

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k42-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.1 PRIORITY LOCK

The System arbiter grants memory access to the peripheral selections (DMAx, Scanner) when the PRLOCKED bit (PRLOCK Register) is set.

Priority selections are locked by setting the PRLOCKED bit of the PRLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PRLOCKED bit are shown in Example 3-1 and Example 3-2.

EXAMPLE 3-1: PRIORITY LOCK SEQUENCE

; Disable interrupts BCF INTCON0,GIE ; Bank to PRLOCK register BANKSEL PRLOCK MOVLW 55h ; Required sequence, next 4 instructions MOVWF PRLOCK MOVLW AAh

MOVWF PRLOCK ; Set PRLOCKED bit to grant memory access to peripherals BSF PRLOCK,0

; Enable Interrupts BSF INTCON0,GIE

EXAMPLE 3-2: PRIO

PRIORITY UNLOCK SEQUENCE

; Disable interrupts BCF INTCON0,GIE

; Bank to PRLOCK register BANKSEL PRLOCK MOVLW 55h

; Required sequence, next 4 instructions MOVWF PRLOCK MOVLW AAh MOVWF PRLOCK ; Clear PRLOCKED bit to allow changing priority settings BCF PRLOCK,0

; Enable Interrupts BSF INTCON0,GIE

3.2 Memory Access Scheme

The user can assign priorities to both system level and peripheral selections based on which the system arbiter grants memory access. Let us consider the following priority scenarios between ISR, MAIN, and Peripherals.

Note: It is always required that the ISR priority be higher than Main priority.

3.2.1 ISR PRIORITY > MAIN PRIORITY > PERIPHERAL PRIORITY

When the Peripheral Priority (DMAx, Scanner) is lower than ISR and MAIN Priority, and the peripheral requires:

- 1. Access to the Program Flash Memory, then the peripheral waits for an instruction cycle in which the CPU does not need to access the PFM (such as a branch instruction) and uses that cycle to do its own Program Flash Memory access, unless a PFM Read/Write operation is in progress.
- 2. Access to the SFR/GPR, then the peripheral waits for an instruction cycle in which the CPU does not need to access the SFR/GPR (such as MOVLW, CALL, NOP) and uses that cycle to do its own SFR/GPR access.
- Access to the Data EEPROM, then the peripheral has access to Data EEPROM unless a Data EEPROM Read/Write operation is being performed.

This results in the lowest throughput for the peripheral to access the memory, and does so without any impact on execution times.

3.2.2 PERIPHERAL PRIORITY > ISR PRIORITY > MAIN PRIORITY

When the Peripheral Priority (DMAx, Scanner) is higher than ISR and MAIN Priority, the CPU operation is stalled when the peripheral requests memory.

The CPU is held in its current state until the peripheral completes its operation. Since the peripheral requests access to the bus, the peripheral cannot be disabled until it completes its operation.

This results in the highest throughput for the peripheral to access the memory, but has the cost of stalling other execution while it occurs.

SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES BANK 58 TABLE 4-9:

2016-2017	
Microchip	
Technology	
Inc.	

3AFFh	—	3ADFh	SPI1SDIPPS	3ABFh	PPSLOCK	3A9Fh	—	3A7Fh	—	3A5Fh	—	3A3Fh	—	3A1Fh	RD7PPS ⁽²⁾
3AFEh	—	3ADEh	SPI1SCKPPS	3ABEh	(4)	3A9Eh	—	3A7Eh	_	3A5Eh	—	3A3Eh	—	3A1Eh	RD6PPS ⁽²⁾
3AFDh	—	3ADDh	ADACTPPS	3ABDh	—	3A9Dh	—	3A7Dh	_	3A5Dh	—	3A3Dh	—	3A1Dh	RD5PPS ⁽²⁾
3AFCh	—	3ADCh	CLCIN3PPS	3ABCh	—	3A9Ch	—	3A7Ch	_	3A5Ch	—	3A3Ch	—	3A1Ch	RD4PPS ⁽²⁾
3AFBh	—	3ADBh	CLCIN2PPS	3ABBh	—	3A9Bh	—	3A7Bh	RD1I2C ⁽²⁾	3A5Bh	RB2I2C	3A3Bh	—	3A1Bh	RD3PPS ⁽²⁾
3AFAh	—	3ADAh	CLCIN1PPS	3ABAh	—	3A9Ah	—	3A7Ah	RD0I2C ⁽²⁾	3A5Ah	RB1I2C	3A3Ah	—	3A1Ah	RD2PPS ⁽²⁾
3AF9h	—	3AD9h	CLCIN0PPS	3AB9h	—	3A99h	(4)	3A79h	(4)	3A59h	(4)	3A39h	—	3A19h	RD1PPS ⁽²⁾
3AF8h	—	3AD8h	MD1SRCPPS	3AB8h	—	3A98h	_(4)	3A78h	(4)	3A58h	(4)	3A38h	—	3A18h	RD0PPS ⁽²⁾
3AF7h	—	3AD7h	MD1CARHPPS	3AB7h	—	3A97h	—	3A77h	—	3A57h	IOCBF	3A37h	—	3A17h	RC7PPS
3AF6h	—	3AD6h	MD1CARLPPS	3AB6h	—	3A96h	—	3A76h	—	3A56h	IOCBN	3A36h	—	3A16h	RC6PPS
3AF5h	—	3AD5h	CWG3INPPS	3AB5h	—	3A95h	—	3A75h	—	3A55h	IOCBP	3A35h	—	3A15h	RC5PPS
3AF4h	—	3AD4h	CWG2INPPS	3AB4h	—	3A94h	INLVLF ⁽³⁾	3A74h	INLVLD ⁽²⁾	3A54h	INLVLB	3A34h	—	3A14h	RC4PPS
3AF3h	—	3AD3h	CWG1INPPS	3AB3h	—	3A93h	SLRCONF ⁽³⁾	3A73h	SLRCOND ⁽²⁾	3A53h	SLRCONB	3A33h	—	3A13h	RC3PPS
3AF2h	—	3AD2h	SMT1SIGPPS	3AB2h	—	3A92h	ODCONF ⁽³⁾	3A72h	ODCOND ⁽²⁾	3A52h	ODCONB	3A32h	—	3A12h	RC2PPS
3AF1h	—	3AD1h	SMT1WINPPS	3AB1h	—	3A91h	WPUF ⁽³⁾	3A71h	WPUD ⁽²⁾	3A51h	WPUB	3A31h	—	3A11h	RC1PPS
3AF0h	_	3AD0h	CCP4PPS	3AB0h	_	3A90h	ANSELF ⁽³⁾	3A70h	ANSELD ⁽²⁾	3A50h	ANSELB	3A30h	_	3A10h	RC0PPS
3AEFh	—	3ACFh	CCP3PPS	3AAFh	—	3A8Fh	—	3A6Fh	—	3A4Fh	—	3A2Fh	RF7PPS ⁽³⁾	3A0Fh	RB7PPS
3AEEh	—	3ACEh	CCP2PPS	3AAEh	—	3A8Eh	—	3A6Eh	—	3A4Eh	—	3A2Eh	RF6PPS ⁽³⁾	3A0Eh	RB6PPS
3AEDh	—	3ACDh	CCP1PPS	3AADh	—	3A8Dh	—	3A6Dh	—	3A4Dh	—	3A2Dh	RF5PPS ⁽³⁾	3A0Dh	RB5PPS
3AECh	—	3ACCh	T6INPPS	3AACh	—	3A8Ch	—	3A6Ch	—	3A4Ch	—	3A2Ch	RF4PPS ⁽³⁾	3A0Ch	RB4PPS
3AEBh	—	3ACBh	T4INPPS	3AABh	—	3A8Bh	—	3A6Bh	RC4I2C	3A4Bh	—	3A2Bh	RF3PPS ⁽³⁾	3A0Bh	RB3PPS
3AEAh	—	3ACAh	T2INPPS	3AAAh	—	3A8Ah	—	3A6Ah	RC3I2C	3A4Ah	—	3A2Ah	RF2PPS ⁽³⁾	3A0Ah	RB2PPS
3AE9h	U2CTSPPS	3AC9h	T5GPPS	3AA9h	—	3A89h	_(4)	3A69h	(4)	3A49h	(4)	3A29h	RF1PPS ⁽³⁾	3A09h	RB1PPS
3AE8h	U2RXPPS	3AC8h	T5CKIPPS	3AA8h	—	3A88h	_(4)	3A68h	(4)	3A48h	(4)	3A28h	RF0PPS ⁽³⁾	3A08h	RB0PPS
3AE7h	_	3AC7h	T3GPPS	3AA7h	_	3A87h	IOCEF	3A67h	IOCCF	3A47h	IOCAF	3A27h	_	3A07h	RA7PPS
3AE6h	U1CTSPPS	3AC6h	T3CKIPPS	3AA6h	_	3A86h	IOCEN	3A66h	IOCCN	3A46h	IOCAN	3A26h	_	3A06h	RA6PPS
3AE5h	U1RXPPS	3AC5h	T1GPPS	3AA5h	—	3A85h	IOCEP	3A65h	IOCCP	3A45h	IOCAP	3A25h	—	3A05h	RA5PPS
3AE4h	I2C2SDAPPS	3AC4h	T1CKIPPS	3AA4h	—	3A84h	INLVLE	3A64h	INLVLC	3A44h	INLVLA	3A24h	—	3A04h	RA4PPS
3AE3h	I2C2SCLPPS	3AC3h	T0CKIPPS	3AA3h	_	3A83h	SLRCONE ⁽²⁾	3A63h	SLRCONC	3A43h	SLRCONA	3A23h	_	3A03h	RA3PPS
3AE2h	I2C1SDAPPS	3AC2h	INT2PPS	3AA2h	_	3A82h	ODCONE ⁽²⁾	3A62h	ODCONC	3A42h	ODCONA	3A22h	RE2PPS ⁽²⁾	3A02h	RA2PPS
3AE1h	I2C1SCLPPS	3AC1h	INT1PPS	3AA1h	_	3A81h	WPUE	3A61h	WPUC	3A41h	WPUA	3A21h	RE1PPS ⁽²⁾	3A01h	RA1PPS
3AE0h	SPI1SSPPS	3AC0h	INT0PPS	3AA0h	_	3A80h	ANSELE ⁽²⁾	3A60h	ANSELC	3A40h	ANSELA	3A20h	RE0PPS ⁽²⁾	3A00h	RA0PPS

Unimplemented data memory locations and registers, read as '0'. Legend:

Unimplemented in LF devices. Note 1:

Unimplemented in PIC18(L)F26/27K42. 2:

Unimplemented in PIC18(L)F26/27/45/46/47K42. 3:

Reserved, maintain as '0'. 4:

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON0: POWER CONTROL REGISTER 0

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-0/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:			
HC = Bit is clea	ared b	by hardware	HS = Bit is set by hardware
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is uncha	anged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition
bit 7	STK	OVF: Stack Overflow Flag bit	
	1 = 0 =	A Stack Overflow occurred (more A Stack Overflow has not occurred)	e CALLs than fit on the stack) ad or set to '0' by firmware
bit 6	STK	UNF: Stack Underflow Flag bit	
	1 = 0 =	A Stack Underflow occurred (mo A Stack Underflow has not occur	ore RETURNS than CALLS) rred or set to '0' by firmware
bit 5	WD 1 = 0 =	WV: Watchdog Window Violation A WDT window violation has not A CLRWDT instruction was issued when a WDT window violation Re	bit occurred or set to '1' by firmware when the WDT Reset window was closed (set to '0' in hardware eset occurs)
bit 4	RW 1 = 0 =	DT: WDT Reset Flag bit A WDT overflow/time-out Reset h A WDT overflow/time-out Reset h	has not occurred or set to '1' by firmware has occurred (set to '0' in hardware when a WDT Reset occurs)
bit 3	RMC 1 = 0 =	CLR: MCLR Reset Flag bit A MCLR Reset has not occurred A MCLR Reset has occurred (set	or set to '1' by firmware t to '0' in hardware when a MCLR Reset occurs)
bit 2	RI: F 1 = 0 =	RESET Instruction Flag bit A RESET instruction has not beer A RESET instruction has been instruction)	n executed or set to '1' by firmware executed (set to '0' in hardware upon executing a RESET
bit 1	POR	Power-on Reset Status bit	
	1 = 0 =	No Power-on Reset occurred or s A Power-on Reset occurred (set	set to '1' by firmware to '0' in hardware when a Power-on Reset occurs)
bit 0	BOR	R: Brown-out Reset Status bit	
	1 = 0 =	No Brown-out Reset occurred or A Brown-out Reset occurred (set	set to '1' by firmware to '0' in hardware when a Brown-out Reset occurs)

EXAMPLE 9-4: SETTING UP VECTORED INTERRUPTS USING XC8

```
// NOTE 1: If IVTBASE is changed from its default value of 0x000008, then the
// "base(...)" argument must be provided in the ISR. Otherwise the vector
// table will be placed at 0x0008 by default regardless of the IVTBASE value.
// NOTE 2: When MVECEN=0 and IPEN=1, a separate argument as "high priority"
// or "low priority" can be used to distinguish between the two ISRs.
// If the argument is not provided, the ISR is considered high priority
// by default.
// NOTE 3: Multiple interrupts can be handled by the same ISR if they are
// specified in the "irq(...)" argument. Ex: irq(IRQ TMR0, IRQ CCP1)
void interrupt(irq(IRQ TMR0), base(0x4008)) TMR0 ISR(void)
{
       PIR3bits.TMR0IF = 0;
                                             // Clear the interrupt flag
       LATCbits.LC0 ^= 1;
                                             // ISR code goes here
}
void interrupt(irq(default), base(0x4008)) DEFAULT ISR(void)
{
       // Unhandled interrupts go here
}
void INTERRUPT Initialize (void)
{
                                            // Enable high priority interrupts
       INTCONObits.GIEH = 1;
                                             // Enable low priority interrupts
       INTCONObits.GIEL = 1;
       INTCONObits.IPEN = 1;
                                             // Enable interrupt priority
       PIE3bits.TMR0IE = 1;
                                            // Enable TMR0 interrupt
       PIE4bits.TMR1IE = 1;
                                             // Enable TMR1 interrupt
       IPR3bits.TMR0IP = 0;
                                             // Make TMR0 interrupt low priority
       // Change IVTBASE if required
       IVTBASEU = 0 \times 00;
                                             // Optional
       IVTBASEH = 0 \times 40;
                                             // Default is 0x0008
       IVTBASEL = 0 \times 08;
}
```

R/W-0/	0 R/W-0/0	R/W/HC-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0
EN	TRIGEN	SGO	_	—	MREG	BURSTMD	BUSY
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimpler	mented bit, rea	d as '0'	
u = Bit is u	inchanged	x = Bit is unkno	own	-n/n = Value a	at POR and BC	OR/Value at all of	ther Resets
'1' = Bit is	set	'0' = Bit is clear	red	HC = Bit is cl	eared by hardv	vare	
bit 7	EN: Scanner 1 = Scanner 0 = Scanner	Enable bit ⁽¹⁾ is enabled is disabled					
bit 6	TRIGEN: Scanner Trigger Enable bit ⁽²⁾ 1 = Scanner trigger is enabled 0 = Scanner trigger is disabled Refer Table 14-1.						
bit 5	SGO: Scann 1 = When the to the CI 0 = Scanner	er GO bit ^(3, 4) CRC is ready, th RC peripheral. operations will no	e Memory ree ot occur	gion set by the N	MREG bit will b	e accessed and o	data is passed
bit 4-3	Unimplemer	nted: Read as '0'					
bit 2	MREG: Scan 1 = Scanner 0 = Scanner	iner Memory Reg address points to address points to	ion Select bi Data EEPR Program Fla	t ⁽²⁾ OM ash Memory			
bit 1	BURSTMD: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14 1						
bit 0	it 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is compete (or never started)						
Note 1: 2: 3:	 Setting EN = 1 (SCANCON0 register) does not affect any other register content. Scanner trigger selection can be set using the SCANTRIG register. This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is not occurring) or when CRCGO = 0 (CRCCON0 register). 						cycle is not

REGISTER 14-11: SCANCONO: SCANNER ACCESS CONTROL REGISTER 0

- - 4: CRCEN and CRCGO bits (CRCCON0 register) must be set before setting the SGO bit.

REGISTER 15-6: DMAxSSAU: DMAx SOURCE START ADDRESS UPPER REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			SSA<2	1:16>		
bit 7							bit 0

Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR 1 = bit is set 0 = bit is cleared x = bit is unknown and BOR/Value at all u = bit is unchanged u = bit is unchanged

bit 7-0 **SSA<21:16>:** Source Start Address bits

REGISTER 15-7: DMAxSPTRL: DMAx SOURCE POINTER LOW REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SPT	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	s '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 15-0 SPTR<7:0>: Current Source Address Pointer

REGISTER 15-8: DMAxSPTRH: DMAx SOURCE POINTER HIGH REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SPTF	R<15:8>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 5-0 SPTR<15:8>: Current Source Address Pointer

© 2017 Microchip Technology Inc.

21.1 Timer1/3/5 Operation

The Timer1/3/5 module is a 16-bit incrementing counter which is accessed through the TMRxH:TMRxL register pair. Writes to TMRxH or TMRxL directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1/3/5 is enabled by configuring the ON and GE bits in the TxCON and TxGCON registers, respectively. Table 21-1 displays the Timer1/3/5 enable selections.

TABLE 21-1: TIMER1/3/5 ENABLE SELECTIONS

ON	GE	Timer1/3/5 Operation
1	1	Count Enabled
1	0	Always On
0	1	Off
0	0	Off

21.2 Clock Source Selection

The CS<4:0> bits of the TMRxCLK register (Register 21-3) are used to select the clock source for Timer1/3/5. The TxCLK register allows the selection of several possible synchronous and asynchronous clock sources. Register 21-3 displays the clock source selections.

21.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMRxH:TMRxL register pair will increment on multiples of Fosc as determined by the Timer1/3/5 prescaler.

When the Fosc internal clock source is selected, the Timer1/3/5 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1/3/5 value. To utilize the full resolution of Timer1/3/5, an asynchronous input signal must be used to gate the Timer1/3/5 clock input.

The following asynchronous sources may be used at the Timer1/3/5 gate:

- Asynchronous event on the TxGPPS pin
- TMR0OUT
- TMR1/3/5OUT (excluding the TMR for which it is being used)
- TMR 2/4/6OUT (postscaled)
- CMP1/2OUT
- SMT1 match
- NCOTOUT
- PWM3/4 OUT
- CCP1/2/3/4 OUT
- CLC1/2/3/4 OUT
- ZCDOUT

Note:	In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
	Timer1/3/5 enabled after POR
	 Write to TMRxH or TMRxL
	 Timer1/3/5 is disabled
	 Timer1/3/5 is disabled (TMRxON = 0) when TxCKI is high then Timer1/3/5
	is enabled (TMR $xON = 1$) when
	TxCKI is low.

21.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1/ 3/5 module may work as a timer or a counter.

When enabled to count, Timer1/3/5 is incremented on the rising edge of the external clock input of the TxCKIPPS pin. This external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated secondary internal oscillator circuit.

21.6.2 TIMER1/3/5 GATE SOURCE SELECTION

The gate source for Timer1/3/5 can be selected using the GSS<4:0> bits of the TMRxGATE register (Register 21-4). The polarity selection for the gate source is controlled by the TxGPOL bit of the TxGCON register (Register 21-2).

Any of the above mentioned signals can be used to trigger the gate. The output of the CMPx can be synchronized to the Timer1/3/5 clock or left asynchronous. For more information see Section 38.3.1 "Comparator Output Synchronization".

21.6.3 TIMER1/3/5 GATE TOGGLE MODE

When Timer1/3/5 Gate Toggle mode is enabled, it is possible to measure the duration between every rising and falling edge of the gate signal.

The Timer1/3/5 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 21-5 for timing details.

Timer1/3/5 Gate Toggle mode is enabled by setting the GTM bit of the TxGCON register. When the GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

21.6.4 TIMER1/3/5 GATE SINGLE-PULSE MODE

When Timer1/3/5 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1/3/5 Gate Single-Pulse mode is first enabled by setting the GSPM bit in the TxGCON register. Next, the GGO/DONE bit in the TxGCON register must be set. The Timer1/3/5 will be fully enabled on the next incrementing edge of the gate signal. On the next trailing edge of the pulse, the GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1/3/5 until the GGO/DONE bit is once again set in software.

Clearing the TxGSPM bit of the TxGCON register will also clear the GGO/DONE bit. See Figure 21-6 for timing details.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the period on the Timer1/3/5 gate source to be measured. See Figure 21-7 for timing details.

21.6.5 TIMER1/3/5 GATE VALUE STATUS

When Timer1/3/5 Gate Value Status is utilized, it is possible to read the most current level of the gate signal. The value is stored in the GVAL bit in the TxGCON register. The GVAL bit is valid even when the Timer1/3/5 gate is not enabled (GE bit is cleared).

21.6.6 TIMER1/3/5 GATE EVENT INTERRUPT

When Timer1/3/5 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of GVAL occurs, the TMRxGIF flag bit in the respective PIR register will be set. If the TMRxGIE bit in the respective PIE register is set, then an interrupt will be recognized.

The TMRxGIF flag bit operates even when the Timer1/ 3/5 gate is not enabled (GE bit is cleared).

For more information on selecting high or low priority status for the Timer1/3/5 Gate Event Interrupt see **Section 9.0 "Interrupt Controller"**.

22.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which is selected with the postscaler control bits, OUTPS of the T2CON register. The interrupt is enabled by setting the T2TMR Interrupt Enable bit, TMR2IE, of the respective PIE register. The interrupt timing is illustrated in Figure 22-3.

FIGURE 22-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

_	Re/10.000008 912.016
CKPS	0b010
TxPR	1
OUTPS	0b0001
TMRx_clk	
TxTMR	0 1 0 1 1 0 1 0 0
TMRx_postscaled _	
TMRxIF _	(1) (1)
Note 1: 2:	Setting the interrupt flag is synchronized with the instruction clock. Synchronization may take as many as 2 instruction cycles Cleared by software.

23.0 CAPTURE/COMPARE/PWM MODULE

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate pulse-width modulated signals of varying frequency and duty cycle.

This family of devices contains four standard Capture/ Compare/PWM modules (CCP1, CCP2, CCP3 and CCP4). Each individual CCP module can select the timer source that controls the module. Each module has an independent timer selection which can be accessed using the CxTSEL bits in the CCPTMRS register (Register 23-2). The default timer selection is TMR1 when using Capture/Compare mode and TMR2 when using PWM mode in the CCPx module.

Please note that the Capture/Compare mode operation is described with respect to TMR1 and the PWM mode operation is described with respect to TMR2 in the following sections.

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

23.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (CCPxCON), a capture input selection register (CCPxCAP) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte).

23.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers 1 through 6 that vary with the selected mode. Various timers are available to the CCP modules in Capture, Compare or PWM modes, as shown in Table 23-1.

TABLE 23-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Time and Time and an Time of
Compare	Timer1, Timer3 or Timer5
PWM	Timer2, Timer4 or Timer6

The assignment of a particular timer to a module is determined by the timer to CCP enable bits in the CCPTMRS register (see Register 23-2) All of the modules may be active at once and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time.

23.1.2 OPEN-DRAIN OUTPUT OPTION

When operating in Output mode (the Compare or PWM modes), the drivers for the CCPx pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor and allows the output to communicate with external circuits without the need for additional level shifters.

25.6.2 GATED TIMER MODE

Gated Timer mode uses the SMTSIGx input to control whether or not the SMT1TMR will increment. Upon a falling edge of the external signal, the SMT1CPW register will update to the current value of the SMT1TMR. Example waveforms for both repeated and single acquisitions are provided in Figure 25-4 and Figure 25-5.

REGISTER 25-10: SMT1CPRL: SMT CAPTURED PERIOD REGISTER – LOW BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT1C	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

bit 7-0 SMT1CPR<7:0>: Significant bits of the SMT Period Latch – Low Byte

'0' = Bit is cleared

REGISTER 25-11: SMT1CPRH: SMT CAPTURED PERIOD REGISTER - HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT1C	PR<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 SMT1CPR<15:8>: Significant bits of the SMT Period Latch – High Byte

REGISTER 25-12: SMT1CPRU: SMT CAPTURED PERIOD REGISTER – UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT1CPI	R<23:16>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1CPR<23:16>: Significant bits of the SMT Period Latch – Upper Byte

© 2017 Microchip Technology Inc.

'1' = Bit is set

26.2.3 FULL-BRIDGE MODES

In Forward and Reverse Full-Bridge modes, three outputs drive static values while the fourth is modulated by the input data signal. The mode selection may be toggled between forward and reverse by toggling the MODE<0> bit of the CWGxCON0 while keeping MODE<2:1> static, without disabling the CWG module. When connected as shown in Figure 26-5, the outputs are appropriate for a full-bridge motor driver. Each CWG output signal has independent polarity control, so the circuit can be adapted to high-active and low-active drivers. A simplified block diagram for the Full-Bridge modes is shown in Figure 26-6.

R/W-0/0

R/W-0/0

R/W-0/0

R/W-0/0

—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion			
bit 7 bit 6	Unimplement AS6E: CWG J 1 = Auto-shu	ted Read as '0 Auto-shutdown utdown for Sou	, Source 6 Ena rce 6 is enable	able bit ed					
	CV	VG Module		CWG1	CWG2	CV	VG3		
	Auto-sh	utdown Source	e 6 🛛 🔿	LC2 OUT	CLC3 OUT	- CLC	4 OUT		
bit 5	0 = Auto-shu AS5E: CWG A 1 = Auto-shu 0 = Auto-shu	utdown for Sou Auto-shutdown utdown for CMI utdown for CMI	rce 6 is disabl Source 5 (CN P2 OUT is ena P2 OUT is disa	ed IP2 OUT) Ena ibled abled	ble bit				
bit 4	AS4E: CWG 1 = Auto-shu 0 = Auto-shu	Auto-shutdown utdown for CMI utdown for CMI	Source 4 (CN P1 OUT is ena P1 OUT is disa	IP1 OUT) Ena abled abled	ble bit				
bit 3	 AS3E: CWG Auto-shutdown Source 3 (TMR6_Postscaled) Enable bit 1 = Auto-shutdown for TMR6_Postscaled is enabled 0 = Auto-shutdown for TMR6_Postscaled is disabled 								
bit 2	bit 2 AS2E: CWG Auto-shutdown Source 2 (TMR4_Postscaled) Enable bit 1 = Auto-shutdown for TMR4_Postscaled is enabled 0 = Auto-shutdown for TMR4_Postscaled is disabled								
bit 1	AS1E: CWG	S1E: CWG Auto-shutdown Source 1 (TMR2_Postscaled) Enable bit							

REGISTER 26-7: CWGxAS1: CWG AUTO-SHUTDOWN CONTROL REGISTER 1

1 = Auto-shutdown for TMR2_Postscaled is enabled0 = Auto-shutdown for TMR2_Postscaled is disabled

1 = Auto-shutdown for CWGxPPS Pin is enabled0 = Auto-shutdown for CWGxPPS Pin is disabled

AS0E: CWG Auto-shutdown Source 0 (Pin selected by CWGxPPS) Enable bit

R/W-0/0

R/W-0/0

R/W-0/0

U-0

bit 0

29.10 Register Definitions: ZCD Control

R/W-0/0	U-0	R-x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
SEN	—	OUT	POL	—	_	INTP	INTN
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7	SEN: Zero-Cr This bit is igno 1= Zero-cro	oss Detect So ored when ZCI ss detect is er	ftware Enable DSEN configu abled.	bit ration bit is se	t.		role
hit 6		ted: Read as '	o'	ni operates at			1015.
bit 5		oss Detect Da	° ta Output hit				
	$\frac{\text{ZCDPOL bit}}{1 = \text{ZCD pin is}}$ $0 = \text{ZCD pin is}$ $\frac{\text{ZCDPOL bit}}{1 = \text{ZCD pin is}}$ $0 = \text{ZCD pin is}$	 <u>0</u>: sinking curre sourcing curr <u>1</u>: sourcing curr sinking curre 	nt ent ent nt				
bit 4	POL: Zero-Cr	oss Detect Po	larity bit				
	1 = ZCD logic 0 = ZCD logic	output is inve output is not i	rted nverted				
bit 3-2	Unimplement	ted: Read as '	0'				
bit 1	INTP: Zero-Ci	ross Detect Po	sitive-Going E	Edge Interrupt	Enable bit		
	1 = ZCDIF bit 0 = ZCDIF bit	is set on low-t is unaffected	o-high ZCD_c by low-to-high	output transitio ZCD_output t	n ransition		
bit 0	INTN: Zero-Cu 1 = ZCDIF bit 0 = ZCDIF bit	ross Detect Ne is set on high- is unaffected	egative-Going to-low ZCD_c by high-to-low	Edge Interrup output transitio ZCD_output t	t Enable bit n ransition		

REGISTER 29-1: ZCDCON: ZERO-CROSS DETECT CONTROL REGISTER

TABLE 29-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
ZCDCON	SEN	—	OUT	POL	—	_	INTP	INTN	462

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

R/W-0/0	U-0	U-0	R/W/HC-0/0	R/W-0/0	U-0	R/W-0/0	R/W/HC-0/0
ON	—	—	WUE	RXBIMD	—	BRKOVR	SENDB
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Hardwa	are clear		
bit 7	ON: Serial Po	rt Enable bit					
	1 = Serial por	rt enabled					
	0 = Serial poi	rt disabled (hel	d in Reset)				
bit 6-5	Unimplement	ted: Read as '	0'				
bit 4	WUE: Wake-u	up Enable bit					
	1 = Receiver	is waiting for f	alling RX input	t edge which	will set the UxIF	bit. Cleared by	y hardware on
	wake eve ∩ = Receiver	operates porm	es uxie dit of i	PIEX to enable	е wаке		
hit 3		eive Break Int	errunt Mode S	elect hit			
bit o	1 = Set RXB	(IF immediatel	v when RX in	has been low	for the minimum	n Break time	
	0 = Set RXB	KIF on rising R	X input after R	X in has been	low for the min	imum Break tir	ne
bit 2	Unimplement	ted: Read as '	0'				
bit 1	BRKOVR: Se	nd Break Softw	vare Override	bit			
	1 = TX output	t is forced to no	on-idle state				
	0 = TX output	t is driven by tr	ansmit shift re	gister			
bit 0	SENDB: Send	d Break Contro	l bit ⁽¹⁾				
	1 = Output Br	reak upon UxT	XB write. Writt	en byte follow	/s Break. Bit is c	cleared by hard	ware.
	0 = Break tra	nsmission com	pleted or disa	bled			
Note 1. This	bit is road only						

REGISTER 31-2: UxCON1: UART CONTROL REGISTER 1

Note 1: This bit is read-only in LIN, DMX, and DALI modes.

FIGURE 32-7: CLOCKING DETAIL-MASTER MODE, CKE/SMP = 0/0

U-0	R/W/HS-0	R/W/HS-0	R/W/HS-0	U-0	R/W-0	R/W-0	R/W-0	
_	BTOIF ^(1,2)	BCLIF ⁽¹⁾	NACKIF ⁽¹⁾	_	BTOIE	BCLIE	NACKIE	
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'		
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is s	set	'0' = Bit is clea	ared	HS = Hardwa	re set HC =	Hardware clear	r	
bit 7	Unimplement	ted: Read as '	0'					
bit 6	BTOIF: Bus T 1 = Bus Time 0 = No bus tir	ime-Out Interro out occurred meout	upt Flag bit ^{(1,2})				
bit 5	 BCLIF: Bus Collision Detect Interrupt Flag bit⁽¹⁾ 1 = Bus collision detected (On the rising edge of SCL input, SDA output is high and input is sampled low) Slave and Master Mode the module immediately goes idle Multi-Master Mode attempts to match slave addresses, and/or goes idle 0 = No bus collision detected 							
bit 4	NACKIF: NAC 1 = When (SM NACKIF 0 = No NACK NACKIF	CK Detect Inter MA = 1 MMA is also set wh C/Error detected is not set by t	rupt Flag bit ⁽¹ = 1) and a N/ en any of the d he NACK send) ACK is detecte TXWRE, RXRI d for non-matcl	d on the bus DE, TXUF, RXO hing slave addre	VR bits are set	t.	
bit 3	Unimplement	ted: Read as '	0'					
bit 2	BTOIE: Bus T 1 = Enable in 0 = Bus Tim-o	ïme-Out Intern terrupt on bus out not enabled	upt Enable bit time out d					
bit 1	BCLIE: Bus C 1 = Enable in 0 = Bus collis	collision Detect terrupt on bus ion interrupts a	Interrupt Ena collision are disabled	ble bit				
bit 0	 NACKIE: NACK Detect Interrupt Enable bit 1 = Enable interrupt on NACKIF 0 = NACKIF interrupt is disabled 							
Note 1: 2:	Enabled error interr User software mus	rupt flags are C t select the Bu	OR'd to produc s Time-out So	ce the PIRx <i20 urce in the I2C</i20 	CEIF> bit. BTO register.			

REGISTER 33-8: I2CxERR: I²C ERROR REGISTER

TABLE 44-4: POWER-DOWN CURRENT (IPD)^(1,2)

PIC18LF26/45/46/55/56K42					Standard Operating Conditions (unless otherwise stated)					
PIC18F26/45/46/55/56K42					Standard Operating Conditions (unless otherwise stated) VREGPM = 1					
Param. No.	Symbol	Device Characteristics	Min.	Typ.†	Max. +85°C	Max. +125°C	Units	Conditions		
								VDD	Note	
D200	IPD	IPD Base	—	0.07	2	6	μΑ	3.0V		
D200	IPD	IPD Base	_	0.4	4	8	μA	3.0V		
D200A				20	38	42	μΑ	3.0V	VREGPM = 0	
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	-	0.9	3.2	7	μA	3.0V	\bigcirc	
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	-	1.1	3.2	9	μΑ	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.75	5	9	μΑ	3.0V	LP mode	
D202	IPD_SOSC	Secondary Oscillator (SOSC)		1.0	6.5	10	/#A	3.0V	LP mode	
D203	IPD_FVR	FVR		45	74	75 <	щA	3.0∀	FVRCON = 0x81 or 0x84	
D203	IPD_FVR	FVR	_	40	70	76	\μÀ	∕3.0¥	FVRCON = 0x81 or 0x84	
D204	IPD_BOR	Brown-out Reset (BOR)	_	9.4	14	_ 18	jųA ∨	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)		9.4	15 <	18	μÀ	\3.0∨		
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)		0.2	3	6	μΑ \	/3.0V		
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)		9.5	14.8	-18-	μA	3.0V		
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)		9.7	14.2 ~	17	μA	3.0V		
D207	IPD_ADCA	ADC - Non-Converting		Q.1	2	6	μΑ	3.0V	ADC not converting (4)	
D207	IPD_ADCA	ADC - Non-Converting		0.1	4	$\langle 8 \rangle$	μΑ	3.0V	ADC not converting (4)	
D208	IPD_CMP	Comparator	$\overline{\langle}$	33	49	50	μA	3.0V		
D208	IPD_CMP	Comparator	_/	30	49	50	μΑ	3.0V		

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base lop and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base lop or IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

- 3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.
- 4: ADC clock source is FRC.