower mode en							
	Draws higher current in Sleep, faster wake-up								
bit 0	Reserved: R	ead as '1'. Mai	ntain this bit s	et.					

REGISTER 10-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

Note 1: Not present in LF parts.

2: See Section 44.0 "Electrical Specifications".

REGISTER 15-21: DMAxDCNTH: DMAx DESTINATION COUNT HIGH REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
—	—	—	—	DCNT<11:8>				
bit 7							bit 0	

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR and BOR/Value at all other	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged
Resets			C C

bit 7-4 Unimplemented: Read as '0'

bit 3-0 DCNT<11:8>: Current Destination Byte Count

REGISTER 15-22: DMAxSIRQ: DMAx START INTERRUPT REQUEST SOURCE SELECTION REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_		SIRQ<6:0>						
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7 Unimplemented: Read as '0'

bit 6-0 **SIRQ<6:0>:** DMAx Start Interrupt Request Source Selection bits Please refer to Table 15-2 for more information.

REGISTER 15-23: DMAxAIRQ: DMAx ABORT INTERRUPT REQUEST SOURCE SELECTION REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_	AIRQ<6:0>							
bit 7							bit 0	

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged			

bit 7 Unimplemented: Read as '0'

bit 6-0 **AIRQ<6:0>:** DMAx Interrupt Request Source Selection bits Please refer to Table 15-2 for more information.

18.0 INTERRUPT-ON-CHANGE

PORTA, PORTB, PORTC and pin RE3 of PORTE can be configured to operate as Interrupt-on-Change (IOC) pins on PIC18(L)F26/27/45/46/47/55/56/57K42 family devices. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-onchange module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- · Individual pin interrupt flags

Figure 18-1 is a block diagram of the IOC module.

18.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the PIEx register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

18.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

18.3 Interrupt Flags

The IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits located in the IOCAF, IOCBF, IOCCF and IOCEF registers respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIRO register reflects the status of all IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits.

18.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 18-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW	0xff	
XORWF	IOCAF,	W
ANDWF	IOCAF,	F

18.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

R/W-x/x										
	RH<7:0>									
bit 7							bit 0			
Lanandı										

REGISTER 23-5: CCPRxH: CCPx REGISTER HIGH BYTE

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0	MODE = Capture Mode:
	RH<7:0>: MSB of captured TMR1 value
	MODE = Compare Mode:
	RH<7:0>: MSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	RH<7:2>: Not used
	RH<1:0>: CCPW<9:8> - Pulse-Width MS 2 bits
	MODE = PWM Mode && FMT = 1:
	RH<7:0>: CCPW<9:2> - Pulse-Width MS 8 bits

TABLE 23-4: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCPxCON	EN	—	OUT	FMT		MODE<3:0>				
CCPxCAP	_	_	_	_	—	_	CTS<	352		
CCPRxL	CCPRx<7:0>								352	
CCPRxH	CCPRx<15:8>							353		
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSEL<1:0> C1TSEL<1:0>				351	

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
P8TSEL<1:0>		P7TSE	L<1:0>	P6TSEL<1:0>		P5TSEL<1:0>	
bit 7						·	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7-6	11 = PWM8 10 = PWM8	PWM8 Time based on TMR based on TMR based on TMR ed	6 4	S			
bit 5-4	P7TSEL<1:0>: PWM7 Timer Selection bi 11 = PWM7 based on TMR6 10 = PWM7 based on TMR4 01 = PWM7 based on TMR2 00 = Reserved			S			
bit 3-2	P6TSEL<1:0>: PWM6 Timer Selection bi 11 = PWM6 based on TMR6 10 = PWM6 based on TMR4 01 = PWM6 based on TMR2 00 = Reserved			S			
bit 1-0 P5TSEL<1:0>: PWM5 Timer Selection bit 11 = PWM5 based on TMR6 10 = PWM5 based on TMR4 01 = PWM5 based on TMR2 00 = Reserved			s				

REGISTER 24-2: CCPTMRS1: CCP TIMERS CONTROL REGISTER 1

29.10 Register Definitions: ZCD Control

REGISIER	29-1. ZCDC	JUN. ZERU-U	RUSS DE H			.r.				
R/W-0/0	U-0	R-x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
SEN	—	OUT	POL	—	_	INTP	INTN			
bit 7							bit			
Legend:										
R = Readabl		W = Writable		U = Unimplen						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7	SEN: Zero-C	Cross Detect Sc	oftware Enable	e bit						
	This bit is igr	nored when ZC	DSEN configu	ration bit is set.						
		ross detect is er								
	0= Zero-ci	ross detect is di	sabled. ZCD p	oin operates aco	cording to PP	S and TRIS cont	rols.			
bit 6	Unimpleme	nted: Read as	'0'							
bit 5	OUT: Zero-C	Cross Detect Da	ita Output bit							
		ZCDPOL bit = 0:								
		is sinking curre								
	2CDPOL bit	is sourcing cur = $1 \cdot$	rent							
		is sourcing cur	rent							
		is sinking curre								
bit 4	POL: Zero-C	Cross Detect Po	larity bit							
	1 = ZCD log	ic output is inve	erted							
	0 = ZCD log	ic output is not	inverted							
bit 3-2	Unimpleme	nted: Read as	'0'							
bit 1	INTP: Zero-	Cross Detect Po	ositive-Going I	Edge Interrupt E	Enable bit					
		1 = ZCDIF bit is set on low-to-high ZCD_output transition								
	0 = ZCDIF b	it is unaffected	by low-to-high	a ZCD_output tra	ansition					
bit 0	INTN: Zero-	Cross Detect N	egative-Going	Edge Interrupt	Enable bit					
	1 = ZCDIF b	it is set on high	-to-low ZCD	output transition	1					
		•		ZCD output tra						

REGISTER 29-1: ZCDCON: ZERO-CROSS DETECT CONTROL REGISTER

TABLE 29-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
ZCDCON	SEN	—	OUT	POL	—	_	INTP	INTN	462

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

31.16 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

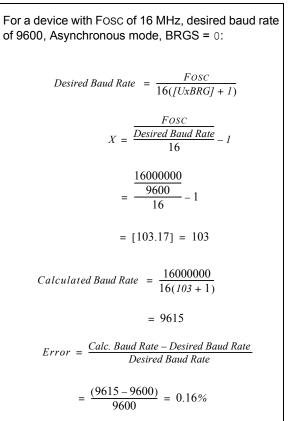
The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value of the OSCTUNE register allows for fine resolution changes to the system clock source. See Section **7.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value of the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see Section **31.17.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change of the peripheral clock frequency.

31.17 UART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is a 16-bit timer that is dedicated to the support of the UART operation.

The UxBRGH, UxBRGL register pair determines the period of the free running baud rate timer. The multiplier of the baud rate period is determined by the BRGS bit in the UxCON0 register.


Table 31-1 contains the formulas for determining the baud rate. Example 31-1 provides a sample calculation for determining the baud rate and baud rate error.

The high baud rate range (BRGS = 1) is intended to extend the baud rate range up to a faster rate when the desired baud rate is not possible otherwise. Using the normal baud rate range (BRGS = 0) is recommended when the desired baud rate is achievable with either range.

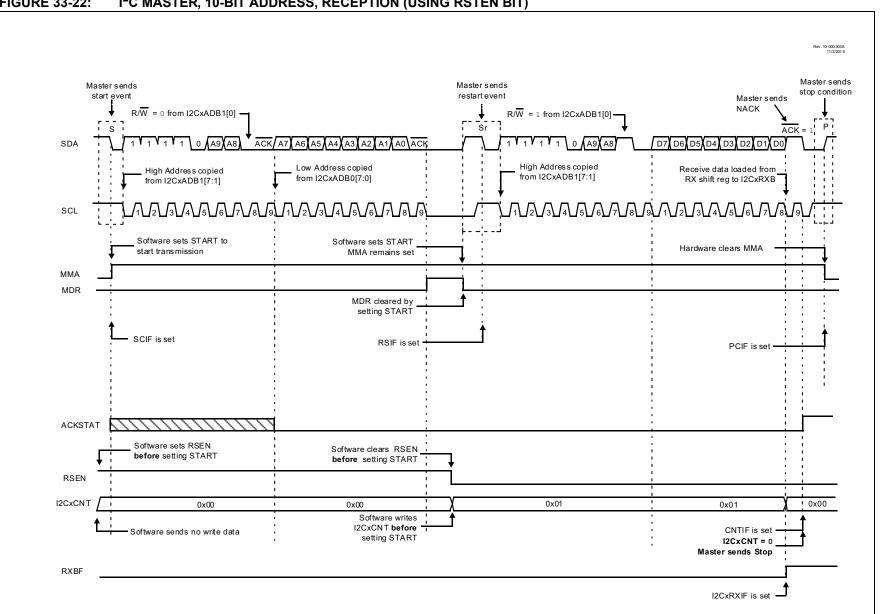
Writing a new value to the UxBRGH, UxBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RXIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 31-1: CALCULATING BAUD RATE ERROR

TABLE 31-1: BAUD RATE FORMULAS

BRGS	BRG/UART Mode	Baud Rate Formula
1	High Rate	Fosc/[4 (n+1)]
0	Normal Rate	Fosc/[16(n+1)]


Legend: n = value of UxBRGH, UxBRGL register pair.

32.8.3.4 Receiver Overflow and Transmitter Underflow Interrupts

The receiver overflow interrupt triggers if data is received when the RXFIFO is already full and RXR = 1. In this case, the data will be discarded and the RXOIF bit will be set. The receiver overflow interrupt flag is the RXOIF bit of SPIxINTF. The receiver overflow interrupt enable bit is the RXOIE bit of SPIxINTE.

The Transmitter Underflow interrupt flag triggers if a data transfer begins when the TXFIFO is empty and TXR = 1. In this case, the most recently received data will be transmitted and the TXUIF bit will be set. The transmitter underflow interrupt flag is the TXUIF bit of SPIxINTF. The transmitter underflow interrupt enable bit is the TXUIE bit of SPIxINTE.

Both of these interrupts will only occur in Slave mode, as Master mode will not allow the RXFIFO to overflow or the TXFIFO to underflow.

FIGURE 33-22: I²C MASTER, 10-BIT ADDRESS, RECEPTION (USING RSTEN BIT)

© 2016-2017 Microchip Technology Inc

REGISTER 36-9: ADPREL: ADC PRECHARGE TIME CONTROL REGISTER (LOW BYTE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PRE	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **PRE<7:0>**: Precharge Time Select bits See Table 36-4.

REGISTER 36-10: ADPREH: ADC PRECHARGE TIME CONTROL REGISTER (HIGH BYTE)

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	-			PRE<12:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 PRE<12:8>: Precharge Time Select bits See Table 36-4.

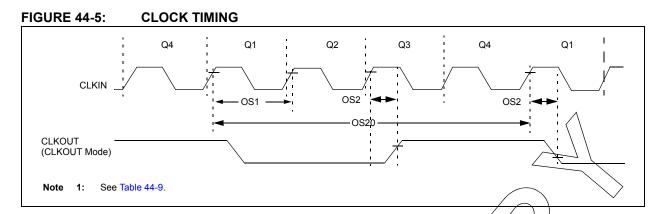
Note: If PRE is not equal to '0', then ADACQ = b' 0000000 means Acquisition time is 256 clocks of the selected ADC clock.

TABLE 36-4: PRECHARGE TIME

ADPRE	Precharge time
1 1111 1111 1111	8191 clocks of the selected ADC clock
1 1111 1111 1110	8190 clocks of the selected ADC clock
1 1111 1111 1101	8189 clocks of the selected ADC clock
0 0000 0000 0010	2 clocks of the selected ADC clock
0 0000 0000 0001	1 clock of the selected ADC clock
0 0000 0000 0000	Not included in the data conversion cycle

© 2017 Microchip Technology Inc.

CALLW	Subrouti	ne Call	Using W	REG		
Syntax:	CALLW					
Operands:	None					
Operation:	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$					
Status Affected:	None					
Encoding:	0000	0000	0001	0100		
Description	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W, Status or BSR.					
Words:	1					
Cycles:	2					
Q Cycle Activity:						
	Q1	Q2	Q3	Q4		
	Decode	Read WREG	PUSH PC to stack	No operation		
	No operation	No opera- tion	No operation	No operation		
Example:	HERE	CALLW				
PCLATU =	= addres = 10h = 00h = 06h	S (HERE)			
TOS PCLATH = PCLATU =	= 001006 = addres		+ 2)			


CLRF	Clear f					
Syntax:	CLRF f{,	a}				
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	-				
Operation:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Encoding:	0110	101a	ffff	ffff		
	If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode when tion 41.2.3	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proce Data		Write egister 'f'		
Example: Before Instruc		FLAG_F	REG, 1			
FLAG_REG = 5Ah After Instruction FLAG_REG = 00h						

CPF	SLT	Compare f with W, skip if f < W					
Synta	ax:	CPFSLT f	CPFSLT f {,a}				
Oper	ands:	$\begin{array}{l} 0\leq f\leq 255\\ a\in [0,1] \end{array}$					
Oper	ation:	(f) – (W), skip if (f) < (W) (unsigned comparison)					
Statu	s Affected:	None					
Enco	ding:	0110 000a ffff ffff					
	ription:	location 'f' tr performing a If the content contents of instruction is executed in 2-cycle instru If 'a' is '0', th If 'a' is '1', th GPR bank.	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the				
Word	ls:	1					
Cycle	es: ycle Activity:		ycles if skip ar a 2-word instru				
QU	Q1	Q2	Q3	Q4			
	Decode	Read	Process	No			
		register 'f'	Data	operation			
lf sk	ip:						
1	Q1	Q2	Q3	Q4			
	No	No	No	No			
lf ok	operation	operation	operation	operation			
II SK	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exan</u>	nple:	HERE C NLESS : LESS :		1			
	Before Instruc PC W After Instructic	= Ad = ?	dress (HERE))			
	If REG PC If REG	< W;	dress (LESS))			
	PC	,	dress (NLESS	5)			

DAW	D	Decimal Adjust W Register				
Syntax:	D	DAW				
Operands:	N	None				
Operation:	(V el	If [W<3:0> > 9] or [DC = 1] then (W<3:0>) + 6 \rightarrow W<3:0>; else (W<3:0>) \rightarrow W<3:0>;				en
	() el	If $[W<7:4> + DC > 9]$ or $[C = 1]$ then $(W<7:4>) + 6 + DC \rightarrow W<7:4>$; else $(W<7:4>) + DC \rightarrow W<7:4>$				
Status Affected:	С					
Encoding:	Γ	0000	0000	000	00	0111
Description:	in al	DAW adjusts the 8-bit value in W, result ing from the earlier addition of two vari- ables (each in packed BCD format) and produces a correct packed BCD result.				f two vari- rmat) and
Words:	1					
Cycles:	1					
Q Cycle Activity	<i>r</i> :					
Q1		Q2	Q3			Q4
Decode	re	Read gister W	Process Data			Write W
Example1:						
	D.	AW				
Before Inst	ruction					
W C DC	= = =	A5h 0 0				
After Instru	ction					
W C DC <u>Example 2</u> :	= = =	05h 1 0				
Before Instruction						
W C DC After Instru	= = = ction	CEh 0 0				
W C DC	= = =	34h 1 0				

RLNCF	Rotate Le	eft f (No Car	ry)				
Syntax:	RLNCF	f {,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Operation:		$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$					
Status Affected:	N, Z	N, Z					
Encoding:	0100	0100 01da ffff ffff					
Description:	one bit to the stored back of the store ba	and the extend led, this instruc- Literal Offset λ never f \leq 95 (5 " Byte-Orien	'0', the result , the result is (default). nk is selected. d to select the led instruction ction operates Addressing (Fh). See Sec- ted and Bit- n Indexed Lit- etails.				
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				
Example: Before Instruct REG After Instructio	= 1010 1	REG, 1, 011	0				
REG	= 0101 0	111					

A	Rotate Ri	-		,
Syntax:	RRCF f{	,d {,a}}		
Operands:	$0 \le f \le 255$			
	d ∈ [0,1]			
	a ∈ [0,1]			
Operation:	$(f < n >) \rightarrow de$		>,	
	$(f<0>) \rightarrow C$ $(C) \rightarrow dest$	-		
o		~/~		
Status Affected:	C, N, Z			1
Encoding:	0011	00da	ffff	fff
Description:	The conten			
	one bit to th			
	flag. If 'd' is			
	If 'd' is '1', t register 'f' (is placed	Dack In
	If 'a' is '0', t		ss Bank is	selecte
	lf 'a' is '1', t			
	GPR bank.			
	lf 'a' is ' 0' a			
	set is enab	-		•
	in Indexed			
	mode wher tion 41.2.3			
	Oriented I			
				exea L
	eral Offset	Mode"		
	eral Offset		for details.	
	eral Offset			
Words:	eral Offset		for details.	
	C		for details.	
Cycles:	C 1		for details.	
Cycles: Q Cycle Activity:	1 1	- re	for details. egister f	
Cycles: Q Cycle Activity: Q1	1 1 Q2	re	for details.	Q4
Cycles: Q Cycle Activity:	C 1 1 Q2 Read	- re	for details. egister f	Q4 Write to
Cycles: Q Cycle Activity: Q1	1 1 Q2	Q3	for details. egister f	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode	C 1 1 Q2 Read	Q3 Proce Dat	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example:	C 1 1 1 Q2 Read register 'f' RRCF	Q3 Proce Dat	for details. egister f	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc	C 1 1 1 Q2 Read register 'f' RRCF tion	Q3 Q3 Proce Dat REG,	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example:	C 1 1 1 Q2 Read register 'f' RRCF	Q3 Q3 Proce Dat REG,	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction	C 1 1 1 Q2 Read register 'f' RRCF tion = 1110 (= 0	Q3 Q3 Proce Dat REG,	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG	C 1 1 1 Q2 Read register 'f' RRCF tion = 1110 (0 0 1 = 1110 (Q3 Proce Dat REG, 0110	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG W	C 1 1 Q2 Read register 'f' RRCF tion = 1110 (= 0 n = 1110 (=	Q3 Proce Dat REG,	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG	C 1 1 1 Q2 Read register 'f' RRCF tion = 1110 (0 0 1 = 1110 (Q3 Proce Dat REG, 0110	for details egister f ess \ a de	Q4
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG ₩	C 1 1 Q2 Read register 'f' RRCF tion = 1110 (= 0 n = 1110 (=	Q3 Proce Dat REG, 0110	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG ₩	C 1 1 Q2 Read register 'f' RRCF tion = 1110 (0) = 0nn = 1110 (0) = 0111 (0)	Q3 Proce Dat REG, 0110	for details egister f ess \ a de	Q4 Write to

TABLE 44-9: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions	
ECL Oscillator							
F _{ECL}	Clock Frequency	—	—	500	kHz	K	
T _{ECL_DC}	Clock Duty Cycle	40	—	60	%		
ECM Oscillator							
F _{ECM}	Clock Frequency	—		8	MHz		
T _{ECM_DC}	Clock Duty Cycle	40	$\langle - \rangle$	60	%		
illator				$\overline{}$			
F _{ECH}	Clock Frequency	$\left -\right $	<u> </u>	64	MHz		
T _{ECH_DC}	Clock Duty Cycle	40	$\langle - \rangle$	60	%		
ator		$\mathbb{Z}_{\mathcal{A}}$					
F _{LP}	Clock Frequency	$\langle \mathcal{I} \rangle$	\searrow	100	kHz	Note 4	
ator			>				
F _{XT}	Clock Frequency	<u> </u>	—	4	MHz	Note 4	
lator	· · · · · · · · · · · · · · · · · · ·	$\overline{}$					
F _{HS}	Clock Frequency	_	—	20	MHz	Note 4	
Secondary Oscillator							
F_{SEC}	Clock Frequency	32.4	32.768	33.1	kHz		
System Oscillator							
FOSC	System Clock Frequency	—	—	64	MHz	(Note 2, Note 3)	
	Sym. illator F _{ECL} T _{ECL_DC} illator F _{ECM} T _{ECM_DC} illator F _{ECM} T _{ECH_DC} illator F _{ECH} T _{ECH_DC} ator F _{LP} ator F _{XT} lator F _{HS} ry Oscillato F _{SEC} Oscillator	Sym.Characteristicillator F_{ECL} Clock Frequency T_{ECL_DC} Clock Duty Cycleillator F_{ECM} Clock Frequency T_{ECM_DC} Clock Duty Cycleillator F_{ECH} Clock Frequency T_{ECH_DC} Clock Duty CycleatorFLP F_{LP} Clock FrequencyatorF_XT F_{NT} Clock FrequencyatorF_SEC F_{HS} Clock Frequency F_{SEC} Clock Frequency F_{SEC} Clock Frequency F_{OSC} System Clock Frequency	Sym. Characteristic Min. illator FECL Clock Frequency — TECL_DC Clock Duty Cycle 40 illator FECM Clock Frequency — TECM_DC Clock Frequency — — TECM_DC Clock Duty Cycle 40 40 illator FECH Clock Frequency — TECH_DC Clock Frequency — 40 illator FECH Clock Frequency — TECH_DC Clock Duty Cycle 40 40 ator — — — FLP Clock Frequency — — ator — — — F _{XT} Clock Frequency — — ator — — — F _{HS} Clock Frequency — — ry Oscillator — — — F _{OSC} System Clock Frequency — —	Sym. Characteristic Min. Typ† illator F _{ECL} Clock Frequency — — T _{ECL_DC} Clock Duty Cycle 40 — illator F F Clock Frequency — — illator F Clock Frequency — — — illator F Clock Frequency — — — T _{ECM_DC} Clock Duty Cycle 40 — — — illator F F Clock Duty Cycle 40 — — illator F F Clock Frequency — — — fLP Clock Frequency — — — — — ator F F Clock Frequency — — — fLP Clock Frequency — — — — ator F F S Clock Frequency — — flator F F S Clock Frequency 32.4 32.768 Oscillator <td>Sym.CharacteristicMin.Typ†Max.illatorF_{ECL}Clock Frequency$500$$T_{ECL_DC}$Clock Duty Cycle40-$60$illator$F_{ECM}$Clock Frequency$8$$T_{ECM_DC}$Clock Duty Cycle40-$60$illator$F_{ECH}$Clock Frequency$64$$T_{ECH_DC}$Clock Frequency$64$$T_{ECH_DC}$Clock Frequency-100ator4$F_{LP}$Clock Frequency$F_{XT}$Clock Frequency4ator20ry Oscillator20ry Oscillator64FoscSystem Clock FrequencyF_{SEC}Clock Frequency32.432.76833.1</td> <td>Sym.CharacteristicMin.Typ†Max.UnitsillatorF_{ECL}Clock Frequency500kHzT_{ECL_DC}Clock Duty Cycle40-60%illatorF_{ECM}Clock Frequency8MHzT_{ECM_DC}Clock Duty Cycle40-60%illatorF_{ECH}Clock Frequency64MHzT_{ECH_DC}Clock Duty Cycle40-60%atorF_{LP}Clock Frequency-100kHzatorF_{XT}Clock Frequency4HzatorF_HSClock Frequency20MHziatorF_RSClock Frequency20MHzbacillatorF_SECClock Frequency32.432.76833.1KHzDscillatorF_OSCSystem Clock Frequency64</td>	Sym.CharacteristicMin.Typ†Max.illator F_{ECL} Clock Frequency 500 T_{ECL_DC} Clock Duty Cycle40- 60 illator F_{ECM} Clock Frequency 8 T_{ECM_DC} Clock Duty Cycle40- 60 illator F_{ECH} Clock Frequency 64 T_{ECH_DC} Clock Frequency 64 T_{ECH_DC} Clock Frequency-100ator4 F_{LP} Clock Frequency F_{XT} Clock Frequency4ator20ry Oscillator20ry Oscillator64FoscSystem Clock Frequency F_{SEC} Clock Frequency32.432.76833.1	Sym.CharacteristicMin.Typ†Max.Unitsillator F_{ECL} Clock Frequency 500 kHz T_{ECL_DC} Clock Duty Cycle40- 60 %illator F_{ECM} Clock Frequency8MHz T_{ECM_DC} Clock Duty Cycle40- 60 %illator F_{ECH} Clock Frequency 64 MHz T_{ECH_DC} Clock Duty Cycle40- 60 %ator F_{LP} Clock Frequency-100kHzator F_{XT} Clock Frequency4HzatorF_HSClock Frequency20MHziatorF_RSClock Frequency20MHzbacillatorF_SECClock Frequency32.432.76833.1KHzDscillatorF_OSCSystem Clock Frequency64	

These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 44.2 "Standard Operating Conditions".

4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 10.0 "Power-Saving Operation Modes".