

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k42t-i-ml

Email: info@E-XFL.COM

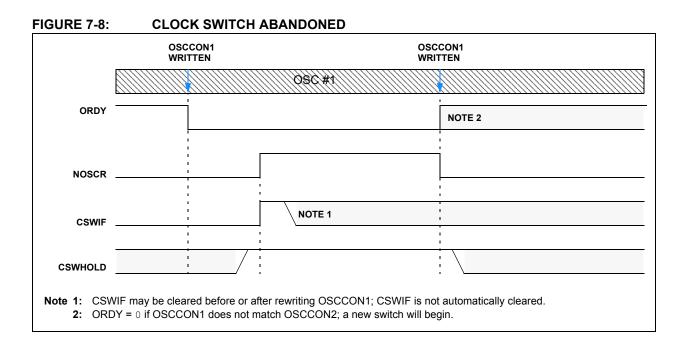
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	Data Sheet Index	Program Flash Memory (KB)	Data EEPROM (B)	Data SRAM (bytes)	I/O Pins	12-bit ADC ² (ch)	5-bit DAC	Comparator	8-bit/ (with HLT) /16-bit Timer	Window Watchdog Timer (WWDT)	Signal Measurement Timer (SMT)	CCP/10-bit PWM	CWG	NCO	CLC	Zero-Cross Detect	Direct Memory Access (DMA) (ch)	Memory Access Partition	Vectored Interrupts	UART	l²C/SPI	Peripheral Pin Select	Peripheral Module Disable	Debug ⁽¹⁾
PIC18(L)F24K42	А	16	256	1024	25	24	1	2	3/4	Y	Y	4/4	3	1	4	Y	2	Y	Y	2	2/1	Y	Υ	I
PIC18(L)F25K42	А	32	256	2048	25	24	1	2	3/4	Y	Y	4/4	3	1	4	Υ	2	Y	Y	2	2/1	Y	Υ	I
PIC18(L)F26K42	В	64	1024	4096	25	24	1	2	3/4	Y	Y	4/4	3	1	4	Υ	2	Y	Y	2	2/1	Y	Υ	I
PIC18(L)F27K42	В	128	1024	8192	25	24	1	2	3/4	Y	Y	4/4	3	1	4	Υ	2	Υ	Y	2	2/1	Υ	Υ	I
PIC18(L)F45K42	В	32	256	2048	36	35	1	2	3/4	Y	Y	4/4	3	1	4	Y	2	Υ	Y	2	2/1	Υ	Υ	I
PIC18(L)F46K42	В	64	1024	4096	36	35	1	2	3/4	Y	Y	4/4	3	1	4	Υ	2	Υ	Y	2	2/1	Υ	Υ	I
PIC18(L)F47K42	В	128	1024	8192	36	35	1	2	3/4	Y	Y	4/4	3	1	4	Y	2	Y	Y	2	2/1	Y	Υ	I
PIC18(L)F55K42	В	32	256	2048	44	43	1	2	3/4	Y	Y	4/4	3	1	4	Y	2	Y	Y	2	2/1	Y	Υ	I
PIC18(L)F56K42	В	64	1024	4096	44	43	1	2	3/4	Y	Y	4/4	3	1	4	Y	2	Y	Y	2	2/1	Y	Υ	I
PIC18(L)F57K42	В	128	1024	8192	44	43	1	2	3/4	Y	Y	4/4	3	1	4	Y	2	Y	Y	2	2/1	Y	Υ	I

Note 1: I – Debugging integrated on chip.

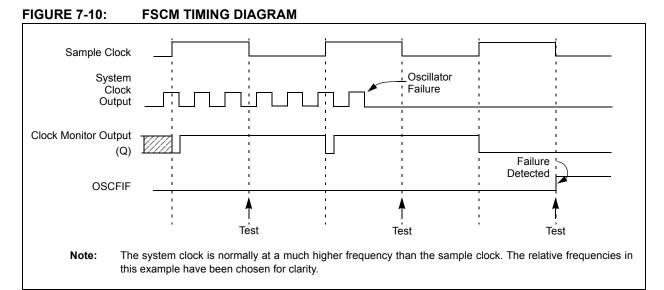
Data Sheet Index:

Unshaded devices are not described in this document.


DS40001869 PIC18(L)F24/25K42 Data Sheet, 28-Pin **A**:

B:

DS40001919


PIC18(L)F26/27/45/46/47/55/56/57K42 Data Sheet, 28/40/44/48-Pin

For other small form-factor package availability and marking information, visit **http://www.microchip.com/packaging** or contact your local sales office. Note:

7.4.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed.

TABLE 7-1: NOSC/COSC AND NDIV/CDIV BIT SETTINGS

NOSC<2:0> COSC<2:0>	Clock Source	NDIV< CDIV<		Clock Divider
111	EXTOSC ⁽¹⁾	1111-	1010	Reserved
110	HFINTOSC ⁽²⁾	100	01	512
101	LFINTOSC	100	00	256
100	SOSC	011	11	128
011	Reserved	011	10	64
010	EXTOSC + 4x PLL ⁽³⁾	010	01	32
001	Reserved	010	00	16
000	Reserved	001	11	8
		001	10	4
		000	01	2

0000

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 5-1).

- 2: HFINTOSC frequency is set with the FRQ bits of the OSCFRQ register (Register 7-5).
- **3:** EXTOSC must meet the PLL specifications (Table 44-11).

1

9.7.1 ABORTING INTERRUPTS

If the last instruction before the interrupt controller vectors to the ISR from main routine clears the GIE, PIE or PIR bit associated with the interrupt, the controller executes one force NOP cycle before it returns to the main routine.

Figure 9-10 illustrates the sequence of events when a peripheral interrupt is asserted and then cleared on the last executed instruction cycle.

If the GIE, PIE or PIR bit associated with the interrupt is cleared prior to vectoring to the ISR, then the controller continues executing the main routine.

FIGURE 9-10: INTERRUPT TIMING DIAGRAM - ABORTING INTERRUPTS

						Rev. 10-002269D 7/6/2018
		2	3	4	5	
Instruction Clock						
Program Counter	X	X+2	X+2	X+4	X+6	
Instruction Register		Inst @ X ⁽¹⁾	FNOP	Inst @ X+2	Inst @ X+4	
Interrupt						
Routine	MAII	N	FNOP	X MA	N	\rangle

Note 1: Inst @ X clears the interrupt flag, Example BCF INTCON0, GIE.

11.0 WINDOWED WATCHDOG TIMER (WWDT)

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WWDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WWDT has the following features:

- Selectable clock source
- Multiple operating modes
 - WWDT is always On
 - WWDT is off when in Sleep
 - WWDT is controlled by software
 - WWDT is always Off
- Configurable time-out period is from 1 ms to 256s (nominal)
- Configurable window size from 12.5% to 100% of the time-out period
- Multiple Reset conditions

The user needs to load the TBLPTR and TABLAT register with the address and data byte respectively before executing the write command. An unlock sequence needs to be followed for writing to the USER IDs/ DEVICE IDs/CONFIG words (Section 13.1.4, NVM Unlock Sequence). If WRTC = 0 or if TBLPTR points an invalid address location (see Table 13-1), WR bit is cleared without any effect and WRERR is set.

A single CONFIG word byte is written at once and the operation includes an implicit erase cycle for that byte (it is not necessary to set FREE). CPU execution is stalled and at the completion of the write cycle, the WR bit is cleared in hardware and the NVM Interrupt Flag bit (NVMIF) is set. The new CONFIG value takes effect when the CPU resumes operation.

TABLE 13-3:	DIA, DCI, USER ID, DEV/REV ID AND CONFIGURATION WORD ACCESS
	(REG<1:0> = x1)

Address	Function	Read Access	Write Access		
20 0000h-20 000Fh	User IDs	Yes	Yes		
30 0000h-30 0009h	Configuration Words	Yes	Yes		
3F 0000h-3F 003Fh	DIA	Yes	No		
3F FF00h-3F FF09h	DCI	Yes	No		
3F FFFCh-3F FFFFh	Revision ID/Device ID	Yes	No		

23.2 Capture Mode

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the MODE<3:0> bits of the CCPxCON register:

- · Every falling edge of CCPx input
- Every rising edge of CCPx input
- Every 4th rising edge of CCPx input
- · Every 16th rising edge of CCPx input
- Every edge of CCPx input (rising or falling)

When a capture is made, the Interrupt Request Flag bit CCPxIF of the respective PIR register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH:CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Note: If an event occurs during a 2-byte read, the high and low-byte data will be from different events. It is recommended while reading the CCPRxH:CCPRxL register pair to either disable the module or read the register pair twice for data integrity.

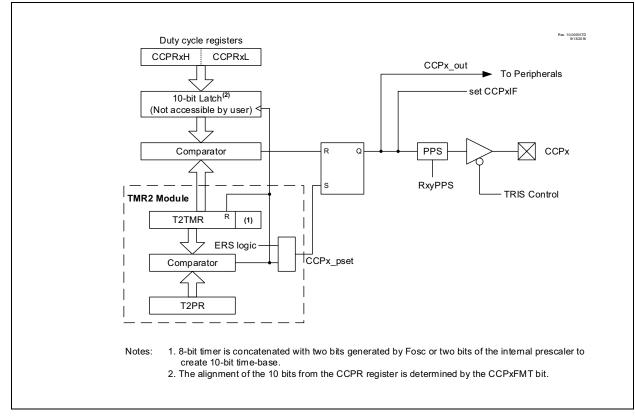
Figure 23-1 shows a simplified diagram of the capture operation.

23.2.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note:	If the CCPx pin is configured as an output,
	a write to the port can cause a capture
	condition.

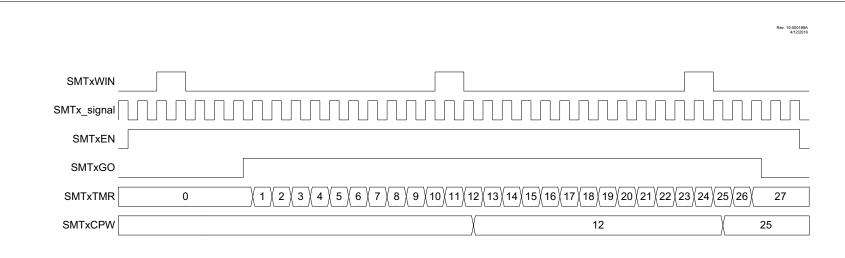
The capture source is selected by configuring the CTS<2:0> bits of the CCPxCAP register. Refer to CCPxCAP register (Register 23-3) for a list of sources that can be selected.

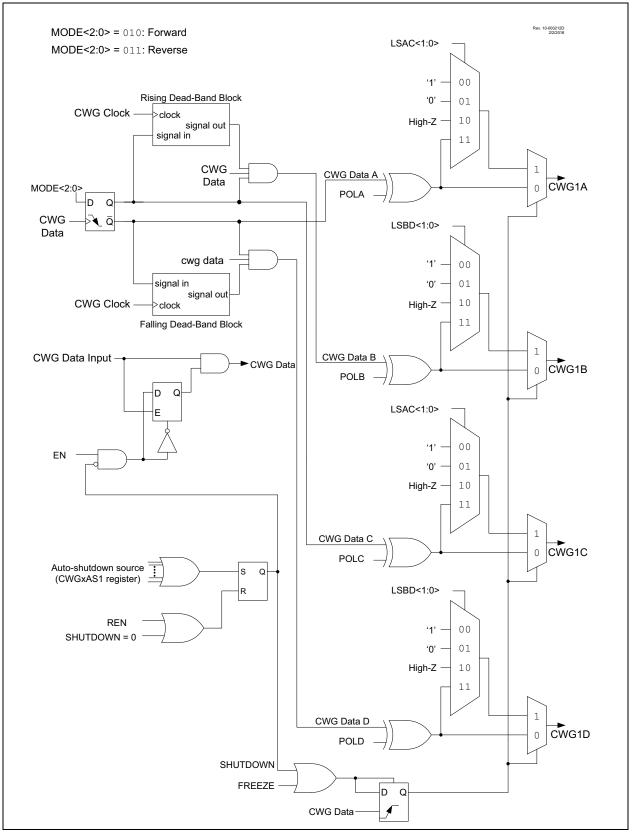

23.2.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

• See Section 21.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Capture mode. In order for Capture mode to recognize the trigger event on the CCPx pin, Timer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.




25.6.9 COUNTER MODE

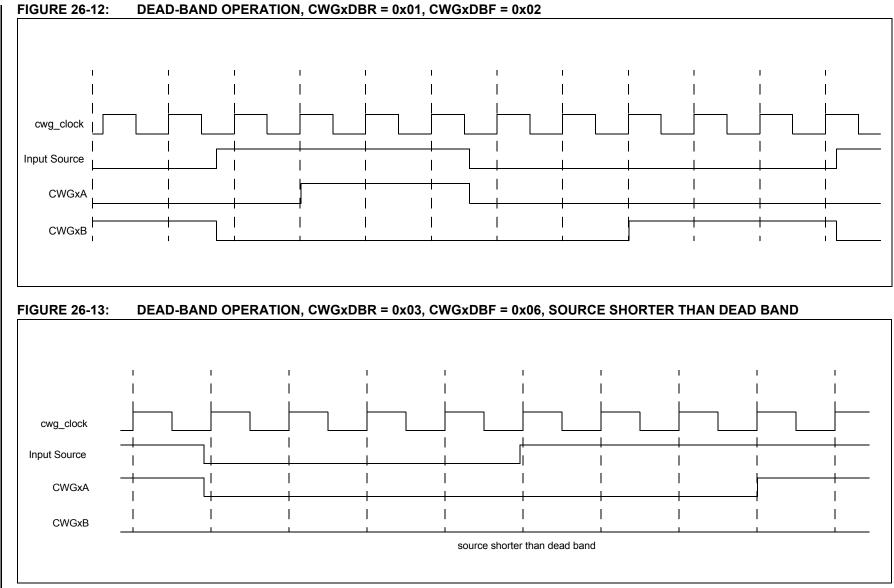

This mode increments the timer on each pulse of the SMT1_signal input. This mode is asynchronous to the SMT clock and uses the SMT1_signal as a time source. The SMT1CPW register will be updated with the current SMT1TMR value on the rising edge of the SMT1WIN input. See Figure 25-18.

FIGURE 25-18: COUNTER MODE TIMING DIAGRAM

FIGURE 26-6: SIMPLIFIED CWG BLOCK DIAGRAM (FORWARD AND REVERSE FULL-BRIDGE MODES)

© 2016-2017 Microchip Technology Inc.

Preliminary

30.0 DATA SIGNAL MODULATOR (DSM) MODULE

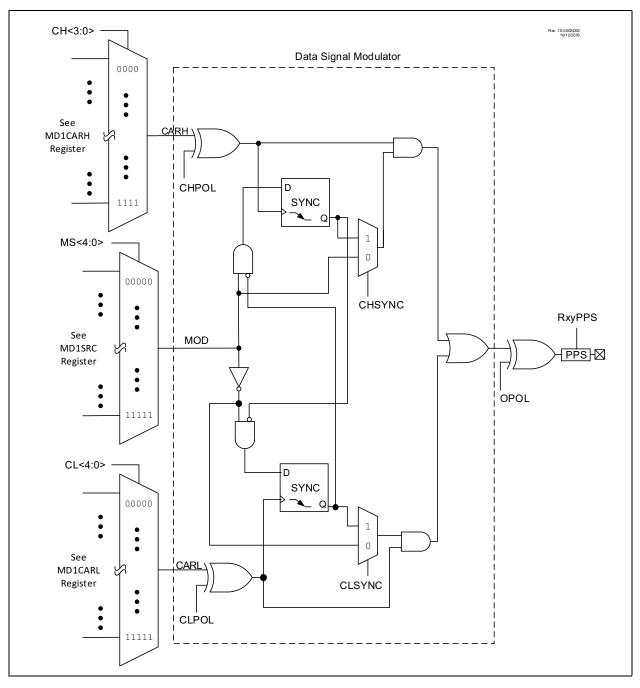
The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally, from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic low state, the DSM mixes the carrier low signal with the modulator signal.

Using this method, the DSM can generate the following types of Key Modulation schemes:


- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- Carrier Source Polarity Select
- Programmable Modulator Data
- · Modulated Output Polarity Select
- Peripheral Module Disable, which provides the ability to place the DSM module in the lowest power consumption mode

Figure 30-1 shows a Simplified Block Diagram of the Data Signal Modulator peripheral.

FIGURE 30-1: SIMPLIFIED BLOCK DIAGRAM OF THE DATA SIGNAL MODULATOR

© 2017 Microchip Technology Inc.

REGISTER 32-4: SPIxTCNTH: SPI TRANSFER COUNTER MSB REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_	-	-	TCNT10	TCNT9	TCNT8
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

bit 7-3 Unimplemented: Read as '0'

bit 2-0	TCNT<10:8>:
	BMODE = 0
	Bits 13-11 of the Transfer Counter, counting the total number of bits to transfer
	BMODE = 1
	Bits 10-8 of the Transfer Counter, counting the total number of bytes to transfer
Noto	This register should not be written to while a transfer is in progress (PLISY hit of SPLyCON2 is a

Note: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

REGISTER 32-5: SPIxTWIDTH: SPI TRANSFER WIDTH REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	_	—	TWIDTH2	TWIDTH1	TWIDTH0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	

- bit 7-3 Unimplemented: Read as '0'
- bit 2-0 TWIDTH<2:0>:

BMODE = 0

Bits 2-0 of the Transfer Counter, counting the total number of bits to transfer

BMODE = 1

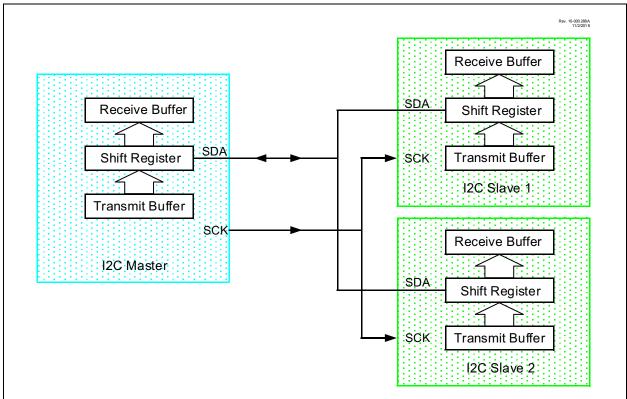
Size (in bits) of each transfer counted by the transfer counter

- 111 **= 7 bits**
- 110 = 6 bits
- 101 **= 5 bits**
- 100 **= 4 bits**
- 011 = 3 bits
- 010 = 2 bits
- 001 **= 1 bit**
- 000 **= 8 bits**

Note: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

33.1 I²C Features

- Inter-Integrated Circuit (I²C) interface supports the following modes in hardware:
 - Master mode
 - Slave mode with byte NACKing
 - Multi-Master mode
- · Dedicated Address, Receive and Transmit buffers
- · Up to four Slave addresses matching
- General Call address matching
- 7-bit and 10-bit addressing with masking
- Start, Restart, Stop, Address, Write, and ACK Interrupts
- Clock Stretching hardware for:
 - RX Buffer Full
 - TX Buffer Empty
 - After Address, Write, and ACK
- Bus Collision Detection with arbitration
- Bus Timeout Detection
- SDA hold time selection
- I²C, SMBus 2.0, and SMBus 3.0 input level selections


33.2 I²C Module Overview

The I²C module provides a synchronous interface between the microcontroller and other I²C-compatible devices using the two-wire I²C serial bus. Devices communicate in a master/slave environment. The I²C bus specifies two signal connections:

- Serial Clock (SCL)
- Serial Data (SDA)

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors to the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one. Every transaction on the I²C bus has to be initiated by the Master.

Figure 33-2 shows a typical connection between a master and more than one slave.

FIGURE 33-2: I²C MASTER/SLAVE CONNECTIONS

REGISTER 36-18: ADRESH: ADC RESULT REGISTER HIGH, FM = 0

				•			
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<11:4>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unknow	wn	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-0 **ADRES<11:4>**: ADC Result Register bits Upper eight bits of 12-bit conversion result.

REGISTER 36-19: ADRESL: ADC RESULT REGISTER LOW, FM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
	ADRES	6<3:0>		—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 ADRES<3:0>: ADC Result Register bits. Lower four bits of 12-bit conversion result.

bit 3-0 Reserved

_	—	—	—	—	PCH<2:0>	
bit 7						bit 0

REGISTER 38-4: CMxPCH: COMPARATOR x NON-INVERTING CHANNEL SELECT REGISTER

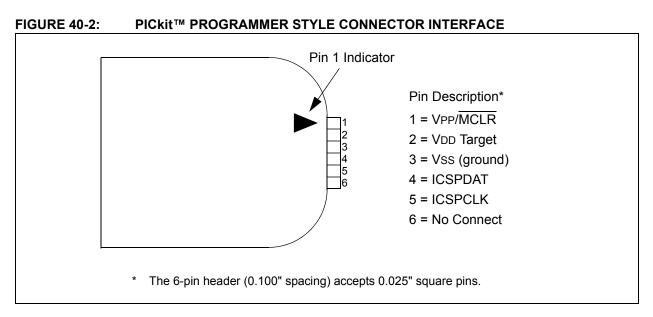
Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2-0	PCH<2:0>: Comparator Non-Inverting Input Channel Select bits
	111 = V SS
	110 = FVR_Buffer2
	101 = DAC_Output
	100 = PCH not connected
	011 = PCH not connected
	010 = PCH not connected
	001 = CxIN1+
	000 = CxIN0+

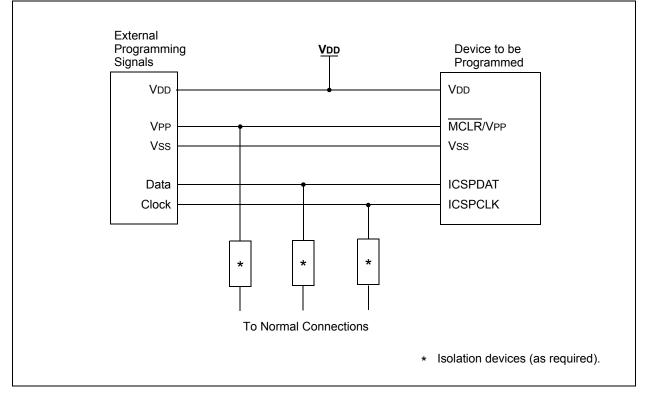
REGISTER 38-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	—	—	—	—	—	C2OUT	C1OUT
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 1 **C2OUT:** Mirror copy of C2OUT bit

bit 0 C1OUT: Mirror copy of C1OUT bit


TABLE 38-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMxCON0	EN	OUT	—	POL	_	_	HYS	SYNC	648
CMxCON1	_		_		_		INTP	INTN	649
CMxNCH	_		_			NCH<2:0>			649
CMxPCH	_		_			PCH<2:0>			650
CMOUT	_	_	_	-	_	_	C2OUT	C10UT	650

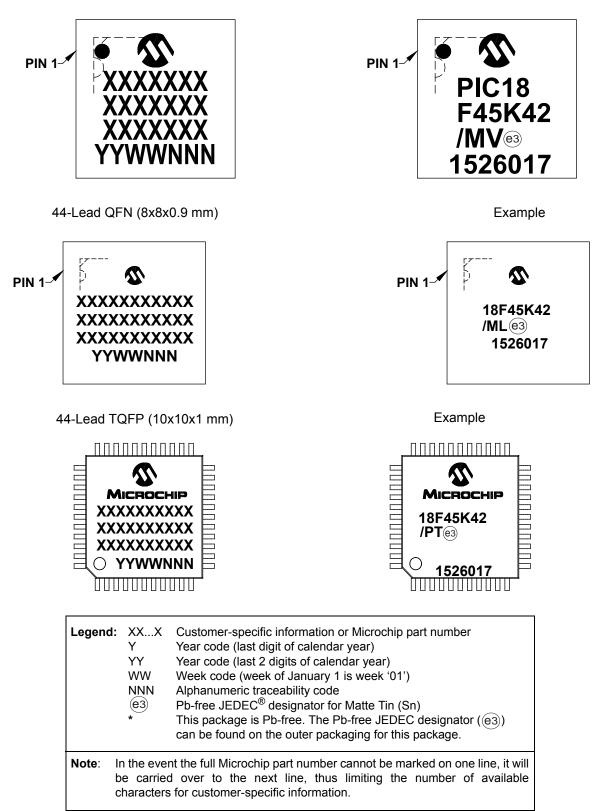
Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

W

INFS	NZ	Incremen	Increment f, skip if not 0					
Synta	x:	INFSNZ f	{,d {,a}}					
Opera	ands:	$0 \leq f \leq 255$	$0 \le f \le 255$					
		d ∈ [0,1] a ∈ [0,1]						
Opera	ation.	$f(f) + 1 \rightarrow de$	et					
Opere		skip if result						
Status	Affected:	None	None					
Encod	ding:	0100	10da ffi	ff ffff				
Descr	iption:	The content	ts of register 'f	' are				
			d. If 'd' is ' 0', th					
			placed in W. If 'd' is '1', the result is placed back in register 'f' (default).					
			If the result is not '0', the next					
		instruction,	instruction, which is already fetched, is					
			ind a NOP is ex					
		instead, ma	king it a 2-cyc	le				
			he Access Bar	nk is selected.				
			he BSR is use	d to select the				
		GPR bank. If 'a' is '∩' a	nd the extende	ad instruction				
			ed, this instruc					
			Literal Offset A					
			ever f ≤ 95 (5F					
			tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-					
		eral Offset	Mode" for det	tails.				
Words	S:	1						
Cycle	s:	1(2)						
			cycles if skip a a 2-word instr					
Q Cv	cle Activity:	by						
u oy	Q1	Q2	Q3	Q4				
Γ	Decode	Read	Process	Write to				
L		register 'f'	Data	destination				
lf ski		02	03	04				
Г	Q1 No	Q2 No	Q3 No	Q4 No				
	operation	operation	operation	operation				
lf ski	•	d by 2-word in						
F	Q1	Q2	Q3	Q4				
	No	No	No	No				
╞	operation No	operation	operation No	operation No				
	operation	No operation	operation	operation				
Exam	<u>ple</u> :	HERE I ZERO NZERO	INFSNZ REG	, 1, 0				
F	Before Instruc							
E	PC	= Address	(HERE)					
A	After Instruction	on						
	REG If REG	= REG + ²	1					
	PC	\neq 0; = Address	(NZERO)					
	lf REG PC	= 0; = Address	(ZERO)					
	. •	,	. (22100)					

IORLW	Inclusive	clusive OR literal with W				
Syntax:	IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow W$					
Status Affected:	N, Z					
Encoding:	0000	1001	.001 kkk		kkkk	
Description:	The conten bit literal 'k'					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q3		Q4	
Decode	Read literal 'k'	Process Data		Write to W		
Evennler	TODIN	251				
Example:	IORLW	35h				
Before Instruc	tion					
W	= 9Ah					
After Instruction	n					

BFh


=

© 2017 Microchip Technology Inc.

Example

Package Marking Information (Continued)

40-Lead UQFN (5x5x0.5 mm)

