

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

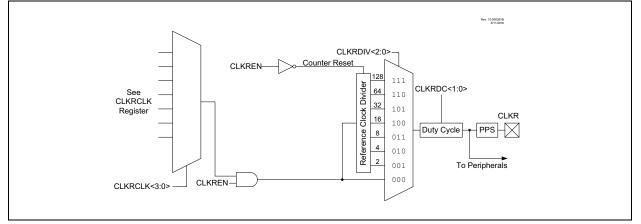
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

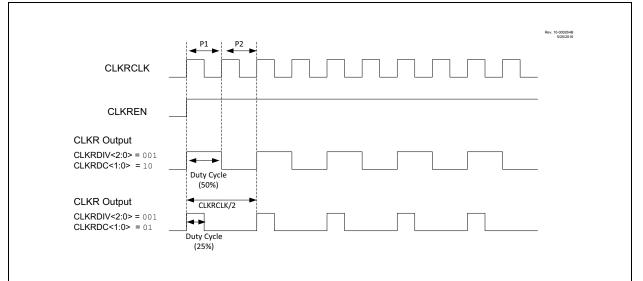
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k42-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


8.0 REFERENCE CLOCK OUTPUT MODULE

The reference clock output module provides the ability to send a clock signal to the clock reference output pin (CLKR). The reference clock output can also be used as a signal for other peripherals, such as the Data Signal Modulator (DSM), Memory Scanner and Timer module.


The reference clock output module has the following features:

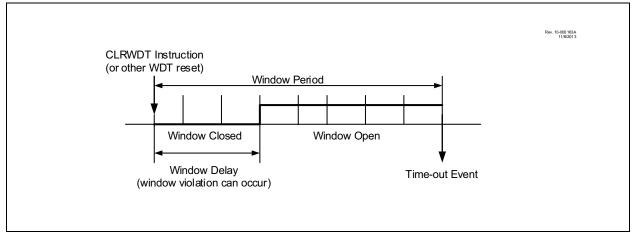
- Selectable clock source using the CLKRCLK register
- Programmable clock divider
- · Selectable duty cycle

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR0IE	U1IE	U1EIE	U1TXIE	U1RXIE	I2C1EIE	I2C1IE	I2C1TXIE
bit 7							bit (
Legend:							
R = Readable		W = Writable		•	mented bit, read		
u = Bit is unch	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	TMROIF	R0 Interrupt En	able bit				
	1 = Enabled 0 = Disabled						
bit 6	U1IE: UART1	Interrupt Enab	ole bit				
	1 = Enabled						
	0 = Disabled						
bit 5	U1EIE: UART1 Framing Error Interrupt Enable bit						
	1 = Enabled 0 = Disabled						
bit 4		RT1 Transmit In	terrupt Enabl	e bit			
	1 = Enabled						
	0 = Disabled						
bit 3		RT1 Receive In	terrupt Enable	e bit			
	1 = Enabled 0 = Disabled						
bit 2		1 Error Interrup	t Enable bit				
	1 = Enabled						
	0 = Disabled						
bit 1	I2C1IE: I ² C1	Interrupt Enabl	e bit				
	1 = Enabled						
	0 = Disabled						
bit 0		C1 Transmit Int	errupt Enable	bit			
	1 = Enabled						

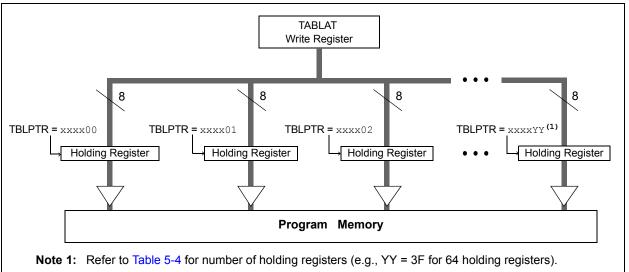
REGISTER 9-17: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

11.6 Operation During Sleep

When the device enters Sleep, the WWDT is cleared. If the WWDT is enabled during Sleep, the WWDT resumes counting. When the device exits Sleep, the WWDT is cleared again.


The WWDT remains clear until the Oscillator Start-up Timer (OST) completes, if enabled. See **Section 7.2.1.3 "Oscillator Start-up Timer (OST)**" for more information on the OST.

When a WWDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON0 register can also be used. See Section 4.0 "Memory Organization" for more information.


TABLE 11-2: WWDT CLEARING CONDITIONS

Conditions	WWDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = SOSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

FIGURE 11-2: WINDOW PERIOD AND DELAY

FIGURE 13-8: TABLE WRITES TO PROGRAM FLASH MEMORY

13.1.6.1 Program Flash Memory Write Sequence

The sequence of events for programming an internal program memory location should be:

- 1. Read appropriate number of bytes into RAM. Refer to Table 5-4 for Write latch size.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the block erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the n-byte block into the holding registers with auto-increment. Refer to Table 5-4 for Write latch size.
- 7. Set REG<1:0> bits to point to program memory.
- 8. Clear FREE bit and set WREN bit in NVMCON1 register.
- 9. Disable interrupts.
- 10. Execute the unlock sequence (see Section 13.1.4 "NVM Unlock Sequence").
- 11. WR bit is set in NVMCON1 register.
- 12. The CPU will stall for the duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

This procedure will require about 6 ms to update each write block of memory. An example of the required code is given in Example 13-4.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the bytes in the holding registers.

REGISTER 14-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DATA	<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 DATA<15:8>: CRC Input/Output Data bits

'1' = Bit is set

REGISTER 14-4: CRCDATL: CRC DATA LOW BYTE REGISTER

'0' = Bit is cleared

R/W-xx	R/W-x/x						
			DATA	<7:0>			
bit 7	bit 7						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **DATA<7:0>**: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 14-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ACC< | :15:8> | | | |
| bit 7 | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

15.0 DIRECT MEMORY ACCESS (DMA)

15.1 Introduction

The Direct Memory Access (DMA) module is designed to service data transfers between different memory regions directly without intervention from the CPU. By eliminating the need for CPU-intensive management of handling interrupts intended for data transfers, the CPU now can spend more time on other tasks.

PIC18(L)F26/27/45/46/47/55/56/57K42 family has two DMA modules which can be independently programmed to transfer data between different memory locations, move different data sizes, and use a wide range of hardware triggers to initiate transfers. The two DMA registers can even be programmed to work together, in order to carry out more complex data transfers without CPU overhead.

Key features of the DMA module include:

- Support access to the following memory regions:
 - GPR and SFR space (R/W)
 - Program Flash Memory (R only)
 - Data EEPROM Memory (R only)
- Programmable priority between the DMA and CPU Operations. Refer to Section 3.1 "System Arbitration" for details.
- Programmable Source and Destination address
 modes
 - Fixed address
 - Post-increment address
 - Post-decrement address
- Programmable Source and Destination sizes
- Source and destination pointer register, dynamically updated and reloadable
- Source and destination count register, dynamically updated and reloadable
- Programmable auto-stop based on Source or Destination counter
- · Software triggered transfers
- Multiple user selectable sources for hardware triggered transfers
- Multiple user selectable sources for aborting DMA transfers

15.2 DMA Registers

The operation of the DMA module has the following registers:

- Control registers (DMAxCON0, DMAxCON1)
- Data buffer register (DMAxBUF)
- Source Start Address Register (DMAxSSAU:H:L)
- Source Pointer Register (DMAxSPTRU:H:L)
- · Source Message Size Register (DMAxSSZH:L)
- Source Count Register (DMAxSCNTH:L)
- Destination Start Address Register (DMAxDSAH:L)
- Destination Pointer Register (DMAxDPTRH:L)
- Destination Message Size Register (DMAxDSZH:L)
- Destination Count Register (DMAxDCNTH:L)
- Start Interrupt Request Source Register (DMAxSIRQ)
- Abort Interrupt Request Source Register (DMAxAIRQ)

These registers are detailed in Section 15.13 "Register definitions: DMA".

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	U2MD	U1MD	—	SPI1MD	I2C2MD	I2C1MD
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BOF	R/Value at all o	other Resets
'1' = Bit is :	set	'0' = Bit is clea	ared	q = Value dep	ends on conditi	on	
bit 7-6	Unimpleme	nted: Read as '0)'				
bit 5	U2MD: Disa	ble UART2 bit					
		module disabled					
	0 = UART2	module enabled					
bit 4		ble UART1 bit					
	-	module disabled					
L:1 0		module enabled					
bit 3	Unimplemented: Read as '0'						
bit 2		sable SPI1 Modu	ile bit				
	-	odule disabled					
	0 = SPI1 module enabled						
bit 1 I2C2MD: Disable I^2C2 Module bit 1 = I^2C2 module disabled							
	-	odule disabled					
bit 0	-	sable I ² C1 Modu	le bit				
		odule disabled					
	0 = 1 - 0.1 m	odule enabled					

REGISTER 19-6: PMD5: PMD CONTROL REGISTER 5

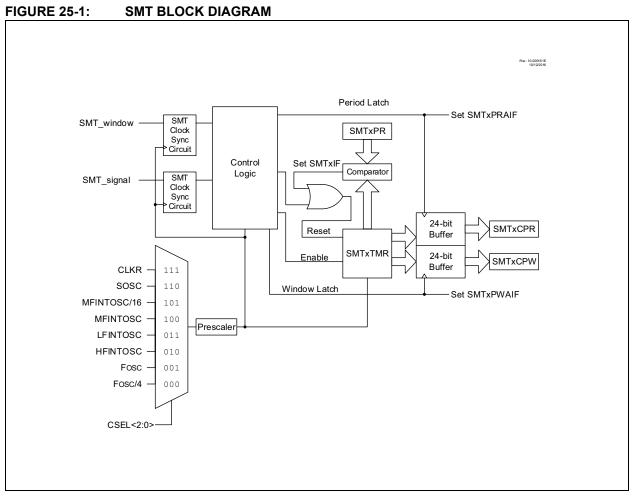
O-0 O-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 — — — RSEL<4:0> bit 7 bit
RSEL<4:0>
U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

REGISTER 22-2: TxRST: TIMER2 EXTERNAL RESET SIGNAL SELECTION REGISTER

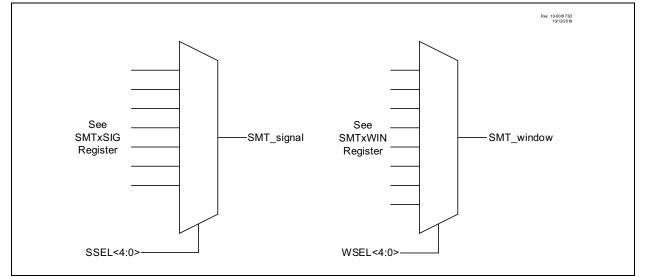
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

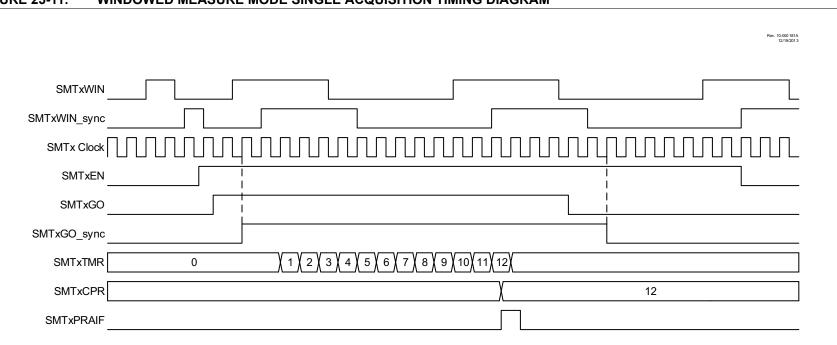
bit 4-0 RSEL<4:0>: Timer2 External Reset Signal Source Selection bits

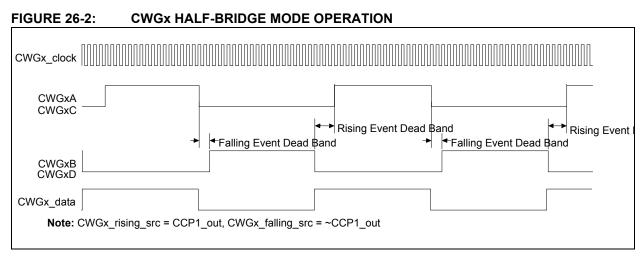

RSEL<4:0>	T2TMR	TMR4	TMR6	
R5EL<4:0>	Reset Source	Reset Source	Reset Source	
11111-11001	Reserved	Reserved	Reserved	
11000	UART2_tx_edge	UART2_tx_edge	UART2_tx_edge	
10111	UART2_rx_edge	UART2_rx_edge	UART2_rx_edge	
10110	UART1_tx_edge	UART1_tx_edge	UART1_tx_edge	
10101	UART1_rx_edge	UART1_rx_edge	UART1_rx_edge	
10100	CLC4_out	CLC4_out	CLC4_out	
10011	CLC3_out	CLC3_out	CLC3_out	
10010	CLC2_out	CLC2_out	CLC2_out	
10001	CLC1_out	CLC1_out	CLC1_out	
10000	ZCD_OUT	ZCD_OUT	ZCD_OUT	
01111	CMP2OUT	CMP2OUT	CMP2OUT	
01110	CMP1OUT	CMP1OUT	CMP1OUT	
01101-01100	Reserved	Reserved	Reserved	
01011	PWM8OUT	PWM8OUT	PWM8OUT	
01010	PWM7OUT	PWM7OUT	PWM7OUT	
01001	PWM6OUT	PWM6OUT	PWM6OUT	
01000	PWM5OUT	PWM5OUT	PWM5OUT	
00111	CCP4OUT	CCP4OUT	CCP4OUT	
00110	CCP3OUT	CCP3OUT	CCP3OUT	
00101	CCP2OUT	CCP2OUT	CCP2OUT	
00100	CCP1OUT	CCP1OUT	CCP10UT	
00011	TMR6 postscaled	TMR6 postscaled	Reserved	
00010	TMR4 postscaled	Reserved	TMR4 postscaled	
00001	Reserved	T2TMR postscaled	T2TMR postscaled	
00000	Pin selected by T2INPPS	Pin selected by T4INPPS	Pin selected by T6INPPS	

25.0 SIGNAL MEASUREMENT TIMER (SMT)


The SMT is a 24-bit counter with advanced clock and gating logic, which can be configured for measuring a variety of digital signal parameters such as pulse width, frequency and duty cycle, and the time difference between edges on two signals. The device has only one SMT module implemented.

Features of the SMT include:


- 24-bit timer/counter
 - Three 8-bit registers (SMT1L/H/U)
 - Readable and writable
- Optional 16-bit operating mode
- Two 24-bit measurement capture registers
- · One 24-bit period match register
- Multi-mode operation, including relative timing measurement
- · Interrupt on period match
- Multiple clock, gate and signal sources
- · Interrupt on acquisition complete
- · Ability to read current input values



© 2017 Microchip Technology Inc.

FIGURE 25-11: WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC18(L)F26/27/45/46/47/55/56/57K42

26.2.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated, alternating copies of the input as illustrated in Figure 26-4. This alternation creates the push-pull effect required for driving some transformer-based power supply designs. Steering modes are not used in Push-Pull mode. A basic block diagram for the Push-Pull mode is shown in Figure 26-3.

The push-pull sequencer is reset whenever EN = 0 or if an auto-shutdown event occurs. The sequencer is clocked by the first input pulse, and the first output appears on CWGxA.

The unused outputs CWGxC and CWGxD drive copies of CWGxA and CWGxB, respectively, but with polarity controlled by the POLC and POLD bits of the CWGxCON1 register, respectively.

31.3 Asynchronous Address Mode

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems.

When Asynchronous Address mode is enabled, all data is transmitted and received as 9-bit characters. The 9th bit determines whether the character is an address or data. When the 9th bit is set, the eight Least Significant bits are the address. When the 9th bit is clear, the Least Significant bits are data. In either case, the 9th bit is stored in PERIF when the byte is written to the receive FIFO. When PERIE is also set, the RXIF will be suppressed, thereby suspending DMA transfers allowing software to process the received address.

An address character will enable all receivers that match the address and disable all other receivers. Once a receiver is enabled, all non-address characters will be received until an address character is received that does not match.

31.3.1 ADDRESS MODE TRANSMIT

The UART transmitter is enabled for asynchronous address operation by configuring the following control bits:

- TXEN = 1
- MODE<3:0> = 0100
- UxBRGH:L = desired baud rate
- RxyPPS = code for desired output pin
- ON = 1

Addresses are sent by writing to the UxP1L register. This transmits the written byte with the 9th bit set, which indicates that the byte is an address.

Data is sent by writing to the UxTXB register. This transmits the written byte with the 9th bit cleared, which indicates that the byte is data.

To send data to a particular device on the transmission bus, first transmit the address of the intended device. All subsequent data will be accepted only by that device until an address of another device is transmitted.

Writes to UxP1L take precedence over writes to UxTXB. When both the UxP1L and UxTXB registers are written while the TSR is busy, the next byte to be transmitted will be from UxP1L.

To ensure that all data intended for one device is sent before the address is changed, wait until the TXMTIF bit is high before writing UxP1L with the new address.

31.3.2 ADDRESS MODE RECEIVE

The UART receiver is enabled for asynchronous address operation by configuring the following control bits:

- RXEN = 1
- MODE<3:0> = 0100
- UxBRGH:L = desired baud rate
- RXPPS = code for desired input pin
- Input pin ANSEL bit = 0
- UxP2L = receiver address
- UxP3L = address mask
- ON = 1

In Address mode, no data will be transferred to the input FIFO until a valid address is received. This is the default state. Any of the following conditions will cause the UART to revert to the default state:

- ON = 0
- RXEN = 0
- · Received address does not match

When a character with the 9th bit set is received, the Least Significant eight bits of that character will be qualified by the values in the UxP2L and UxP3L registers.

The byte is XOR'd with UxP2L then AND'd with UxP3L. A match occurs when the result is 0h, in which case, the unaltered received character is stored in the receive FIFO, thereby setting the UxRXIF interrupt bit. The 9th bit is stored in the corresponding PERIF bit, identifying this byte as an address.

An address match also enables the receiver for all data such that all subsequent characters without the 9th bit set will be stored in the receive FIFO.

When the 9th bit is set and a match does not occur, the character is not stored in the receive FIFO and all subsequent data is ignored.

The UxP3L register mask allows a range of addresses to be accepted. Software can then determine the subaddress of the range by processing the received address character.

32.0 SERIAL PERIPHERAL INTERFACE (SPI) MODULE

32.1 SPI Module Overview

The SPI (Serial Peripheral Interface) module is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select. Example slave devices include serial EEPROMs, shift registers, display drivers, A/D converters, or another $PIC^{\mathbb{R}}$ device.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data IN (SDI)
- Slave Select (SS)

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- · Clock Polarity and Edge Select
- · SDI, SDO, and SS Polarity Control
- Separate Transmit and Receive Enables
- · Slave Select Synchronization
- Daisy-chain connection of slave devices
- Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities

Figure 32-1 shows the block diagram of the SPI module.

Mnemonic, Operands		Description	Quality	16-Bit Instruction Word				Status	Natas
		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL IN	ISTRUC	ΓIONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f _n , k	Load FSR(f _n) with a 14-bit	2	1110	1110	00ff	kkkk	None	
		literal (k)		1111	00kk	kkkk	kkkk		
ADDFSR	f _n , k	Add FSR(f _n) with (k)	1	1110	1000	ffkk	kkkk	None	
SUBFSR	f _n , k	Subtract (k) from FSR(f _n)	1	1110	1001	ffkk	kkkk	None	
MOVLB	k	Move literal to BSR<5:0>	1	0000	0001	00kk	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEM	IORY – P	ROGRAM MEMORY INSTRUCTIONS							
TBLRD*		Table Read	2 - 5	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2 - 5	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

TABLE 41-2: INSTRUCTION SET (CONTINUED)

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3: f_s and f_d do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.

Subtract Literal from FSR

1001

The 6-bit literal 'k' is subtracted from

the contents of the FSR specified by

Q3

Process

Data

ffkk

kkkk

Q4

Write to

destination

SUBFSR f, k $0 \le k \le 63$

 $f \in [0, 1, 2]$ $FSR(f) - k \rightarrow FSRf$

None 1110

'f'. 1 1

Q2

Read

register 'f'

SUBFSR 2, 23h

03FFh

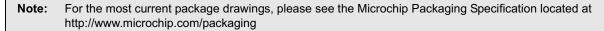
03DCh

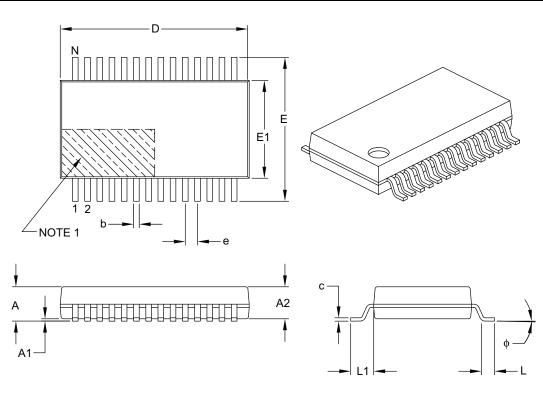
SLE	SLEEP Enter Sleep mode					SUBFSR	S	
Synta	ax:	SLEEP					Syntax:	S
Oper	ands:	None					Operands:	0
Oper	ation:	$\begin{array}{l} \text{00h} \rightarrow \text{WE} \\ 0 \rightarrow \text{WDT} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$	DT, postscaler,				Operation: Status Affected: Encoding:	f F N
Statu	s Affected:	TO, PD					Description:	Т
Enco	ding:	0000	0000	0000	0011			ti 'f
Desc	ription:	cleared. T is set. Wat postscaler The proce	r-down Stat he Time-ou chdog Time are cleare ssor is put scillator sto	t Status er and d. into Sle	s bit (TO) its		Words: Cycles: Q Cycle Activity: Q1 Decode	1
Word	ls:	1					Decode	reç
Cycle	es:	1						
QC	ycle Activity:							
	Q1 Decode	Q2 No operation	Q3 Process Data	;	Q4 Go to Sleep]	Example: Before Instruct FSR2 After Instruction	=
<u>Exan</u>	<u>nple</u> : Before Instruc	SLEEP					FSR2	=
	$\frac{\overline{TO}}{PD} =$ After Instruction $\frac{\overline{TO}}{PD} =$ PD =	? ?						

† If WDT causes wake-up, this bit is cleared.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Regis on pa
3989h	IPR9	—	—	—	_	CLC3IP	CWG3IP	CCP3IP	TMR6IP	165
3988h	IPR8	TMR5GIP	TMR5IP	_	_	—	_	_	—	164
3987h	IPR7		_	INT2IP	CLC2IP	CWG2IP	-	CCP2IP	TMR4IP	164
3986h	IPR6	TMR3GIP	TMR3IP	U2IP	U2EIP	U2TXIP	U2RXIP	I2C2EIP	I2C2IP	163
3985h	IPR5	I2C2TXIP	I2C2RXIP	DMA2AIP	DMA2ORIP	DMA2DCN- TIP	DMA2SCN- TIP	C2IP	INT1IP	162
3984h	IPR4	CLC1IP	CWG1IP	NCO1IP	_	CCP1IP	TMR2IP	TMR1GIP	TMR1IP	161
3983h	IPR3	TMR0IP	U1IP	U1EIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP	16
3982h	IPR2	I2C1RXIP	SPI1IP	SPI1TXIP	SPI1RXIP	DMA1AIP	DMA10RIP	DMA1DCN- TIP	DMA1SCNTIP	15
3981h	IPR1	SMT1PWAIP	SMT1PRAIP	SMT1IP	C1IP	ADTIP	ADIP	ZCDIP	INT0IP	15
3980h	IPR0	IOCIP	CRCIP	SCANIP	NVMIP	CSWIP	OSFIP	HLVDIP	SWIP	15
397Fh - 397Eh	_				Unimple	emented				
397Dh	SCANTRIG	_	_	—	_		T	SEL		22
397Ch	SCANCON0	EN	TRIGEN	SGO	_	—	MREG	BURSTMD	BUSY	22
397Bh	SCANHADRU	—	—		•	F	IADR	•	•	22
397Ah	SCANHADRH				HA	DR				22
3979h	SCANHADRL	HADR							22	
3978h	SCANLADRU	_	_			LADR				
3977h	SCANLADRH				LA	LADR				
3976h	SCANLADRL		LADR						22 22	
3975h - 396Ah	-	Unimplemented								
3969h	CRCCON1		DLEI	N			Р	LEN		21
3968h	CRCCON0	EN	CRCGO	BUSY	ACCM	_	_	SHIFTM	FULL	21
3967h	CRCXORH	X15	X14	X13	X12	X11	X10	X9	X8	22
3966h	CRCXORL	X7	X6	X5	X4	X3	X2	X1	_	22
3965h	CRCSHIFTH	SHFT15	SHFT14	SHFT13	SHFT12	SHFT11	SHFT10	SHFT9	SHFT8	22
3964h	CRCSHIFTL	SHFT7	SHFT6	SHFT5	SHFT4	SHFT3	SHFT2	SHFT1	SHFT0	22
3963h	CRCACCH	ACC15	ACC14	ACC13	ACC12	ACC11	ACC10	ACC9	ACC8	21
3962h	CRCACCL	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0	22
3961h	CRCDATH	DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8	21
3960h	CRCDATL	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	21
395Fh	WDTTMR			WDTTMR	I		STATE		SCNT	18
395Eh	WDTPSH				PS	CNT				18
395Dh	WDTPSL	PSCNT							18	
395Ch	WDTCON1	_		CS		_	— WINDOW			
395Bh	WDTCON0	_				PS		/ -	SEN	18 18
395Ah - 38A0h	_				Unimple	emented				
389Fh	IVTADU				A	D				16
389Eh	IVTADH					D				16
389Dh	IVTADL				A					16
389Ch - 3891h	_	Unimplemented								
3890h	PRODH SHAD				PRO	DDH				12
		PRODL								
388Fh	PRODL_SHAD				PRO	DDL				12

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES


Note 1: Unimplemented in LF devices.


Unimplemented in PIC18(L)F26/27K42. 2:

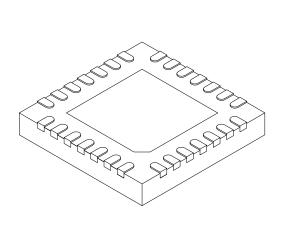
Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

4: Unimplemented in PIC18(L)F45/55K42.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

	Units			MILLIMETERS			
Dimensior	Dimension Limits			MAX			
Number of Pins	Ν	28					
Pitch	е		0.65 BSC				
Overall Height	А	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint		1.25 REF					
Lead Thickness	С	0.09	_	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

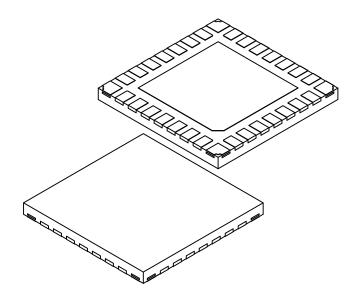
	Units	М	;		
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3		0.20 REF		
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.50	0.55	0.70	
Terminal-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	Dimension Limits			MAX		
Number of Pins	N	28				
Pitch	е	0.65 BSC				
Overall Height	Α	0.40	0.50	0.60		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	(A3)		0.127 REF			
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2		4.00			
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2		4.00			
Terminal Width	b	0.35	0.40	0.45		
Corner Pad	b1	0.55	0.60	0.65		
Corner Pad, Metal Free Zone	b2	0.15	0.20	0.25		
Terminal Length	L	0.55	0.60	0.65		
Terminal-to-Exposed Pad	K	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 4. Outermost portions of corner structures may vary slightly.

Microchip Technology Drawing C04-0209 Rev C Sheet 2 of 2