

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k42-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC18(L)F26K42	PIC18(L)F27K42	PIC18(L)F45K42	PIC18(L)F46K42	PIC18(L)F47K42	PIC18(L)F55K42	PIC18(L)F56K42	PIC18(L)F57K42
Program Memory (Bytes)	65536	131072	32768	65536	131072	32768	65536	131072
Program Memory (Instructions)	32768	65536	16384	32768	65536	16384	32768	65536
Data Memory (Bytes)	4096	8192	2048	4096	8192	2048	4096	8192
Data EEPROM Memory (Bytes)	1024	1024	256	1024	1024	256	1024	1024
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	48-pin TQFP 48-pin UQFN	48-pin TQFP 48-pin UQFN	48-pin TQFP 48-pin UQFN
I/O Ports	A,B,C,E ⁽¹⁾	A,B,C,E ⁽¹⁾	A,B,C,D, E ⁽¹⁾	A,B,C,D, E ⁽¹⁾	A,B,C,D, E ⁽¹⁾	A,B,C,D, E ⁽¹⁾ , F	A,B,C,D, E ⁽¹⁾ , F	A,B,C,D, E ⁽¹⁾ , F
12-Bit Analog-to-Digital Conversion Module (ADC ²) with Computation Accelerator	5 internal 24 external	5 internal 24 external	5 internal 35 external	5 internal 35 external	5 internal 35 external	5 internal 43 external	5 internal 43 external	5 internal 43 external
Capture/Compare/ PWM Modules (CCP)					4			
10-Bit Pulse-Width Modulator (PWM)				4	4			
Timers (16-/8-bit)				4	/3			
Serial Communications			1 UA	RT, 1 UART with DN	/IX/DALI/LIN, 2 I ² C, ²	I SPI		
Complementary Waveform Generator (CWG)				;	3			
Zero-Cross Detect (ZCD)					1			
Data Signal Modulator (DSM)					1			
Signal Measurement Timer (SMT)					1			
5-bit Digital to Analog Converter (DAC)					1			
Numerically Controlled Oscillator (NCO)					1			

3.0 PIC18 CPU

This family of devices contains a PIC18 8-bit CPU core based on the modified Harvard architecture. The PIC18 CPU supports:

- System Arbitration, which decides memory access allocation depending on user priorities
- Vectored Interrupt capability with automatic two level deep context saving
- 31-level deep hardware stack with overflow and underflow reset capabilities
- Support Direct, Indirect, and Relative Addressing modes
- 8x8 Hardware Multiplier

7.2.2.6 Oscillator Status and Manual Enable

The Ready status of each oscillator (including the ADCRC oscillator) is displayed in OSCSTAT (Register 7-4). The oscillators (but not the PLL) may be explicitly enabled through OSCEN (Register 7-7).

7.2.2.7 HFOR and MFOR Bits

The HFOR and MFOR bits indicate that the HFINTOSC and MFINTOSC is ready. These clocks are always valid for use at all times, but only accurate after they are ready.

When a new value is loaded into the OSCFRQ register, the HFOR and MFOR bits will clear, and set again when the oscillator is ready. During pending OSCFRQ changes the MFINTOSC clock will stall at a high or a low state, until the HFINTOSC resumes operation.

7.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the New Oscillator Source (NOSC) bits of the OSCCON1 register. The following clock sources can be selected using the following:

- External oscillator
- Internal Oscillator Block (INTOSC)

Note:	The	Clock	Switch	Enable	bit	in
	Confi	guration	Word 1	can be	used	to
	enabl	e or di	sable the	e clock	switch	ing
	capat	oility. Wh	en cleare	d, the N	OSC a	ind
	NDIV	bits ca	nnot be	changed	by u	ser
	softw	are. Whe	en set, wr	iting to N	OSC a	ind
	NDIV	is allov	ved and	would s	witch	the
	clock	frequend	cy.			

7.3.1 NEW OSCILLATOR SOURCE (NOSC) AND NEW DIVIDER SELECTION REQUEST (NDIV) BITS

The New Oscillator Source (NOSC) and New Divider Selection Request (NDIV) bits of the OSCCON1 register select the system clock source and frequency that are used for the CPU and peripherals.

When new values of NOSC and NDIV are written to OSCCON1, the current oscillator selection will continue to operate while waiting for the new clock source to indicate that it is stable and ready. In some cases, the newly requested source may already be in use, and is ready immediately. In the case of a divider-only change, the new and old sources are the same, so the old source will be ready immediately. The device may enter Sleep while waiting for the switch as described in Section 7.3.2 "Clock Switch and Sleep".

When the new oscillator is ready, the New Oscillator Ready (NOSCR) bit of OSCCON3 and the Clock Switch Interrupt Flag (CSWIF) bit of the respective PIR register are set. If Clock Switch Interrupts are enabled (CSWIE = 1), an interrupt will be generated at that time. The Oscillator Ready (ORDY) bit of OSCCON3 can also be polled to determine when the oscillator is ready in lieu of an interrupt.

Note: The CSWIF interrupt will not wake the system from Sleep.

If the Clock Switch Hold (CSWHOLD) bit of OSCCON3 is clear, the oscillator switch will occur when the New Oscillator is Ready bit (NOSCR) is set, and the interrupt (if enabled) will be serviced at the new oscillator setting.

If CSWHOLD is set, the oscillator switch is suspended, while execution continues using the current (old) clock source. When the NOSCR bit is set, software should:

- Set CSWHOLD = 0 so the switch can complete, or
- Copy COSC into NOSC to abandon the switch.

If DOZE is in effect, the switch occurs on the next clock cycle, whether or not the CPU is operating during that cycle.

Changing the clock post-divider without changing the clock source (i.e., changing Fosc from 1 MHz to 2 MHz) is handled in the same manner as a clock source change, as described previously. The clock source will already be active, so the switch is relatively quick. CSWHOLD must be clear (CSWHOLD = 0) for the switch to complete.

The current COSC and CDIV are indicated in the OSCCON2 register up to the moment when the switch actually occurs, at which time OSCCON2 is updated and ORDY is set. NOSCR is cleared by hardware to indicate that the switch is complete.

REGISTER 7	-6: OSC	TUNE: HFINT	OSC TUNIN	G REGISTER			
U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown				-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-6	Unimpleme	ented: Read as '	0'				
bit 5-0	TUN<5:0>: 01 1111 =	HFINTOSC Free Maximum freque	quency Tuning ency	g bits			
	•						
	•						
	00 0000 =	Center frequenc (default value).	y. Oscillator n	nodule is runnin	g at the calibra	ited frequency	
	•						
	•						
	•						
	10 0000 =	Minimum freque	ency				

15.9.2 DESTINATION STOP

When the Destination Stop bit is set (DSTP = 1) and the DMAxDCNT register reloads, the DMA clears the SIRQEN bit to stop receiving new start interrupt request signals and sets the DMAxDCNTIF flag.

	0	11/-/						5 11							,	001		T	
	(1)	2	3	4	(5)	6	0	8	0	10	11	12	13	14	15	16	1)	18	Rav. 10
Instruction Clock																			nn
EN																			
SIRQEN																			
Source Hardware																			
DGO																			
DMAxSPTR			0x100	1) 0x	101	Χ		0x100		X	0x10	1)			0x100)	
DMAxDPTR	\langle		0x200	1) 0x	201	Χ		0x202		Х	0x20	3			0x200)	
DMAxSCNT	\langle		2			Χ	1	χ		2		X	1				2		
DMAxDCNT	$\langle $		4			Χ	3	Χ		2		X	1				4		
DMA STATE		IDLE		SR ⁽¹⁾	DW ⁽²⁾) SR ⁽¹⁾	DW ⁽²⁾	(IDLE		SR ⁽¹⁾) DW ⁽²⁾	SR ⁽¹⁾	DW ⁽²⁾			IDLE		
DMAxSCNTIF																			
DMAxDCNTIF														Γ]			
_																			
	DMA	xSSA	0x10	0		DMAxD	SA	0x200											
	DMA	xssz	0x2			DMAxD	osz	0x4											
Note 4. Cr		uraa F	Jood																
NOTE 1: SP	r - 301	urce F	kead																
2: D\	W - De	estinat	tion \	Nrite	•														

REGISTER 17-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	PPSLOCKED
bit 7							bit 0
Legend:							

•		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0 **PPSLOCKED:** PPS Locked bit

1 = PPS is locked.

0 = PPS is not locked. PPS selections can be changed.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
PPSLOCK	_	-	—	_	—	—	_	PPSLOCKED	283		
INT0PPS	_	_	—			INT0PPS<4	1:0>		277		
INT1PPS	_	_	—			INT1PPS<4	4:0>		277		
INT2PPS	_	_	_			INT2PPS<4	1:0>		277		
TOCKIPPS	_	_	_			T0CKIPPS<	4:0>		277		
T1CKIPPS	_	_	—			T1CKIPPS<	4:0>		277		
T1GPPS	_	_	_		T1GPPS<4:0>						
T3CKIPPS	_	_	_		T3CKIPPS<4:0>						
T3GPPS	—	_	_			T3GPPS<4	:0>		277		
T5CKIPPS	_	_	—		T5CKIPPS<4:0>						
T5GPPS	_	_	—		T5GPPS<4:0>						
T2INPPS	_	_	—		T2INPPS<4:0>						
T4INPPS	—	-	—			T4INPPS<4	1:0>		277		
T6INPPS	_	_	—			T6INPPS<4	4:0>		277		
CCP1PPS	_	_	—		CCP1PPS<4:0>						
CCP2PPS	_	_	—		CCP2PPS<4:0>						
CCP3PPS	_	_	—		CCP3PPS<4:0>						
CCP4PPS	_	_	—		CCP4PPS<4:0>						
SMT1WINPPS	_	_	—		277						
SMT1SIGPPS	_	_	—		277						
CWG1PPS	_	_	—		277						
CWG2PPS	—	-	—	CWG2PPS<4:0>							
CWG3PPS	—	-	—			CWG3PPS<	4:0>		277		
MD1CARLPPS	—		—			MDCARLPPS	<4:0>		277		
MD1CARHPPS	—	_	—			MDCARHPPS	6<4:0>		277		
MD1SRCPPS	—	_	—			MDSRCPPS	<4:0>		277		
CLCIN0PPS	—	_	—			CLCIN0PPS-	<4:0>		277		
CLCIN1PPS	—	_	—			CLCIN1PPS	<4:0>		277		
CLCIN2PPS	—	_	—			CLCIN2PPS	<4:0>		277		
CLCIN3PPS	—	_	—			CLCIN3PPS-	<4:0>		277		
ADACTPPS	—	_	—			ADACTPPS	<4:0>		277		
SPI1SCKPPS	—	_	—			SPI1SCKPPS	<4:0>		277		
SPI1SDIPPS	_	_	_			SPI1SDIPPS	<4:0>		277		
SPI1SSPPS	—	_	—			SPI1SSPPS	<4:0>		277		
I2C1SCLPPS	—	_	—			I2C1SCLPPS	<4:0>		277		
I2C1SDAPPS	_	_	_	I2C1SDAPPS<4:0>					277		
I2C2SCLPPS	—	_	—	I2C2SCLPPS<4:0>					277		
I2C2SDAPPS	—	—	—	I2C2SDAPPS<4:0>					277		
U1RXPPS	—	_	—	U1RXPPS<4:0>				277			
U1CTSPPS			—	U1CTSPPS<4:0>					277		
U2RXPPS	—	_	—	U2RXPPS<4:0>					277		
U2CTSPPS		_	—			U2CTPPS<	4:0>		277		
RxyPPS	—	—	—			RxyPPS<4	:0>		280		

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

							-
U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x	R/W-0/x
—	—	—	—	—		CTS<2:0>	
bit 7							bit 0

REGISTER 23-3: CCPxCAP: CAPTURE INPUT SELECTION MULTIPLEXER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Read as '0'

bit 2-0 CTS<2:0>: Capture Trigger Input Selection bits

CT5 <1.0>		Connection									
015<1:02	CCP1	CCP2	CCP3	CCP4							
111		CLC4_out									
110		CLC3_out									
101		CLC2_out									
100		CLC1_out									
011		IOC_Ir	nterrupt								
010		CMP2	_output								
001		CMP1	_output								
000	Pin selected by CCP1PPS	Pin selected by CCP2PPS	Pin selected by CCP3PPS	Pin selected by CCP4PPS							

REGISTER 23-4: CCPRxL: CCPx REGISTER LOW BYTE

R/W-x/x											
RL<7:0>											
bit 7							bit 0				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 7-0
 MODE = Capture Mode: RL<7:0>: LSB of captured TMR1 value MODE = Compare Mode: RL<7:0>: LSB compared to TMR1 value MODE = PWM Mode && FMT = 0: RL<7:0>: CCPW<7:0> - Pulse-Width LS 8 bits MODE = PWM Mode && FMT = 1: RL<7:6>: CCPW<1:0> - Pulse-Width LS 2 bits RL<5:0>: Not used

FIGURE 25-5: GATED TIMER MODE SINGLE ACQUISITION TIMING DIAGRAM

25.6.3 PERIOD AND DUTY CYCLE MODE

In Duty Cycle mode, either the duty cycle or period (depending on polarity) of the SMT1_signal can be acquired relative to the SMT clock. The CPW register is updated on a falling edge of the signal, and the CPR register is updated on a rising edge of the signal, along with the SMT1TMR resetting to 0x0001. In addition, the GO bit is reset on a rising edge when the SMT is in Single Acquisition mode. See Figure 25-6 and Figure 25-7.

FIGURE 25-22:

25.8 Register Definitions: SMT Control

Long bit name prefixes for the Signal Measurement Timer peripherals are shown in **Section 1.3 "Register and Bit naming conventions"**.

TABLE 25-2:LONG BIT NAMES PREFIXESFOR SMT PERIPHERALS

Peripheral	Bit Name Prefix			
SMT1	SMT1			

REGISTER 25-1: SMT1CON0: SMT CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN ⁽¹⁾	—	STP	WPOL	SPOL	CPOL	PS<1:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 EN: SMT Enable bit⁽¹⁾ 1 = SMT is enabled 0 = SMT is disabled; internal states are reset, clock requests are disabled
bit 6	Unimplemented: Read as '0'
bit 5	STP: SMT Counter Halt Enable bit When SMT1TMR = SMT1PR: 1 = Counter remains SMT1PR; period match interrupt occurs when clocked 0 = Counter resets to 24'h000000; period match interrupt occurs when clocked
bit 4	<pre>WPOL: SMT1WIN Input Polarity Control bit 1 = SMT1WIN signal is active-low/falling edge enabled 0 = SMT1WIN signal is active-high/rising edge enabled</pre>
bit 3	SPOL: SMT1SIG Input Polarity Control bit 1 = SMT1_signal is active-low/falling edge enabled 0 = SMT1_signal is active-high/rising edge enabled
bit 2	CPOL: SMT Clock Input Polarity Control bit 1 = SMT1TMR increments on the falling edge of the selected clock signal 0 = SMT1TMR increments on the rising edge of the selected clock signal
bit 1-0	PS<1:0>: SMT Prescale Select bits 11 = Prescaler = 1:8 10 = Prescaler = 1:4 01 = Prescaler = 1:2 00 = Prescaler = 1:1

Note 1: Setting EN to '0' does not affect the register contents.

27.7 Register Definitions: CLC Control

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	—	OUT	INTP	INTN		MODE<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and B	OR/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	EN: Configura	able Logic Cell	Enable bit				
	1 = Configura	able logic cell is	s enabled and	mixing input s	signals		
	0 = Configura	able logic cell is	s disabled and	has logic zer	o output		
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	OUT: Configu	rable Logic Ce	II Data Output	t bit			
	Read-only: lo	gic cell output o	data, after LCI	POL; sampled	from CLCxOU	Т	
bit 4	INTP: Configu	urable Logic Ce	ell Positive Ed	ge Going Inter	rupt Enable bit	t	
	1 = CLCxIFv 0 = CLCxIFv	vill be set wher vill not be set	n a rising edge	e occurs on CL	.CxOUT		
bit 3	INTN: Config	urable Logic Ce	ell Negative E	dae Goina Inte	errupt Enable b	bit	
	1 = CLCxIF v	vill be set wher	a falling edg	e occurs on Cl	_CxOUT		
	0 = CLCxIF v	vill not be set	0 0				
bit 2-0	MODE<2:0>:	Configurable L	ogic Cell Fun	ctional Mode b	oits		
	111 = Cell is	1-input transpa	arent latch wit	h S and R			
	110 = Cell is	J-K flip-flop wi	th R				
	101 = Cell is	2-input D flip-f	lop with R				
	011 = Cell is	S-R latch	iop with 5 and				
	010 = Cell is	4-input AND					
	001 = Cell is	OR-XOR					
	000 = Cell is	AND-OR					

REGISTER 27-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

28.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for applications that require frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse-Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 28-1 is a simplified block diagram of the NCO module.

32.3.3 TRANSMIT AND RECEIVE FIFOS

The transmission and reception of data from the SPI module is handled by two FIFOs, one for reception and one for transmission (addressed by the SFRs SPIxRXB and SPIxTXB, respectively.). The TXFIFO is written by software and is read by the SPI module to shift the data onto the SDO pin. The RXFIFO is written by the SPI module as it shifts in the data from the SDI pin and is read by software. Setting the CLRBF bit of SPIxSTATUS resets the occupancy for both FIFOs, emptying both buffers. The FIFOs are also reset by disabling the SPI module.

Note: TXFIFO occupancy and RXFIFO occupancy simply refer to the number of bytes that are currently being stored in each FIFO. These values are used in this chapter to illustrate the function of these FIFOs and are not directly accessible through software.

The SPIxRXB register addresses the receive FIFO and is read-only. Reading from this register will read from the first FIFO location that was written to by hardware and decrease the RXFIFO occupancy. If the FIFO is empty, reading from this register will instead return a value of zero and set the RXRE (Receive Buffer Read Error) bit of the SPIxSTATUS register. The RXRE bit must then be cleared in software in order to properly reflect the status of the read error. When RXFIFO is full, the RXBF bit of the SPIxSTATUS register will be set. When the device receives data on the SDI pin, the receive FIFO may be written to by hardware and the occupancy increased, depending on the mode and receiver settings, as summarized in Table 32-1.

The SPIxTXB register addresses the transmit FIFO and is write-only. Writing to the register will write to the first empty FIFO location and increase the occupancy. If the FIFO is full, writing to this register will not affect the data and will set the TXWE bit of the SPIxSTATUS register. When the TXFIFO is empty, the TXBE bit of SPIxSTATUS will be set. When a data transfer occurs, data may be read from the first FIFO location written to and the occupancy decreases, depending on mode and transmitter settings, as summarized in Table 32-1 and Section 32.6.1 "Slave Mode Transmit options".

32.3.4 LSB VS. MSB-FIRST OPERATION

Typically, SPI communication is output Most-Significant bit first, but some devices/buses may not conform to this standard. In this case, the LSBF bit may be used to alter the order in which bits are shifted out during the data exchange. In both Master and Slave mode, the LSBF bit of SPIxCON0 controls if data is shifted MSb or LSb first. Clearing the bit (default) configures the data to transfer MSb first, which is traditional SPI operation, while setting the bit configures the data to transfer LSb first.

32.3.5 INPUT AND OUTPUT POLARITY BITS

SPIxCON1 has three bits that control the polarity of the SPI inputs and outputs. The SDIP bit controls the polarity of the SDI input, the SDOP bit controls the polarity of the SDO output, and the SSP bit controls the polarity of both the slave SS input and the master SS output. For all three bits, when the bit is clear, the input or output is active-high, and when the bit is set, the input or output is active-low. When the EN bit of SPIxCON0 is cleared, SS(out) and SCK(out) both revert to the inactive state dictated by their polarity bits. The SDO output state when the EN bit of SPIxCON0 is cleared is determined by several factors.

- When the associated TRIS bit for the SDO pin is cleared, and the SPI goes idle after a transmission, the SDO output will remain at the last bit level. The SDO pin will revert to the Idle state if EN is cleared.
- When the associated TRIS bit for the SDO pin is set, behavior varies in Slave and Master mode.
- In Slave mode, the SDO pin tri-states when:
- Slave Select is inactive,
- the EN bit of SPIxCON0 is cleared, or when
- the TXR bit of SPIxCON2 is cleared.
- In Master mode, the SDO pin tri-states when TXR = 0. When TXR = 1 and the SPI goes idle after a transmission, the SDO output will remain at the last bit level. The SDO pin will revert to the Idle state if EN is cleared.

38.13 Register Definitions: Comparator Control

Long bit name prefixes for the Comparators are shown in Table 38-2. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

TABLE 38-2:

Peripheral	Bit Name Prefix
C1	C1
C2	C2

REGISTER 38-1: CMxCON0: COMPARATOR x CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-1	R/W-0/0	R/W-0/0
EN	OUT	—	POL	—	—	HYS	SYNC
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EN: Comparator Enable bit
	1 = Comparator is enabled
	0 = Comparator is disabled and consumes no active power
bit 6	OUT: Comparator Output bit
	If POL = 0 (noninverted polarity):
	1 = C X V P > C X V N
	0 = C X V P < C X V N
	If $POL = 1$ (inverted polarity):
	I = CXVP < CXVN
	0 = CXVP > CXVN
bit 5	Unimplemented: Read as '0'
bit 4	POL: Comparator Output Polarity Select bit
	1 = Comparator output is inverted
	 Comparator output is not inverted
bit 3	Unimplemented: Read as '0'
bit 2	Unimplemented: Read as '1'
bit 1	HYS: Comparator Hysteresis Enable bit
	1 = Comparator hysteresis enabled
	0 = Comparator hysteresis disabled
bit 0	SYNC: Comparator Output Synchronous Mode bit
	1 = Comparator output to Timer1/3/5 and I/O pin is synchronous to changes on Timer1 clock source.
	0 = Comparator output to Timer1/3/5 and I/O pin is asynchronous
	Output updated on the falling edge of Timer1/3/5 clock source.

MUL	.LW	Multiply	Multiply literal with W					
Synta	ax:	MULLW	k					
Oper	ands:	$0 \le k \le 25$	$0 \le k \le 255$					
Oper	ation:	(W) x k \rightarrow	PRODH:PF	RODL				
Statu	s Affected:	None						
Enco	ding:	0000	1101	kkkk	kkkk			
Description:		An unsign out betwee 8-bit literal placed in t pair. PROI W is unch None of th Note that n possible in is possible	ed multiplica en the conte 'k'. The 16- he PRODH DH contains anged. e Status flae neither over this operat	ation is of ents of V -bit resu :PRODL s the hig gs are a flow nor ion. A zo ected.	carried V and the It is register h byte. ffected. carry is ero result			
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Process Data	s re P F	Write egisters RODH: PRODL			
Exan	nple:	MULLW	0C4h					
	Before Instruc	tion						
	W PRODH PRODL After Instructio	= E = ? = ?	2h					
	W PRODH PRODL	= E = A = 08	2h Dh 3h					

MUL	WF	Multiply	W with	f			
Synta	ax:	MULWF	f {,a}				
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	5				
Oper	ation:	(W) x (f) –	→ PRODH	I:PRC	DDL		
Statu	s Affected:	None					
Enco	ding:	0000	001a	ff	ff	ffff	
Desc	ription:	An unsign out betwee register fill result is st register pa high byte. unchange None of th Note that i possible in result is pu If 'a' is '0', selected. I to select ti If 'a' is '0' a set is enal operates i Addressin $f \le 95$ (5FI 41.2.3 "By ented Inst Offset Mo	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 41.2.3 "Byte-Oriented and Bit-Ori-				
Word	ls:	1	1				
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	Read register 'f'	Proce Data	SS 1	re Pl P	Write gisters RODH: RODL	

Example: MULWF REG, 1

Before Instruction

Before Instruction		
W REG PRODH PRODL After Instruction	= = =	C4h B5h ? ?
W REG PRODH PRODL	= = =	C4h B5h 8Ah 94h

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3BC8h - 3AEBh	-		Unimplemented							
3AEAh	U2CTSPPS	—	—	_			U2CTSPPS			277
3AE8h	U2RXPPS	—	—	_			U2RXPPS			277
3AE7h	U1CTSPPS	—	—	—			U1CTSPPS			277
3AE5h	U1RXPPS	—	_	—			U1RXPPS			277
3AE4h	I2C2SDAPPS	—	_	—			I2C2SDAPPS	3		277
3AE3h	I2C2SCLPPS	_	—	_			I2C2SCLPPS	6		277
3AE2h	I2C1SDAPPS	_	—	_			I2C1SDAPPS	3		277
3AE1h	I2C1SCLPPS	_	—	_			I2C1SCLPPS	6		277
3AE0h	SPI1SSPPS	_	—	_			SPI1SSPPS			277
3ADFh	SPI1SDIPPS	_	_	_			SPI1SDIPPS	5		277
3ADEh	SPI1SCKPPS			—			SPI1SCKPPS	3		277
3ADDh	ADACTPPS			—			ADACTPPS			277
3ADCh	CLCIN3PPS	—	_	_			CLCIN3PPS			277
3ADBh	CLCIN2PPS	—	_	_			CLCIN2PPS			277
3ADAh	CLCIN1PPS	_	_	_			CLCIN1PPS			277
3AD9h	CLCIN0PPS	_	_	_			CLCIN0PPS			277
3AD8h	MD1SRCPPS	_		_			MD1SRCPPS	6		277
3AD7h	MD1CARHPPS	_		_		MD1CARHPPS				277
3AD6h	MD1CARLPPS	_		_			MD1CARLPP	S		277
3AD5h	CWG3INPPS	_		_			CWG3INPPS	3		277
3AD4h	CWG2INPPS			_			CWG2INPPS	3		277
3AD3h	CWG1INPPS			_			CWG1INPPS	3		277
3AD2h	SMT1SIGPPS			_			SMT1SIGPP	S		277
3AD1h	SMT1WINPPS			_	SMT1WINPPS				277	
3AD0h	CCP4PPS			_		CCP4PPS				277
3ACFh	CCP3PPS			_	CCP3PPS				277	
3ACEh	CCP2PPS			_	CCP2PPS			277		
3ACDh	CCP1PPS	_		_	CCP1PPS			277		
3ACCh	T6INPPS			_	T6INPPS			277		
3ACBh	T4INPPS	_		_	T4INPPS				277	
3ACAh	T2INPPS			_	T2INPPS				277	
3AC9h	T5GPPS			_	T5GPPS				277	
3AC8h	T5CLKIPPS			_	T5CLKIPPS				277	
3AC7h	T3GPPS			_	T3GPPS				277	
3AC6h	T3CLKIPPS			_	T3CLKIPPS				277	
3AC5h	T1GPPS			_	TIGPPS				277	
3AC4h	T1CLKIPPS			_	TICLKIPPS				277	
3AC3h	TOCLKIPPS		_		TOCI KIPPS				277	
3AC2h	INT2PPS		_		INT2PPS				277	
3AC1h	INT1PPS			_	INT/PDS				277	
3AC0h	INTOPPS			_					277	
3ABFh	PPSLOCK	_	_	_	_	_	_	_	PPSI OCKED	283
3ABEh				l	Reserved m	aintain as 'o'				200
3ABDh - 3A9Ah	-	Unimplemented								
3A99h		Reserved maintain as '0'								
Legend:	ind: x = unknown, u = unchanged. — = unimplemented, g = value depends on condition									

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Note

Unimplemented in LF devices. 1:

Unimplemented in PIC18(L)F26/27K42. 2:

Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

Unimplemented in PIC18(L)F45/55K42. 4:

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-052C Sheet 1 of 2

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] With Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	Ν	48				
Lead Pitch	е	0.50 BSC				
Overall Height	А	1.20				
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	E	9.00 BSC				
Overall Length	D	9.00 BSC				
Molded Package Width	E1	7.00 BSC				
Molded Package Length	D1	7.00 BSC				
Exposed Pad Width	E2	3.50 BSC				
Exposed Pad Length	D2	3.50 BSC				
Lead Thickness	С	0.09	-	0.16		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-183A Sheet 2 of 2