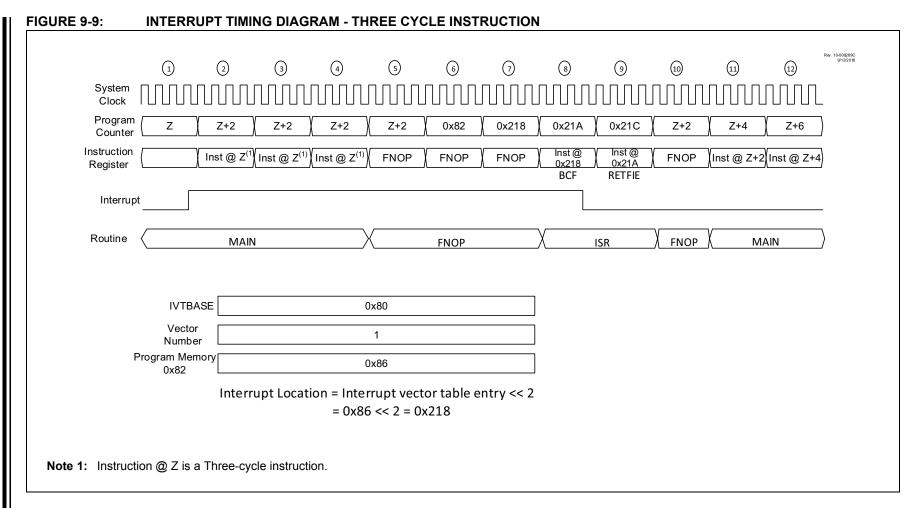


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k42t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0	U-0		
TMR5GIE	TMR5IE	—	—	—		—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	implemented bit, read as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit is		iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	TMR5GIE: TN	/IR5 Gate Inter	rupt Enable bi	it					
	1 = Enabled								
	0 = Disabled								
bit 6	TMR5IE: TMF	R5 Interrupt En	able bit						
	1 = Enabled								
	0 = Disabled								
bit 5-0	5-0 Unimplemented: Read as '0'								

REGISTER 9-22: PIE8: PERIPHERAL INTERRUPT ENABLE REGISTER 8

REGISTER 9-23: PIE9: PERIPHERAL INTERRUPT ENABLE REGISTER 9

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	CLC3IE	CWG3IE	CCP3IE	TMR6IE
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	CLC3IE: CLC3 Interrupt Enable bit
	1 = Enabled 0 = Disabled
bit 2	
DIT Z	CWG3IE: CWG3 Interrupt Enable bit
	1 = Enabled
	0 = Disabled
bit 1	CCP3IE: CCP3 Interrupt Enable bit
	1 = Enabled
	0 = Disabled
bit 0	TMR6IE: TMR6 Interrupt Enable bit
	1 = Enabled
	0 = Disabled

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
I2C2TXIP	I2C2RXIP	DMA2AIP	DMA2ORIP	DMA2DCNTIP	DMA2SCNTIP	C2IP	INT1IP
bit 7							bit (
Legend:						(a)	
R = Readabl		W = Writable b		•	ented bit, read as		
u = Bit is und	•	x = Bit is unkno		-n/n = Value at	POR and BOR/	/alue at all ot	her Resets
'1' = Bit is se	t	'0' = Bit is clea	red				
bit 7		² C2 Transmit Int	orrupt Driarity b	:+			
	1 = High pri			п			
	0 = Low price						
bit 6	-	² C2 Receive Inte	errupt Priority bi	t			
	1 = High pri	ority					
	0 = Low price	ority					
bit 5		DMA2 Abort Inte	rrupt Priority bit				
	1 = High pri	•					
bit 4	0 = Low price	: DMA2 Overrun	Interrupt Driarit	hy hit			
DIL 4	1 = High pri		i interrupt Priorit	ly Dit			
	0 = Low price						
bit 3			nation Count Int	errupt Priority bit			
	1 = High pri	ority					
	0 = Low price	ority					
bit 2		IP: DMA2 Sour	ce Count Interru	pt Priority bit			
	1 = High pri						
bit 1	0 = Low price	errupt Priority bi	:+				
	1 = High pri		IL				
	0 = Low price						
bit 0	•	ernal Interrupt 1	Interrupt Priority	/ bit			
	1 = High pri	•					
	0 = Low price	hrity					

REGISTER 9-30: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

13.3.5 WRITE VERIFY

;

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 13-5: DATA EEPROM READ

Data	Memory Addres	s to read		
	CLRF	NVMCON1	;	Setup Data EEPROM Access
	MOVF	EE_ADDRL, W	;	
	MOVWF	NVMADRL	;	Setup Address
	BSF	NVMCON1, RD	;	Issue EE Read
	MOVF	NVMDAT, W	;	W = EE_DATA

EXAMPLE 13-6: DATA EEPROM WRITE

; Data Memory	/ Address	to write			
C	LRF	NVMCON1		;	Setup Data EEPROM Access
M	OVF	EE_ADDRL,	W	;	
M	OVWF	NVMADRL		;	Setup Address
; Data Memory	y Value t	o write			
M	OVF	EE_DATA,	Ŵ	;	
M	OVWF	NVMDAT		;	
; Enable writ	es				
В	SF	NVMCON1,	WREN	;	
; Disable int	errupts				
В	CF	INTCON0,	GIE	;	
; Required ur	nlock sec	luence			
М	OVLW	55h		;	
M	OVWF	NVMCON2		;	
M	OVLW	AAh		;	
М	OVWF	NVMCON2		;	
; Set WR bit	to begin	n write			
В	SF	NVMCON1,	WR	;	
; Enable INT					
В	SF	INTCON0,	GIE	;	
; Wait for ir	-	write do	ne		
-	LEEP			;	
; Disable wri	tes				
B	CF	NVMCON1,	WREN	;	

13.3.6 OPERATION DURING CODE-PROTECT

Data EEPROM Memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

If the Data EEPROM is write-protected or if NVMADR points an invalid address location, the WR bit is cleared without any effect. WRERR is signaled in this scenario.

13.3.7 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the user may not want to write to the Data EEPROM Memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT).

The unlock sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

19.5 Register Definitions: Peripheral Module Disable

REGISTER	19-1: PMD	0: PMD CON	ROL REGIS	STER 0			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD
7							
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
u = Bit is und	hanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value dep	ends on condi	tion	
bit 7	See descripti 1 = System o		9.4 "System (isabled (Fosc)	k Network bit ⁽¹⁾ Clock Disable"			
bit 6	FVRMD: Disa	able Fixed Volta dule disabled		bit			
bit 5	1 = HLVD m	sable High/Low odule disabled odule enabled	-Voltage Deteo	et bit			
bit 4	1 = CRC mo	able CRC Engined Indule disabled Indule enabled	ne bit				
bit 3	1 = NVM Me	isable NVM Me emory Scan mo emory Scan mo	dule disabled	bit ⁽²⁾			
bit 2	1 = All Memo	M Module Disa ory reading and odule enabled		bled; NVMCON	registers canr	not be written	
bit 1	1 = CLKR m	isable Clock Re odule disabled odule enabled	ference bit				
bit 0	IOCMD: Disable Interrupt-on-Change bit, All Ports 1 = IOC module(s) disabled 0 = IOC module(s) enabled						
	learing the SYS y Fosc/4 are no		es the system	clock (Fosc) to	peripherals, h	owever periphe	rals clocked

REGISTER 19-1: PMD0: PMD CONTROL REGISTER 0

- 2: Subject to SCANE bit in CONFIG4H.
- **3:** When enabling NVM, a delay of up to 1 µs may be required before accessing data.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	—	—	DMA2MD	DMA1MD
bit 7							bit 0

REGISTER 19-8: PMD7: PMD CONTROL REGISTER 7

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-2	Unimplemented: Read as '0'
bit 1	DMA2MD: Disable DMA2 Module bit
	1 = DMA2 module disabled0 = DMA2 module enabled
bit 0	DMA1MD: Disable DMA1 Module bit
	1 - DMA1 madula disabled

1 = DMA1 module disabled 0 = DMA1 module enabled

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH PERIPHERAL MODULE DISABLE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	290
PMD1	NCO1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	291
PMD2	—	DACMD	ADCMD	_	_	CMP2MD	CMP1MD	ZCDMD	292
PMD3	PWM8MD	PWM7MD	PWM6MD	PWM5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	293
PMD4	CWG3MD	CWG2MD	CWG1MD	_	_	_	_	_	294
PMD5	—	_	U2MD	U1MD	_	SPI1MD	I2C2MD	I2C1MD	295
PMD6	—	_	SMT1MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	DSMMD	295
PMD7	_	_	_	_	_	_	DMA2MD	DMA1MD	297

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by peripheral module disable.

FIGURE 21-7:	TIMER1/3/5 GATE SING	GLE-PULSE AND TOGGLE COME	BINED MODE
TMRxGE			
TxGPOL			
TxGSPM			
TxGTM			
TxGG <u>O/</u>	Set by software	•	Cleared by hardware on falling edge of TxGVAL
DONE	Counting enabled o	on	
TxG_IN	rising edge of TxG		
ТхСКІ			
TxGV <u>AL</u>			
TIMER1/3/5	Ν	$\underbrace{N+1} \underbrace{N+2} \underbrace{N+3} \underbrace{N+4}$	
TMRxGIF	 Cleared by software 	Set by hardware on falling edge of TxGVAL ——▶	Cleared by software

21.11 Peripheral Module Disable

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bits for Timer1 (TMR1MD), Timer3 (TMR3MD) and Timer5 (TMR5MD) are in the respective PMD registers. See **Section 19.0 "Peripheral Module Disable (PMD)"** for more information.

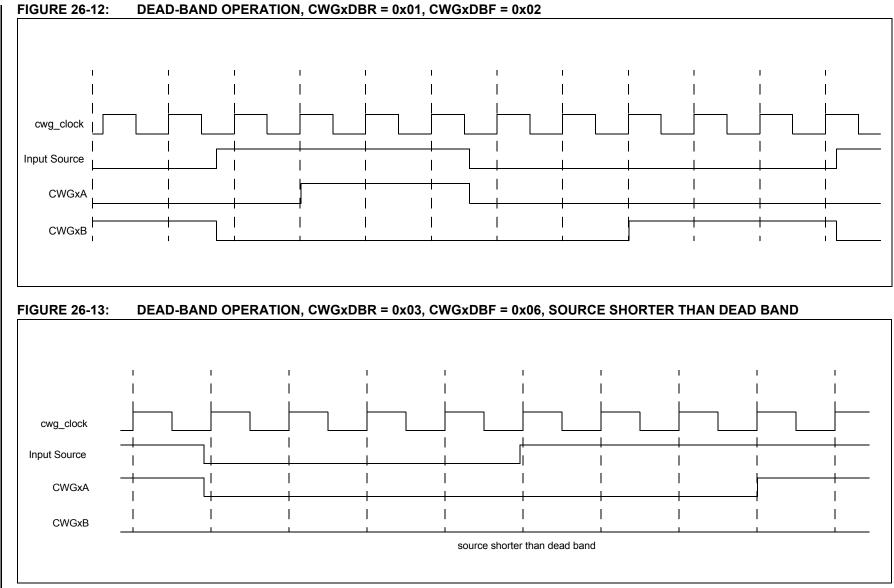
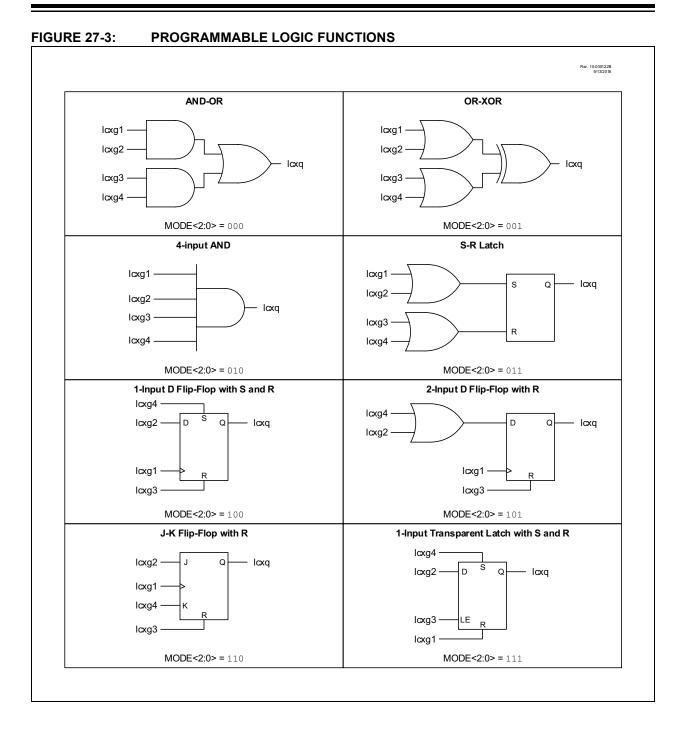

	MODE	<4:0>	Output	Onersting	Timer Control			
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
		000		Software gate (Figure 22-6)	ON = 1	_	ON = 0	
		001	Period Pulse	Hardware gate, active-high (Figure 22-7)	ON = 1 & TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0	
		010	1 0136	Hardware gate, active-low	ON = 1 & TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1	
Free		011		Rising or Falling Edge Reset		TMRx_ers		
Running Period	00	100	Period	Rising Edge Reset (Figure 22-8)		TMRx_ers ↑	ON = 0	
		101	Pulse	Falling Edge Reset]	TMRx_ers ↓		
		110	with Hardware	Low Level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0	
		111	Reset	High Level Reset (Figure 22-9)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1	
		000	One-Shot	Software Start (Figure 22-10)	ON = 1	_		
		001	Edge	Rising Edge Start (Figure 22-9)	ON = 1 & TMRx_ers ↑	_		
	01	010	Triggered Start	Falling Edge Start	ON = 1 & TMRx_ers ↓	_		
		011	(Note 1)	Any eEdge Start	ON = 1 & TMRx_ers	_	ON = 0 or	
One-shot		100	Edge	Rising Edge Start & Rising Edge Reset (Figure 22-12)	ON = 1 & TMRx_ers ↑	TMRx_ers ↑	Next clock after TMRx = PRx	
		101	Triggered Start and Hardware Reset	Falling Edge Start & Falling Edge Reset	ON = 1 & TMRx_ers ↓	TMRx_ers ↓	(Note 2)	
		110		Rising Edge Start & Low Level Reset (Figure 22-13)	ON = 1 & TMRx_ers ↑	TMRx_ers = 0		
		111	(Note 1)	Falling Edge Start & High Level Reset	ON = 1 & TMRx_ers ↓	TMRx_ers = 1		
		000		Res	erved			
		001	Edge	Rising Edge Start (Figure 22-12)	ON = 1 & TMRx_ers ↑	—	ON=0	
Monostable		010	Triggered Start	Falling Edge Start	ON = 1 & TMRx_ers ↓	—	or Next clock after TxTMR = TxPR	
		011	(Note 1)	Any Edge Start	ON = 1 & TMRx_ers	_	(Note 3)	
Reserved	10	100	Reserved					
Reserved	served			Res	erved			
		110	Level Triggered	High Level Start & Low Level Reset (Figure 22-13)	ON = 1 & TMRx_ers = 1	TMRx_ers = 0	ON = 0 or	
One-shot			Start and	Low Level Start &	ON = 1 &		Held in Reset	
One-shot		111	Hardware Reset	High Level Reset	TMRx_ers = 0	TMRx_ers = 1	(Note 2)	

TABLE 22-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.


2: When TxTMR = TxPR then the next clock clears ON and stops TxTMR at 00h.

3: When TxTMR = TxPR then the next clock stops TxTMR at 00h but does not clear ON.

© 2016-2017 Microchip Technology Inc.

Preliminary

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
PWS<2:0> ^(1,2)			_		CKS	CKS<3:0>					
bit 7							bit C				
Legend:											
R = Readab	ole bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'					
u = Bit is un	changed	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all o	other Resets				
'1' = Bit is se	et	'0' = Bit is clea	ared								
				(4.0)							
bit 7-5		ICO1 Output Pi									
		111 = NCO1 output is active for 128 input clock periods									
		110 = NCO1 output is active for 64 input clock periods									
		 101 = NCO1 output is active for 32 input clock periods 100 = NCO1 output is active for 16 input clock periods 									
		011 = NCO1 output is active for 8 input clock periods									
	010 = NCO1 output is active for 4 input clock periods										
	001 = NCO1 output is active for 2 input clock periods										
	000 = NCO	1 output is activ	e for 1 input	clock period							
bit 4	Unimplemen	ted: Read as ')'								
bit 3-0	CKS<3:0>: NCO1 Clock Source Select bits										
	1111 = Rese	1111 = Reserved									
	•										
	•										
	• 1011 - Deee	m (a d									
		1011 = Reserved									
		1010 = CLC4_out 1001 = CLC3 out									
		$1000 = \text{CLC3_out}$									
		0111 = CLC1 out									
	0110 = CLKREF_out										
	0101 = SOSC										
		TOSC/4 (32 kH									
		TOSC (500 kH	z)								
	0010 = LFIN										
	0001 = HFIN 0000 = Fosc										

- **Note 1:** N1PWS applies only when operating in Pulse Frequency mode.
 - 2: If NCO1 pulse width is greater than NCO1 overflow period, operation is undefined.

29.0 ZERO-CROSS DETECTION (ZCD) MODULE

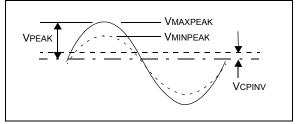
The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 29-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- Accurate long term time measurement
- Dimmer phase delayed drive
- Low EMI cycle switching

29.1 External Resistor Selection


The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 29-1 and Figure 29-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 29-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 29-1: EXTERN

REGISTER :	R/W-0/0	N2: UART CONTE R/W-0/0 R/	W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
RUNOVF	RXPOL	STP<1:0>	•• 0/0	C0EN	TXPOL		<1:0>			
bit 7	101 02			OULIN	174 02	120	bit (
Legend:										
R = Readable		W = Writable bit			nented bit, read					
u = Bit is uncl	•	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is cleared								
bit 7		In During Overflow C	`ontrol h	it						
		shifter continues to			hits after overflo	w condition				
		shifter stops all activ								
bit 6	RXPOL: Rec	eive Polarity Control	bit							
	1 = Invert RX polarity, Idle state is low									
	-	ity is not inverted, Id		s high						
bit 5-4	STP<1:0>: Stop Bit Mode Control bits ⁽¹⁾ 11 = Transmit 2 Stop bits, receiver verifies first Stop bit									
	10 = Transmit 2 Stop bits, receiver verifies first Stop bit 10 = Transmit 2 Stop bits, receiver verifies first and second Stop bits									
	01 = Transmit 1.5 Stop bits, receiver verifies first Stop bit									
		nit 1 Stop bit, receive		s first Stop bit						
bit 3	COEN: Check	C0EN: Checksum Mode Select bit ⁽²⁾								
	LIN mode:									
	 Checksum Mode 1, enhanced LIN checksum includes PID in sum Checksum Mode 0, legacy LIN checksum does not include PID in sum 									
	0 - Checksum mode 0, legacy Lin checksum does not include PID in sum									
	1 = Add all TX and RX characters									
	0 = Checksums disabled									
bit 2	TXPOL: Transmit Polarity Control bit									
		1 = Output data is inverted, TX output is low in Idle state								
	-	ata is not inverted, T	-	t is high in Idle	state					
bit 1-0		landshake Flow Cont	trol bits							
	$11 = \frac{\text{Reserv}}{\text{RTS/C}}$	ved CTS and TXDE Hardv	ware flow	v control						
		OFF Software flow		Veontion						
	00 = Flow c	ontrol is off								
Note 1: All	modes transmit	t selected number of	Stop bit	s. Only DMX a	nd DALI receive	ers verify select	ted number o			
		thers verify only the f				-				

REGISTER 31-3: UxCON2: UART CONTROL REGISTER 2

2: UART1 only.

33.5 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate Mode<2:0> bits in I2CxCON and then by setting the I2CEN bit. Master mode of operation is supported by interrupt generation on buffer full (RXIF), buffer empty (TXIF), and the detection of the Start, Restart, and Stop conditions. The Stop (P), Restart (RS) and Start (S) bits are cleared from a Reset or when the I²C module is disabled. Control of the I²C bus is asserted when the BFRE bit of I2CSTAT0 is set.

33.5.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start, Restart, and Stop conditions. A transfer is ended with a Stop condition or with a Restart condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released, and MMA bit will stay set signifying that the Master module is still active.

The steps to initiate a transaction depends on the setting of the address buffer disable bit (ABD) of the I2CxCON2 register.

• ABD = 0 (Address buffers are enabled)

In this case, the master module will use the address stored in the address buffer registers (I2CxADB0/1) to initiate communication with a slave device. User software needs to set the Start bit (S) in the I2CxCON0 register to start communication. This is valid for both 7-bit and 10-bit Addressing modes.

• ABD = 1 (Address buffers are disabled)

In this case, the slave address is transmitted through the transmit buffer and the contents of the address buffers are ignored. User software needs to write the slave address to the transmit buffer (I2CxTXB) to initiate communication. Writing to the Start bit is ignored in this mode. This is valid for both 7-bit and 10bit Addressing modes.

33.5.1.1 Master Transmitter

In Master Transmitter mode, the first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In the case of master transmitter, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

33.5.1.2 Master Receiver

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time.

After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of the transmission.

33.5.2 MASTER CLOCK SOURCE AND ARBITRATION

The I^2C module clock source is selected by the I2CxCLK register. The I^2C Clock provides the SCL output clock for Master mode and is used by the Bus Free timer. The I^2C clock can be sourced from several peripherals.

33.5.3 BUS FREE TIME

In Master modes, the BFRE bit of the I2CxSTAT0 register gives an indication of the bus idle status. The master hardware cannot assert a Start condition until this bit is set by the hardware. This prevents the master from colliding with other masters that may already be talking on the bus. The BFRET<1:0> bits of I2CxCON1 allow selection of 8 to 64 pulses of the I²C clock input before asserting the BFRE bit. The BFRET bits are used to ensure that the I²C module always follows the minimum Stop Hold Time. The I²C timing requirements are listed in the electrical specifications chapter.

Note:	I ² C clock is not required to have a 50%
	duty cycle.

33.5.4 MASTER CLOCK TIMING

The clock generation in the l^2C module can be configured using the Fast Mode Enable (FME) bit of the l2CxCON2 register. This bit controls the number of times the SCL pin is sampled before the master hardware drives it.

33.5.4.1 Clock Timing with FME = 0

One Tscl, consists of five clocks of the I^2C clock input. The first clock is used to drive SCL low, the third releases SCL high. The fourth and fifth clocks are used to detect if the SCL pin is, in fact, high or being stretched by a slave.

If a slave is clock stretching, the hardware waits; checking SCL on each successive I^2C clock, proceeding only after detecting SCL high. Figure 33-13 shows the clock synthesis timing when FME = 0.

33.5.11 MASTER TRANSMISSION IN 10-BIT ADDRESSING MODE

This section describes the sequence of events for the I^2C module configured as an I^2C master in 10-bit Addressing mode and is transmitting data. Figure 33-21 is used as a visual reference for this description

1. If ABD = 0; i.e., Address buffers are enabled

Master software loads number of bytes to be transmitted in one sequence in I2CxCNT, high address byte of slave address in I2CxADB1 with R/W = 0, low address byte in I2CxADB0 and the first byte of data in I2CxTXB. Master software has to set the Start (S) bit to initiate communication.

If ABD = 1; i.e., Address buffers are disabled

Master software loads the number of bytes to be transmitted in one sequence in I2CxCNT and the high address byte of the slave address with R/W = 0 into the I2CxTXB register. Writing to the I2CxTXB will assert the start condition on the bus and sets the S bit. Software writes to the S bit are ignored in this case.

- 2. Master hardware waits for BFRE bit to be set; then shifts out the start and high address and waits for acknowledge.
- 3. If NACK, master hardware sends Stop.
- 4. If ABD = 0; i.e., Address buffer are enabled

If ACK, master hardware sends the low address byte from I2CxADB0.

If ABD = 1; i.e., Address buffer are disabled

If ACK, master hardware sets TXIF and MDR bits and the software has to write the low address byte into I2CxTXB. Writing to I2CxTXB sends the low address on the bus.

- If TXBE = 1 and I2CxCNT! = 0, I2CxTXIF and MDR bits are set. Clock is stretched on 8th falling SCL edge until master software writes next data byte to I2CxTXB.
- Master hardware sends ninth SCL pulse for ACK from slave and loads the shift register from I2CxTXB. I2CxCNT is decremented.
- 7. If slave sends a NACK, master hardware sends Stop and ends transmission.
- If slave sends an ACK, master hardware outputs data in the shift register on SDA. I2CxCNT value is checked on the 8th falling SCL edge. If I2CxCNT = 0; master hardware sends 9th SCL pulse for ACK and CNTIF is set.
- 9. If I2CxCNT! = 0; go to step 5.

39.10 Register Definitions: HLVD Control

Long bit name prefixes for the HLVD peripheral is shown in Table 39-1. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

TABLE 39-1:

Peripheral	Bit Name Prefix				
HLVD	HLVD				

REGISTER 39-1: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0

R/W-0/0	U-0	R-x	R-x	U-0	U-0	R/W-0/0	R/W-0/0
EN	_	OUT	RDY	—	—	INTH	INTL
bit 7							bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	 EN: High/Low-voltage Detect Power Enable bit 1 = Enables HLVD, powers up HLVD circuit and supporting reference circuitry 0 = Disables HLVD, powers down HLVD and supporting circuitry
bit 6	Unimplemented: Read as '0'
bit 5	OUT: HLVD Comparator Output bit
	 1 = Voltage ≤ selected detection limit (HLVDL<3:0>) 0 = Voltage ≥ selected detection limit (HLVDL<3:0>)
bit 4	RDY: Band Gap Reference Voltages Stable Status Flag bit
	 1 = Indicates HLVD Module is ready and output is stable 0 = Indicates HLVD Module is not ready
bit 3-2	Unimplemented: Read as '0'
bit 1	INTH: HLVD Positive going (High Voltage) Interrupt Enable
	 1 = HLVDIF will be set when voltage ≥ selected detection limit (SEL<3:0>) 0 = HLVDIF will not be set
bit 0	INTL: HLVD Negative going (Low Voltage) Interrupt Enable
	 1 = HLVDIF will be set when voltage ≤ selected detection limit (SEL<3:0>) 0 = HLVDIF will not be set

ADDWFC	ADD W and CARRY bit to f					
Syntax:	ADDWFC f {,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	$(W) + (f) + (C) \rightarrow dest$					
Status Affected:	N,OV, C, DC, Z					
Encoding:	0010 00da ffff ffff					
	ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2 Q3 Q4					
Decode	ReadProcessWrite toregister 'f'Datadestination					
Example:	ADDWFC REG, 0, 1					
Before Instruct CARRY REG W After Instructio CARRY REG W	bit = 1 = 02h = 4Dh on					

ANDLW			AND literal with W							
Synta	ax:	Α	ANDLW k							
Oper	ands:	0	$\leq k \leq 25$	5						
Oper	ation:	(\	V) .AND.	$k\toW$						
Statu	s Affected:	Ν	, Z							
Enco	ding:		0000	1011	kk]	κk	kkkk			
Description:		-	The contents of W are AND'ed with the 8-bit literal 'k'. The result is placed in W.							
Word	Words:		1							
Cycle	es:	1	1							
QC	ycle Activity:									
	Q1		Q2	Q3	Q3		Q4			
	Decode	Re	ad literal 'k'	Proce Dat		Wi	rite to W			
Example:		A	NDLW	05Fh						
Before Instruction		tion								
W =			A3h							
	After Instruction	on								
	W	=	03h							

After Instruction

BSR Register =

Syntax:	Move f to f (Long Range)					
	MOVFFL	MOVFFL f _s ,f _d				
Operands:		$\begin{array}{l} 0 \leq f_s \leq 16383 \\ 0 \leq f_d \leq 16383 \end{array}$				
Operation:	$(f_s) \to f_d$					
Status Affected:	None					
Encoding: 1st word 2nd word 3rd word	0000 1111 1111	0000 f _s f _s f _s f _s f _s f _d f _d f _d f _d	0110 f _s f _s f _s f _s f _s f _d f _d f _d f _d	f _s f _s f _s f _s f _s f _s f _s f _d f _d f _d f _d f _d f _d		
Description:	moved to Location of the 16 Kby Either sou (a useful s MOVFFL is transferrin peripheral buffer or a The MOVF	The contents of source register 'f _s ' are moved to destination register 'f _d '. Location of source 'f _s ' can be anywhere in the 16 Kbyte data space (0000h to 3FFFh). Either source or destination can be W (a useful special situation). MOVFFL is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFFL instruction cannot use the PCL, TOSU, TOSH or TOSL as the				
Words:	3					
Cycles:	3					
Q Cycle Activity:						
	Q1	Q2	Q3	<u></u>		
	~ ·			Q4		
	Decode	No operation	No operation	Q4 No operation		
		-	-	No		

MOVLB	Move literal to BSR				
Syntax:	MOVLW k				
Operands:	$0 \le k \le 63$				
Operation:	$k \to BSR$				
Status Affected:	None				
Encoding:	0000	0001	001	ck	kkkk
Description:	The 6-bit lit Bank Selec value of BS	t Registe	er (BS	R<5	:0>). The
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	}		Q4
Decode	Read literal 'k'	Proce Dat			ite literal to BSR
Example:	MOVLB	5			
Before Instruc BSR Reg		h			

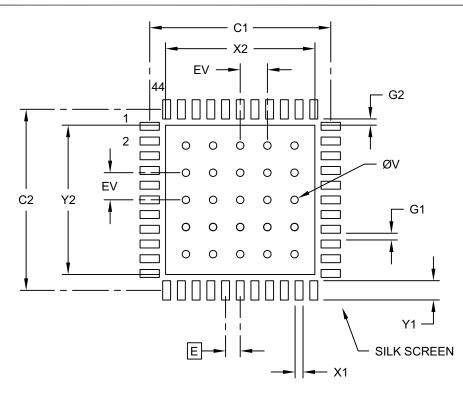
05h

© 2017 Microchip Technology Inc.

After Instruction

Contents of 2000h

Contents of 200Ah = 33h


= 33h

RLNCF	Rotate Le	eft f (No Car	ry)			
Syntax:	RLNCF	f {,d {,a}}				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation:	$(f \le n >) \rightarrow d$ $(f \le 7 >) \rightarrow d$	est <n +="" 1="">, est<0></n>				
Status Affected:	N, Z					
Encoding:	0100	0100 01da ffff ffff				
Description:	The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example: Before Instruct REG After Instructio	= 1010 1	REG, 1, 011	0			
REG	= 0101 0	111				

A	Rotate Ri	-		,
Syntax:	RRCF f{	,d {,a}}		
Operands:	$0 \le f \le 255$			
	d ∈ [0,1]			
	a ∈ [0,1]			
Operation:	$(f < n >) \rightarrow de$		>,	
	$(f<0>) \rightarrow C$ $(C) \rightarrow dest$	-		
o		~/~		
Status Affected:	C, N, Z			1
Encoding:	0011	00da	ffff	fff
Description:	The conten			
	one bit to th			
	flag. If 'd' is			
	If 'd' is '1', t register 'f' (is placed	Dack In
	If 'a' is '0', t		ss Bank is	selecte
	lf 'a' is '1', t			
	GPR bank.			
	lf 'a' is ' 0' a			
	set is enab	-		•
	in Indexed			
	mode wher tion 41.2.3			
	Oriented I			
				exea L
	eral Offset	Mode"		
	eral Offset		for details.	
	eral Offset			
Words:	eral Offset		for details.	
	C		for details.	
Cycles:	C 1		for details.	
Cycles: Q Cycle Activity:	1 1	- re	for details. egister f	
Cycles: Q Cycle Activity: Q1	1 1 Q2	re	for details.	Q4
Cycles: Q Cycle Activity:	C 1 1 Q2 Read	- re	for details. egister f	Q4 Write to
Cycles: Q Cycle Activity: Q1	1 1 Q2	Q3	for details. egister f	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode	C 1 1 Q2 Read	Q3 Proce Dat	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example:	C 1 1 Q2 Read register 'f' RRCF	Q3 Proce Dat	for details. egister f	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc	C 1 1 1 Q2 Read register 'f' RRCF tion	Q3 Q3 Proce Dat REG,	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example:	C 1 1 Q2 Read register 'f' RRCF	Q3 Q3 Proce Dat REG,	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction	C 1 1 1 Q2 Read register 'f' RRCF tion = 1110 (= 0	Q3 Q3 Proce Dat REG,	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG	C 1 1 1 Q2 Read register 'f' RRCF tion = 1110 (0 0 1 = 1110 (Q3 Q3 Proce Dat REG, 0110	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG ₩	C 1 1 Q2 Read register 'f' RRCF tion = 1110 (0) = 0nn = 1110 (0) = 0111 (0)	Q3 Proce Dat REG,	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG	C 1 1 1 Q2 Read register 'f' RRCF tion = 1110 (0 0 1 = 1110 (Q3 Q3 Proce Dat REG, 0110	for details egister f ess \ a de	Q4
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG ₩	C 1 1 Q2 Read register 'f' RRCF tion = 1110 (0) = 0nn = 1110 (0) = 0111 (0)	Q3 Q3 Proce Dat REG, 0110	for details egister f ess \ a de	Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction REG ₩	C 1 1 Q2 Read register 'f' RRCF tion = 1110 (0) = 0nn = 1110 (0) = 0111 (0)	Q3 Q3 Proce Dat REG, 0110	for details egister f ess \ a de	Q4 Write to

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E			
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

© 2017 Microchip Technology Inc.