

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k42t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U
IC
<u>``</u>
$\overline{\mathbf{x}}$
8
Ξ
¥
N
6
Ν
7
4
5
1
4
G
1
/47/
Z
/55/
M
5
;/56
Q
σ
5
5
Z
Σ
42
N

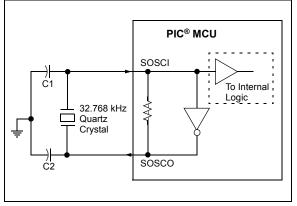
IABLE 1	-				TABLE (PIC18)	(_)//	(00.1.1												
0/I	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	DDA	Voltage Reference	DAC	Comparators	Zero Cross Detect	1²C	IdS	UART	WSQ	Timers/SMT	CCP and PWM	9M0	כרכ	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RC0	11	8	ANC0	1	_	-	-	_	1	_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMTWIN1 ⁽¹⁾	_	1	1	1	-	IOCC0	SOSCO
RC1	12	9	ANC1	-	_	_	-	_	-	_	_	SMTSIG1 ⁽¹⁾	CCP2 ⁽¹⁾	-	-	-	_	IOCC1	SOSCI
RC2	13	10	ANC2	_	_	—	—	_	_	_	_	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	_	_	_	_	IOCC2	_
RC3	14	11	ANC3	_	—	—	_	SCL1 ^(3,4)	SCK1 ⁽¹⁾	_	-	T2IN ⁽¹⁾	—	_	_	_	—	IOCC3	-
RC4	15	12	ANC4	—	—	—	—	SDA1 ^(3,4)	SDI1 ⁽¹⁾	—	—	—	—	—	_	—	—	IOCC4	—
RC5	16	13	ANC5	_	—	_	_	—	—	_		T4IN ⁽¹⁾	—	—	-	_	_	IOCC5	_
RC6	17	14	ANC6	—	—	-	—	—	—	CTS1 ⁽¹⁾	-	—	_	—	_	—	—	IOCC6	—
RC7	18	15	ANC7	_	—	—	_	_	_	RX1 ⁽¹⁾		—	_	_	_	_	_	IOCC7	_
RE3	1	26	-	_	-	—	-	-	—	-	_	_	-	_	_	_	—	IOCE3	MCLR VPP
VDD	20	17	_	_	—	—	—	—	_	—	_	_	—	_	_	_	—	-	—
Vss	8, 19	5, 16	_	-	—	-	-	-	-	-	—	—	—	—	_	-	—	_	—
OUT ⁽²⁾	_	_	ADGRDA ADGRDB		_	C1OUT C2OUT	_	SDA1 SCL1 SDA2 SCL2	SS1 SCK1 SDO1	DTR1 RTS1 TX1 DTR2 RTS2 TX2	DSM	TMR0	CCP1 CCP2 CCP3 CCP4 PWM50UT PWM60UT PWM70UT PWM80UT	CWG1A CWG1B CWG1C CWG1D CWG2A CWG2A CWG2A CWG2C CWG3A CWG3A CWG3B CWG3C CWG3D	CLC10UT CLC20UT CLC30UT CLC40UT	NCO	CLKR	_	_

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F2XK42) (CONTINUED)

2: All output signals shown in this row are PPS remappable.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. These pins can be configured for I²C and SMB™ 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUs input buffer thresholds. 4:

3:


R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
BOR	REN<1:0>	LPBOREN	IVT1WAY	MVECEN	PWRT	⁻ S<1:0>	MCLRE	
bit 7							bit (
Legend:								
R = Readable		W = Writable		•	mented bit, rea			
-n = Value for	r blank device	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	
bit 7-6	BOREN<1:0>	: Brown-out Re	set Enable bit	S				
	11 = Brown-ou 10 = Brown-ou 01 = Brown-ou	l, Brown-out Re ut Reset is enat ut Reset is enat ut Reset is enat ut Reset is disa	oled, SBOREI oled while run oled according	N bit is ignored ning, disabled			d	
bit 5	1 = Low-Powe	ow-Power BOR er BOR is disab er BOR is enabl	led					
bit 4	1 = IVTLOCK cycle	LOCK bit One-' ED bit can be c ED bit can be s	leared and se	t only once; IV				
bit 3	MVECEN: Mu 1 = Multi-vect	lti-vector Enable or enabled; Vec terrupt behavior	e bit stor table used	·	()		,	
bit 2-1	11 = PWRT is 10 = PWRT se 01 = PWRT se	: Power-up Tim disabled et at 64 ms (204 et at 16 ms (512 et at 1 ms (32 L	8 LFINTOSC	Cycles) Cycles)				
bit 0	<u>If LVP = 1:</u> RE3 pin function If LVP = 0: 1 = MCLR pin			nction				

7.2.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 32.768 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during runtime using clock switching. Refer to Section 7.3 "Clock Switching" for more information.

Two power modes are available for the secondary oscillator. These modes are selected with the SOSCPWR (OSCCON3<6>). Clearing this bit selects the lower Crystal Gain mode which provides lowest microcontroller power consumption. Setting this bit enables a higher Gain mode to support faster crystal start-up or crystals with higher ESR.

FIGURE 7-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for PIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

TRIGEN	BURSTMD	Scanner Operation
0	0	Memory access is requested when the CRC module is ready to accept data; the request is granted if no other higher priority source request is pending.
1	0	Memory access is requested when the CRC module is ready to accept data and trigger selection is true; the request is granted if no other higher priority source request is pending.
x	1	Memory access is always requested, the request is granted if no other higher priority source request is pending.

TABLE 14-1: SCANNER OPERATING MODES⁽¹⁾

Note 1: See Section 3.1 "System Arbitration" for Priority selection and Section 3.2 "Memory Access Scheme" for Memory Access Scheme.

REGISTER 14-12: SCANLADRU: SCAN LOW ADDRESS UPPER BYTE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			LADR<2	21:16> (1,2)		
bit 7	•	•					bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **LADR<21:16>:** Scan Start/Current Address bits^(1,2) Upper bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - 2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 14-13: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
LADR<15:8> ^(1, 2)								
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1, 2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - **2:** While SGO = 1 (SCANCON0 register), writing to this register is ignored.

15.9.5 OVERRUN INTERRUPT

The Overrun Interrupt flag is set if the DMA receives a trigger to start a new message before the current message is completed.

	1 2 3	(4)	6 6) (8)	9 10	(i) (i)	13 14	15	19 f)	13	Ray. 10.000275E 8/11/2016
Instruction Clock											
EN											
SIRQEN											
Source Hardware Trigger -											
DGO-											
DMAxSPTR	(0x100)	0x101	X	0x100		0x101	X	0x10	0	
DMAxDPTR	(0x200)	0x201	χ	0x202		0x203	χ	0x20	0	
DMAxSCNT	2		1	_X	2		1	X	2		
DMAxDCNT	4		3	_X	2		1	χ	4		
DMA STATE	IDLE	SR ⁽¹⁾ D	W ⁽²⁾ SR ⁽¹⁾ DW	/ ⁽²⁾	IDLE	SR ⁽¹⁾ DW ⁽²⁾	SR ⁽¹⁾ DW ⁽²⁾		IDLE		
DMAxSCNTIF					1						
DMAxDCNTIF											
DMAxORIF _								1			
	DMAxCON1bits.SM	A = 01									
	DMAxSSA 0x10	00	DMAxDSA	0x200							
	DMAxSSZ 0x2	2	DMAxDSZ	0x20							
Note 1:	SR - Source Re	ead									
2:	DW - Destinatio	on Write									

FIGURE 15-9: OVERRUN INTERRUPT

x = bit is unknown u = bit is unchanged

REGISTER 15-1: DMAXCON0: DMAX CONTROL REGISTER 0									
R/W-0/0	R/W/HC-0/0	R/W/HS/HC-0/0	U-0	U-0	R/W/HC-0/0	U-0	R/HS/HC-0/0		
EN	SIRQEN	DGO	_	_	AIRQEN	_	XIP		
bit 7 bit 0									
Legend:	Legend:								
R = Readable bit W = Writable bit				U = Unimple	mented bit, read	d as '0'			

-n/n = Value at POR	0 = bit is cleared	
and BOR/Value at all		I
other Resets		

bit 7 EN: DMA Module Enable b	oit
-------------------------------	-----

- 1 = Enables module
- 0 = Disables module
- SIRQEN: Start of Transfer Interrupt Request Enable bits
 - 1 = Hardware triggers are allowed to start DMA transfers
 - 0 = Hardware triggers are not allowed to start DMA transfers

bit 5 DGO: DMA transaction bit

bit 6

- 1 = DMA transaction is in progress
- 0 = DMA transaction is not in progress
- bit 4-3 Unimplemented: Read as '0'

bit 2 AIRQEN: Abort of Transfer Interrupt Request Enable bits

- 1 = Hardware triggers are allowed to abort DMA transfers
- 0 = Hardware triggers are not allowed to abort DMA transfers

bit 1 Unimplemented: Read as '0'

- bit 0 XIP: Transfer in Progress Status bit
 - 1 = The DMAxBUF register currently holds contents from a read operation and has not transferred data to the destination.
 - 0 = The DMAxBUF register is empty or has successfully transferred data to the destination address

19.0 PERIPHERAL MODULE DISABLE (PMD)

Sleep, Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume some amount of power. There may be cases where the application needs what these modes do not provide: the ability to allocate limited power resources to the CPU while eliminating power consumption from the peripherals.

The PIC18F26/27/45/46/47/55/56/57K42 microcontrollers address this requirement by allowing peripheral modules to be selectively enabled or disabled, placing them into the lowest possible power mode.

All modules are ON by default following any Reset.

19.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset.
- · Any SFR becomes "unimplemented"
 - Writing is disabled
 - Reading returns 00h
- I/O functionality is prioritized as per Section 16.1, I/O Priorities
- All associated Input Selection registers are also disabled

19.2 Enabling a Module

When the PMD register bit is cleared, the module is re-enabled and will be in its Reset state (Power-on Reset). SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

19.3 Effects of a Reset

Following any Reset, each control bit is set to '0', enabling all modules.

19.4 System Clock Disable

Setting SYSCMD (PMD0, Register 19-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

REGISTER 21-3: TxCLK: TIMERx CLOCK REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			CS<4:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **CS<4:0>:** Timerx Clock Source Selection bits

CS	Timer1	Timer3	Timer5
CS	Clock Source	Clock Source	Clock Source
11111-10001	Reserved	Reserved	Reserved
10000	CLC4	CLC4	CLC4
01111	CLC3	CLC3	CLC3
01110	CLC2	CLC2	CLC2
01101	CLC1	CLC1	CLC1
01100	TMR5 overflow	TMR5 overflow	Reserved
01011	TMR3 overflow	Reserved	TMR3 overflow
01010	Reserved	TMR1 overflow	TMR1 overflow
01001	TMR0 overflow	TMR0 overflow	TMR0 overflow
01000	CLKREF	CLKREF	CLKREF
00111	SOSC	SOSC	SOSC
00110	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)
00101	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)
00100	LFINTOSC	LFINTOSC	LFINTOSC
00011	HFINTOSC	HFINTOSC	HFINTOSC
00010	Fosc	Fosc	Fosc
00001	Fosc/4	Fosc/4	Fosc/4
00000	T1CKIPPS	T3CKIPPS	T5CKIPPS

25.6.7 TIME OF FLIGHT MEASURE MODE

This mode measures the time interval between a rising edge on the SMTWINx input and a rising edge on the SMT1_signal input, beginning to increment the timer upon observing a rising edge on the SMTWINx input, while updating the SMT1CPR register and resetting the timer upon observing a rising edge on the SMT1_signal input. In the event of two SMTWINx rising edges without an SMT1_signal rising edge, it will update the SMT1CPW register with the current value of the timer and reset the timer value. See Figure 25-14 and Figure 25-15.

-n/n = Value at POR and BOR/Value at all other Resets

q = Value depends on condition

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			ISM<4:0>		
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

REGISTER 26-4: CWGxISM: CWGx INPUT SELECTION REGISTER

bit 7-5 Unimplemented Read as '0'

u = Bit is unchanged

'1' = Bit is set

bit 4-0 ISM<4:0>: CWG Data Input Selection Multiplexer Select bits

x = Bit is unknown

'0' = Bit is cleared

ICM (4:0)	CWG1	CWG2	CWG3
ISM<4:0>	Input Selection	Input Selection	Input Selection
11111-10011	Reserved	Reserved	Reserved
10010	CLC4_out	CLC4_out	CLC4_out
10001	CLC3_out	CLC3_out	CLC3_out
10000	CLC2_out	CLC2_out	CLC2_out
01111	CLC1_out	CLC1_out	CLC1_out
01110	DSM_out	DSM_out	DSM_out
01101	CMP2OUT	CMP2OUT	CMP2OUT
01100	CMP1OUT	CMP1OUT	CMP1OUT
01011	NCO10UT	NCO1OUT	NCO10UT
01010-01001	Reserved	Reserved	Reserved
01000	PWM8OUT	PWM8OUT	PWM8OUT
00111	PWM7OUT	PWM7OUT	PWM7OUT
00110	PWM6OUT	PWM6OUT	PWM6OUT
00101	PWM5OUT	PWM5OUT	PWM5OUT
00100	CCP4_out	CCP4_out	CCP4_out
00011	CCP3_out	CCP3_out	CCP3_out
00010	CCP2_out	CCP2_out	CCP2_out
00001	CCP1_out	CCP1_out	CCP1_out
00000	Pin selected by CWG1PPS	Pin selected by CWG2PPS	Pin selected by CWG3PPS

REGISTER 28-5: NCO1ACCU: NCO1 ACCUMULATOR REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	_	—		ACC<	19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ACC<19:16>: NCO1 Accumulator, Upper Byte

Note 1: The accumulator spans registers NCO1ACCU:NCO1ACCH: NCO1ACCL. The 24 bits are reserved but not all are used. This register updates in real time, asynchronously to the CPU; there is no provision to guarantee atomic access to this 24-bit space using an 8-bit bus. Writing to this register while the module is operating will produce undefined results.

REGISTER 28-6: NCO1INCL: NCO1 INCREMENT REGISTER – LOW BYTE^(1,2)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
INC<7:0>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INC<7:0>: NCO1 Increment, Low Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

2: NCO1INC is double-buffered as INCBUF; INCBUF is updated on the next falling edge of NCOCLK after writing to NCO1INCL; NCO1INCU and NCO1INCH should be written prior to writing NCO1INCL.

REGISTER 28-7: NCO1INCH: NCO1 INCREMENT REGISTER – HIGH BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
INC<15:8>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INC<15:8>: NCO1 Increment, High Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

30.0 DATA SIGNAL MODULATOR (DSM) MODULE

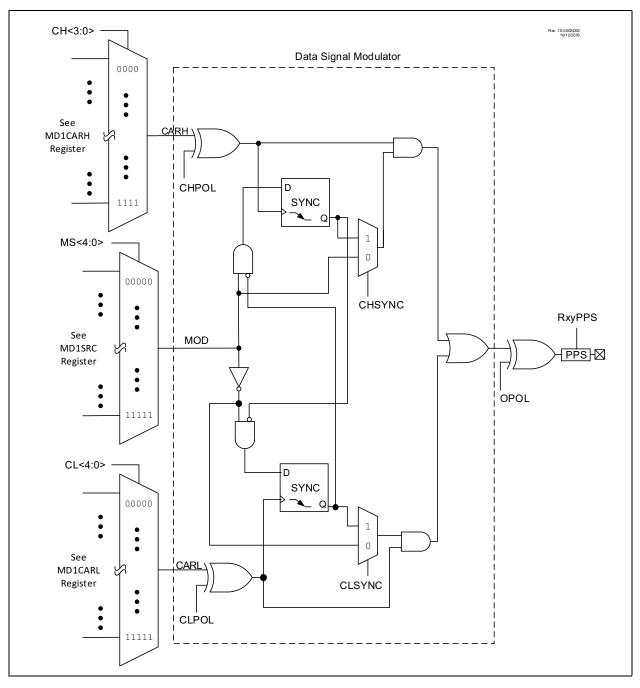
The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally, from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic low state, the DSM mixes the carrier low signal with the modulator signal.

Using this method, the DSM can generate the following types of Key Modulation schemes:


- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- Carrier Source Polarity Select
- Programmable Modulator Data
- · Modulated Output Polarity Select
- Peripheral Module Disable, which provides the ability to place the DSM module in the lowest power consumption mode

Figure 30-1 shows a Simplified Block Diagram of the Data Signal Modulator peripheral.

FIGURE 30-1: SIMPLIFIED BLOCK DIAGRAM OF THE DATA SIGNAL MODULATOR

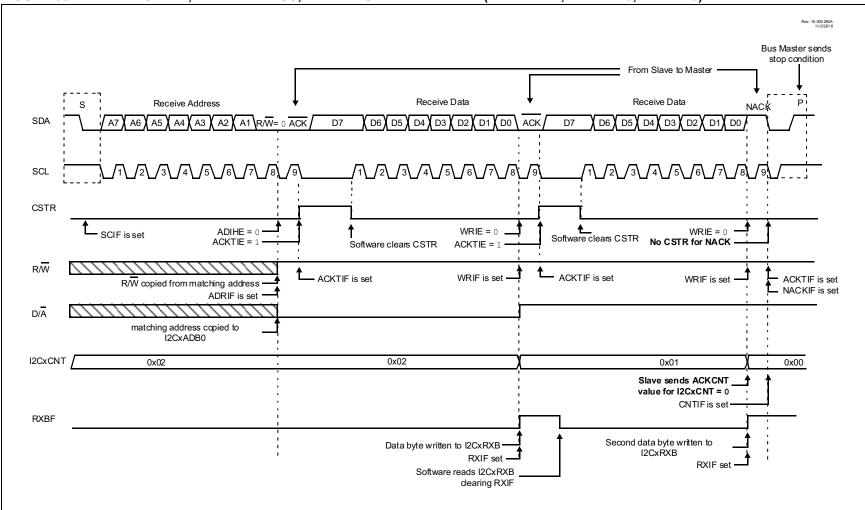
© 2017 Microchip Technology Inc.

R/C/HS-0/0	U-0	R-1/1	U-0	R/C/HS-0/0	S-0/0	U-0	R-0/0		
TXWE	_	TXBE		RXRE	CLRBF	_	RXBF		
bit 7				· ·			bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen C = Clearable	nented bit, read	as '0'			
				S = Settable I					
				HS = Bit can	be set by hardw	are			
bit 7	TXWE: Transmit Buffer Write Error bit								
	1 = SPIxTxB	was written wh	ile TxFIFO w	vas full					
	0 = No error h	as occurred							
bit 6	Unimplemen	ted: Read as '	o'						
bit 5	TXBE : Transmit Buffer Empty bit (read-only)								
	1 = Transmit buffer TxFIFO is empty								
	0 = Transmit b	ouffer is not en	npty						
bit 4	Unimplemen	ted: Read as ') `						
bit 3	RXRE: Receive Buffer Read Error bit								
	1 = SPIxRB was read while RxFIFO was empty								
	0 = No error has occurred								
bit 2	CLRBF: Clear Buffer Control bit (write only)								
	1 = Reset the receive and transmit buffers, making both buffers empty								
	0 = Take no a	ction							
bit 1	Unimplemen	ted: Read as '	D'						
bit 0	RXBF: Receiv	ve Buffer Full b	it (read-only)					
	1 = Receive b	ouffer is full							
	0 = Receive b	ouffer is not full							

REGISTER 32-11: SPIxRxB: SPI READ BUFFER REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
RXB7	RXB6	RXB5	RXB4	RXB3	RXB2	RXB1	RXB0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'


bit 7-0 **RXB<7:0>**: Receiver Buffer bits (read-only)

If RX buffer is not empty:

Contains the top-most byte of RXFIFO, and reading this register will remove the top-most byte RXFIFO and decrease the occupancy of the RXFIFO

If RX buffer is empty:

Reading this register will read as '0', leave the occupancy unchanged, and set the RXRE bit of SPIxSTATUS

FIGURE 33-7: $I^{2}C$ SLAVE, 7-BIT ADDRESS, RECEPTION WITH I2CxCNT (ACKTIE = 1, ADRIE = 0, WRIE = 0)

PIC18(L)F26/27/45/46/47/55/56/57K42

36.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting
- Conversion Trigger Selection
- ADC Acquisition Time
- ADC Precharge Time
- · Additional Sample and Hold Capacitor
- Single/Double Sample Conversion
- Guard Ring Outputs

36.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 16.0 "I/O Ports"** for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

36.1.2 CHANNEL SELECTION

There are several channel selections available:

- Eight PORTA pins (RA<7:0>)
- Eight PORTB pins (RB<7:0>)
- Eight PORTC pins (RC<7:0>)
- Eight PORTD pins (RD<7:0>, PIC18(L)F45/46/47/ 55/56/57K42 only)
- Three PORTE pins (RE<2:0>, PIC18(L)F45/46/47/ 55/56/57K42 only)
- Eight PORTF pins (RD<7:0>, PIC18(L)F55/56/ 57K42 only)
- Temperature Indicator
- DAC output
- Fixed Voltage Reference (FVR)
- Vss (ground)

The ADPCH register determines which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion.

Refer to Section 36.2 "ADC Operation" for more information.

36.1.3 ADC VOLTAGE REFERENCE

The PREF<1:0> bits of the ADREF register provide control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- VDD
- FVR outputs

The NREF bit of the ADREF register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 34.0 "Fixed Voltage Reference (FVR)"** for more details on the Fixed Voltage Reference.

36.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCLK register and the CS bits of the ADCON0 register. If Fosc is selected as the ADC clock, there is a prescaler available to divide the clock so that it meets the ADC clock period specification. The ADC clock source options are the following:

- Fosc/(2*n)(where n is from 1 to 128)
- · FRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. Refer Figure 36-2 for the complete timing details of the ADC conversion.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 44-16 for more information. Table 36-1 gives examples of appropriate ADC clock selections.

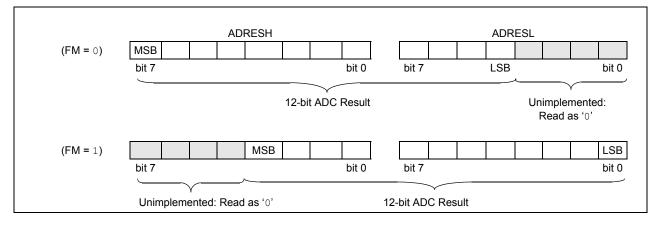
- **Note 1:** Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.
 - 2: The internal control logic of the ADC runs off of the clock selected by the CS bit of ADCON0. What this can mean is when the CS bit of ADCON0 is set to '1' (ADC runs on FRC), there may be unexpected delays in operation when setting ADC control bits.

36.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIRx register. The ADC Interrupt Enable is the ADIE bit in the PIEx register. The ADIF bit must be cleared in software.

- **Note 1:** The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
 - **2:** The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake up from Sleep and resume in-line code execution, the ADIE bit of the PIEx register and the GIE bits of the INTCON0 register must both be set. If all these bits are set, the execution will switch to the Interrupt Service Routine.


36.1.6 RESULT FORMATTING

The 12-bit ADC conversion result can be supplied in two formats, left justified or right justified. The FM bits of the ADCON0 register controls the output format.

Figure 36-3 shows the two output formats.

Writes to the ADRES register pair are always right justified regardless of the selected format mode. Therefore, data read after writing to ADRES when ADFRM0 = 0 will be shifted left four places.

TABLE 36-6:	SUMMARY OF REGISTERS ASSOCIATED WITH ADC (CONTINUED)
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADERRL	ERR<7:0>						633		
ADERRH		ERR<15:8>						633	
ADLTHH		LTH<15:8>						633	
ADLTHL	LTH<7:0>						634		
ADUTHH	UTH<15:8>						634		
ADUTHL	UTH<7:0>						634		
ADERRL	ERR<15:8>					633			
ADACT	—	—	_	ADACT<4:0>			619		
ADCP	CPON	_	_	_	_	_	_	CPRDY	636

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

тѕт	FSZ	Test f, skip if 0						
Synta	ax:	TSTFSZ f {	a}					
Operands:		0 ≤ f ≤ 255 a ∈ [0,1]						
Oper	ation:	skip if f = 0						
Statu	s Affected:	None	None					
Enco	ding:	0110	0110 011a ffff ffff					
Description: If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Sec tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lite eral Offset Mode" for details.								
Word	ls:	1						
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.								
QC	ycle Activity:	- , -						
	Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
16 - 1		register 'f'	Data	operation				
lf sk	•	02	03	04				
1	Q1 No	Q2 No	Q3 No	Q4 No				
	operation	operation	operation	operation				
lf sk	ip and followed	•		I				
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
	No operation	No operation	No operation	No operation				
Example: HERE TSTFSZ CNT, 1 NZERO : ZERO :								
Before Instruction PC = Address (HERE) After Instruction If CNT = 00h, PC = Address (ZERO) If CNT ≠ 00h,								
PC = Address (NZERO)								

XORLW		Exclusiv	Exclusive OR literal with W						
Synta	ax:	XORLW	XORLW k						
Oper	ands:	$0 \le k \le 25$	$0 \le k \le 255$						
Oper	ation:	(W) .XOR	$k \to W$						
Statu	s Affected:	N, Z							
Enco	ding:	0000	1010	kkkk	kkkk				
Desc	ription:		The contents of W are XORed with the 8-bit literal 'k'. The result is placed in W.						
Word	s:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proces Data		rite to W				
Example:		XORLW	0AFh						
	Before Instruc	tion							

W = B5h After Instruction

W = 1Ah

© 2017 Microchip Technology Inc.

TABLE 44-8: THERMAL CHARACTERISTICS

Standar	d Operating	Conditions (unless otherwise stated)			
Param No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package
			80	°C/W	28-pin SOIC package
			90	°C/W	28-pin SSOP package
			27.5	°C/W	28-pin UQFN 4x4 mm package
			27.5	°C/W	28-pin QFN 6x6mm package \
			47.2	°C/W	40-pin PDIP package
			46	°C/W	44-pin TQFP package
			24.4	°C/W	44-pin QFN 8x8mm package
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package
			24	°C/W	28-pin SOIC package
			24	°C/W	28-pin SSOR package
			24	°C/W	28-pin UQFN 4x4mm package
			24	°C/W	28-pin QFN 6x6mm package
			24.7	°C/W	40-pin PDIP package
			14.5	°C/W	44-pin TQFP package
			20	°C/W	44-pin QFN 8x8mm package
TH03	Тјмах	Maximum Junction Temperature	150	×Ĉ \	
TH04	PD	Power Dissipation	_	Ŵ	RD = PINTERNAL + PI/O ⁽³⁾
TH05	PINTERNAL	Internal Power Dissipation	- /	-W_	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pi/o	I/O Power Dissipation	_ `	₩	$P_{I/O} = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	$\overline{\frown}$	W	Pder = PDmax (Τj - Τα)/θja ⁽²⁾

Standard Operating Conditions (unless otherwise stated

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature

3: See absolute maximum ratings for total power dissignation.