

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k42-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2016-2017 Microchin Technology Inc	<u>ABLE 3:</u>	48 Din TOED
n.	RA0	2
	RA1	2

TABLE 3	:		48-PIN ALLO	CATION TAI	BLE FOR PIC1	8(L)F5XK42													
Ol	48-Pin TQFP	48-Pin UQFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	I ² C	IdS	UART	MSD	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RA0	21	21	ANA0	—	-	C1IN0- C2IN0-	-	-	_	-	-	-	_	—	CLCIN0 ⁽¹⁾	_	-	IOCA0	_
RA1	22	22	ANA1	—	—	C1IN1- C2IN1-	_	—	_	—	—	—	_	_	CLCIN1 ⁽¹⁾	_	_	IOCA1	_
RA2	23	23	ANA2	VREF-	DAC1OUT1	C1IN0+ C2IN0+	-	—	_	—	—	—	_	-	—	—		IOCA2	_
RA3	24	24	ANA3	VREF+	_	C1IN1+	_	_		_	MDCARL ⁽¹⁾	-	_	_	_	_	_	IOCA3	
RA4	25	25	ANA4	_	_	-		_	_	_	MDCARH ⁽¹⁾	T0CKI ⁽¹⁾		_	—	_		IOCA4	_
RA5	26	26	ANA5	_	_		I	_	SS1 ⁽¹⁾	_	MDSRC ⁽¹⁾	_	I	_	_	-	I	IOCA5	
RA6	33	33	ANA6	_	—		I	—		_	—	—		—	—			IOCA6	OSC2 CLKOUT
RA7	32	32	ANA7	—	—			—		—	—	—	-	—	—	—		IOCA7	OSC1 CLKIN
RB0	8	8	ANB0	—	—	C2IN1+	ZCD	_	-	—	—	—	CCP4 ⁽¹⁾	CWG1IN ⁽¹⁾	-	Ι	-	INT0 ⁽¹⁾ IOCB0	-
RB1	9	9	ANB1	—	_	C1IN3- C2IN3-	-	SCL2 ^(3,4)	-	—	—	—	_	CWG2IN ⁽¹⁾	-		_	INT1 ⁽¹⁾ IOCB1	-
RB2	10	10	ANB2	_	—	-	-	SDA2 ^(3,4)	-	_	—	—	_	CWG3IN ⁽¹⁾	-		_	INT2 ⁽¹⁾ IOCB2	_
RB3	11	11	ANB3	—	—	C1IN2- C2IN2-	_	-	_	—	—	—	_	-	—	-	_	IOCB3	_
RB4	16	16	ANB4 ADCACT ⁽¹⁾	-	-	—		—	-	—	_	T5G ⁽¹⁾	-	-	—	-		IOCB4	-
RB5	17	17	ANB5	—	—		I	_		—	—	T1G ⁽¹⁾	CCP3 ⁽¹⁾	-	_	_		IOCB5	
RB6	18	18	ANB6	_	_	_		—		CTS2 ⁽¹⁾	_	_		—	CLCIN2 ⁽¹⁾	_	l	IOCB6	ICSPCLK
RB7	19	19	ANB7	_	DAC1OUT2		-	_	-	RX2 ⁽¹⁾	_	T6IN ⁽¹⁾		_	CLCIN3 ⁽¹⁾	_	I	IOCB7	ICSPDAT
RC0	34	34	ANC0	—	-	_		—	_	—	—	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMTWIN1 ⁽¹⁾	_	—	—	_		IOCC0	SOSCO
RC1	35	35	ANC1	_	-			_		_	_	SMTSIG1 ⁽¹⁾	CCP2 ⁽¹⁾	_	_	_		IOCC1	SOSCI
Note	1:	This is	a PPS remapp	bable input s	ignal. The input	function may	y be mov	ed from the d	efault locatio	on shown to	one of several o	ther PORTx pins	S.						

2: All output signals shown in this row are PPS remappable.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins can be configured for I²C and SMBTM 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4/RD0/RD1 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

15.9.4 TRANSFER FROM SFR TO GPR

The following visual reference describes the sequence of events when copying ADC results to a GPR location. The ADC Interrupt Flag can be chosen as the Source Hardware trigger, the Source address can be set to point to the ADC Result registers at 3EEF, the Destination address can be set to point to any GPR location of our choice (Example 0x100).

FIGURE 15-8: SFR SPACE TO GPR SPACE TRANSFER

Instruction Clock		
EN		
SIRQEN		
Source Hardware Trigger		
DGO		
DMAxSPTR	Ox3EEF Ox3EF0 S Ox3EEF Ox3EEF Ox3EEF S </th <th></th>	
DMAxDPTR	0x100 0x101 (0x102 0x103 (0x103)	
DMAxSCNT		
DMAxDCNT		
DMA STATE	$ \left(\begin{array}{c} \text{IDLE} \end{array} \right) \left(SR^{(1)} \right) DW^{(2)} \left(SR^$	
DMAxSCNTIF		
DMAxDCNTIF -	<u>}</u>	
	DMAxSSA 0x3EEF DMAxDSA 0x100	
	DMAxSSZ 0x2 DMAxDSZ 0xA	
	SMODE 0x1 DMODE 0x1	
Note 1:	SR - Source Read	
2:	DW - Destination Write	

	PPS Input	Default Pin	Register					In	put Ava	ilable fro	m Selecte	ed POR	Тх				
Peripheral	Register	Selection at POR	Reset Value at POR	PIC18(L)F26/27K42			PIC18(L)F45/46/47K42					Р	IC18(L)F	55/56/57	K42		
Interrupt 0	INTOPPS	RB0	0b0 1000	А	В	_	Α	В	_	—	—	Α	В	—	_		—
Interrupt 1	INT1PPS	RB1	0b0 1001	А	В	—	Α	В	_	—	—	_	В	—	D	_	-
Interrupt 2	INT2PPS	RB2	0b0 1010	А	В	—	А	В	—	—	—	_	В	—	-	—	F
Timer0 Clock	TOCKIPPS	RA4	0b0 0100	А	В	—	Α	В	_	—	—	А	_	—	_	_	F
Timer1 Clock	T1CKIPPS	RC0	0b1 0000	А	_	С	Α		С	—	—	_	_	С	_	E	-
Timer1 Gate	T1GPPS	RB5	0b0 1101	_	В	С	_	В	С	—	—	_	В	С	_	_	-
Timer3 Clock	T3CKIPPS	RC0	0b1 0000	_	В	С	_	В	С	—	—	-	_	С	_	E	-
Timer3 Gate	T3GPPS	RC0	0b1 0000	А	—	С	Α	_	С	—	—	А	_	С	_	—	
Timer5 Clock	T5CKIPPS	RC2	0b1 0010	А	_	С	А	_	С			_	_	С	_	E	_
Timer5 Gate	T5GPPS	RB4	0b0 1100	_	В	С	_	В	-	D	—	—	В	_	D		_
Timer2 Clock	T2INPPS	RC3	0b1 0011	А	—	С	Α	_	С	—	—	А	_	С	_		_
Timer4 Clock	T4INPPS	RC5	0b1 0101	_	В	С	_	В	С	—	—	_	В	С	_		_
Timer6 Clock	T6INPPS	RB7	0b0 1111	_	В	С	_	В	-	D	_	—	В	_	D	_	_
CCP1	CCP1PPS	RC2	0b1 0010	_	В	С	_	В	С	_	_	—		С	_	_	F
CCP2	CCP2PPS	RC1	0b1 0001	_	В	С		В	С	_	_	—		С	_	_	F
CCP3	CCP3PPS	RB5	0b0 1101	_	В	С	_	В	_	D	_	—	В	_	D	_	_
CCP4	CCP4PPS	RB0	0b0 1000	_	В	С	_	В	_	D	_	—	В	_	D	_	_
SMT1 Window	SMT1WINPPS	RC0	0b1 0000	_	В	С		В	С	—	—	_	_	С	_	_	F
SMT1 Signal	SMT1SIGPPS	RC1	0b1 0001	_	В	С		В	С	_	_	—		С	_	_	F
CWG1	CWG1PPS	RB0	0b0 1000	_	В	С	_	В	_	D	_	—	В	_	D	_	_
CWG2	CWG2PPS	RB1	0b0 1001	_	В	С		В	_	D	_	—	В	_	D	_	_
CWG3	CWG3PPS	RB2	0b0 1010	_	В	С	_	В	_	D	_	—	В	_	D	_	_
DSM1 Carrier Low	MD1CARLPPS	RA3	0b0 0011	А	_	С	A	—		D	—	A	—	—	D	—	-
DSM1 Carrier High	MD1CARHPPS	RA4	0b0 0100	А	—	С	A	—		D	—	A	—	—	D	—	—
DSM1 Source	MD1SRCPPS	RA5	0b0 0101	А	_	С	Α	—	_	D	_	А		_	D	_	_
CLCx Input 1	CLCIN0PPS	RA0	0000 0000	А	—	С	А	_	С	—	—	Α	—	С	_	—	—
CLCx Input 2	CLCIN1PPS	RA1	0b0 0001	А	—	С	А	_	С	—	—	Α	—	С	_	—	—
CLCx Input 3	CLCIN2PPS	RB6	0b0 1110	_	В	С	—	В	-	D	—	_	В	—	D	—	—
CLCx Input 4	CLCIN3PPS	RB7	0b0 1111	_	В	С		В		D	_	_	В	_	D	_	_

TABLE 17-1: PPS INPUT REGISTER DETAILS

TABLE 17-1: PPS INPUT REGISTER DETAILS

	PPS Input	Default Pin	Register					Ir	nput Avai	ilable from	n Selecte	d POR	Tx				
Peripheral	Register	Selection at POR	Reset Value at POR	PIC18	(L)F26/2	7K42		PIC18(L)F45/46/47K42				PIC18(L)F55/56/57K42					
ADC Conversion Trigger	ADACTPPS	RB4	0b0 1100	—	В	С	-	В	-	D	—	-	В	—	D	—	
SPI1 Clock	SPI1SCKPPS	RC3	0b1 0011	_	В	С	_	В	С			—	В	С	_	_	_
SPI1 Data	SPI1SDIPPS	RC4	0b1 0100	_	В	С	_	В	С			—	В	С		_	_
SPI1 Slave Select	SPI1SSPPS	RA5	0b0 0101	A	—	С	A	_	—	D	—	A	—	-	D	_	—
I ² C1 Clock	I2C1SCLPPS	RC3	0b1 0011	_	В	С	_	В	С			—	В	С		_	_
I ² C1 Data	I2C1SDAPPS	RC4	0b1 0100	_	В	С	_	В	С			—	В	С		_	_
I ² C2 Clock	I2C2SCLPPS	RB1	0b0 1001	_	В	С		В	_	D		—	В	_	D	_	_
I ² C2 Data	I2C2SDAPPS	RB2	0b0 1010	_	В	С	_	В	_	D		—	В	_	D	_	_
UART1 Receive	U1RXPPS	RC7	0b1 0111	_	В	С	_	В	С			—	_	С		_	F
UART1 Clear To Send	U1CTSPPS	RC6	0b1 0110	—	В	С	—	В	С	—	—	—	_	С	—		F
UART2 Receive	U2RXPPS	RB7	0b0 1111		В	С		В		D		_	В	—	D	_	_
UART2 Clear To Send	U2CTSPPS	RB6	0b0 1110	—	В	С	—	В	—	D	—	—	В		D		—

TABLE 17-2: PPS OUTPUT REGISTER DETAILS

							Device	Configurati	on						
RxyPPS<5:0>	Pin Rxy Output Source	PIC	18(L)F26/27	K42		PIC1	8(L)F45/46/4	47K42			P	PIC18(L)F	55/56/57k	(42	
0b11 1111 - 0b11 0011						Rese	rved								
0b11 0010	ADGRDB	A	_	С	А	_	С	_	_	A	I _		<u> </u>	<u> </u>	F
0b11 0001	ADGRDA	A	_	С	A	_	С	_	_	А	_	_	_	_	F
0b11 0000	CWG3D	A	_	С	А	_	_	D	_	A	_	_	D	_	_
0b10 1111	CWG3C	A		С	А	_	_	D		Α			D	_	_
0b10 1110	CWG3B	A		С	А	_	_	_	E	Α			_	E	_
0b10 1101	CWG3A	_	В	С	_	В	С	_	_	_	В	С	_	_	_
0b10 1100	CWG2D	_	В	С	_	В	_	D	_	_	В	_	D	_	_
0b10 1011	CWG2C	_	В	С	_	В	_	D	_	_	В	_	D	_	_
0b10 1010	CWG2B	_	В	С	_	В	_	D	_	_	В	—	D	—	_
0b10 1001	CWG2A	_	В	С	_	В	С	_	_	_	В	С	_	_	_
0b10 1000	DSM1	А	_	С	A	_	_	D	_	Α	—	—	D	-	—
0b10 0111	CLKR	—	В	С	_	В	С	_	_	_	В	_	—	E	—
0b10 0110	NCO1	А	_	С	A	_	_	D	_	Α	—	—	D	—	_
0b10 0101	TMR0	—	В	С	_	В	С	_	—	_	—	С	—	_	F
0b10 0100	I ² C2 (SDA)	—	В	С	—	В	_	D	_	_	В	—	D	_	_
0b10 0011	I ² C2 (SCL)	—	В	С	_	В	_	D	_	_	В	—	D	_	_
0b10 0010	I ² C1 (SDA)	—	В	С	—	В	С	_	_	_	В	С	—	_	—
0b10 0001	I ² C1 (SCL)		В	С	_	В	С	_	—	_	В	С	_		_
0b10 0000	SPI1 (SS)	А	_	С	А	_	_	D	_	А	—	—	D	_	_
0b01 1111	SPI1 (SDO)	_	В	С	_	В	С	_	—	—	В	С	_	_	_
0b01 1110	SPI1 (SCK)	—	В	С	_	В	С	_	_	—	В	С	_	_	—
0b01 1101	C2OUT	А	_	С	А	—	—	—	E	А	—	—	—	E	—
0b01 1100	C1OUT	А	_	С	А	_	_	D	_	А	—	—	D	—	—
0b01 1011 - 0b01 1001	Reserved														
0b01 1000	UART2 (RTS)	_	В	С	_	В	—	D	—	—	В	_	D	—	—
0b01 0111	UART2 (TXDE)	_	В	С	_	В	—	D	—	—	В	—	D	_	—
0b01 0110	UART2 (TX)	_	В	С	—	В	—	D	—	—	В	—	D	_	—
0b01 0101	UART1 (RTS)	—	В	С	_	В	С	_	—	—	_	С	—	—	F
0b01 0100	UART1 (TXDE)	—	В	С	-	В	С	_	—	-	_	С	_	_	F
0b01 0011	UART1 (TX)	_	В	С	_	В	С	_	_	_	—	С	—	—	F

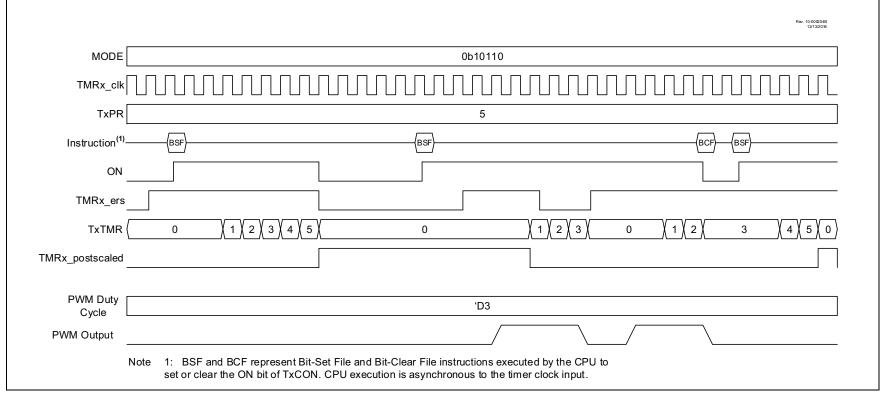
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page			
PPSLOCK	—		—	—	—	—	—	PPSLOCKED	283			
INT0PPS	_	_	_			INT0PPS<4	4:0>		277			
INT1PPS	_	_	_			INT1PPS<	4:0>		277			
INT2PPS	_	_	_		INT2PPS<4:0>							
TOCKIPPS		_	_			T0CKIPPS<	4:0>		277			
T1CKIPPS		_	_			T1CKIPPS<	4:0>		277			
T1GPPS	_	_	_			T1GPPS<4	4:0>		277			
T3CKIPPS	_	_	_			T3CKIPPS<	:4:0>		277			
T3GPPS	_	_	_			T3GPPS<4	4:0>		277			
T5CKIPPS	-	_	—			T5CKIPPS<	:4:0>		277			
T5GPPS	-	_	—			T5GPPS<4	4:0>		277			
T2INPPS	_	_	_			T2INPPS<	4:0>		277			
T4INPPS	-	_	—			T4INPPS<	4:0>		277			
T6INPPS	_	_	_			T6INPPS<	4:0>		277			
CCP1PPS	_	_	_			CCP1PPS<	4:0>		277			
CCP2PPS	_	_	_			CCP2PPS<	4:0>		277			
CCP3PPS	_	_	_			CCP3PPS<	4:0>		277			
CCP4PPS	_	_	_			CCP4PPS<	4:0>		277			
SMT1WINPPS	_	_	_			SMT1WINPP	S<4:0>		277			
SMT1SIGPPS	_	_	_			SMT1SIGPPS	S<4:0>		277			
CWG1PPS		_	_			CWG1PPS<	:4:0>		277			
CWG2PPS		_	_			CWG2PPS<	:4:0>		277			
CWG3PPS		_	_			CWG3PPS<	:4:0>		277			
MD1CARLPPS	_	_	_			MDCARLPPS	6<4:0>		277			
MD1CARHPPS	_	_	_			MDCARHPP	S<4:0>		277			
MD1SRCPPS	_	_	_			MDSRCPPS	<4:0>		277			
CLCIN0PPS		_	_			CLCIN0PPS	<4:0>		277			
CLCIN1PPS	_	_	_			CLCIN1PPS	<4:0>		277			
CLCIN2PPS	_	_	_			CLCIN2PPS	<4:0>		277			
CLCIN3PPS		_	_			CLCIN3PPS	<4:0>		277			
ADACTPPS	_	_	_			ADACTPPS	<4:0>		277			
SPI1SCKPPS	_	_	_			SPI1SCKPPS	S<4:0>		277			
SPI1SDIPPS	_	_	_			SPI1SDIPPS	<4:0>		277			
SPI1SSPPS	_	_	_			SPI1SSPPS	<4:0>		277			
I2C1SCLPPS		_	_			I2C1SCLPPS	6<4:0>		277			
I2C1SDAPPS	_	_	_	I2C1SDAPPS<4:0>								
I2C2SCLPPS	_	_	_			I2C2SCLPPS	6<4:0>		277 277			
I2C2SDAPPS	_	_	_			I2C2SDAPPS	6<4:0>		277			
U1RXPPS	_	_	_			U1RXPPS<	4:0>		277			
U1CTSPPS	_	_	_			U1CTSPPS	<4:0>		277			
U2RXPPS	_	_	_			U2RXPPS<	4:0>		277			
U2CTSPPS	_	_	—			U2CTPPS<	4:0>		277			
RxyPPS	_	_	_			RxyPPS<4			280			

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

22.5.10 LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

The Level Triggered Hardware Limit One-Shot modes hold the timer in Reset on an external Reset level and start counting when both the ON bit is set and the external signal is not at the Reset level. If one of either the external signal is not in reset or the ON bit is set then the other signal being set/made active will start the timer. Reset levels are selected as follows:


- Low reset level (MODE<4:0> = 10110)
- High reset level (MODE<4:0> = 10111)

When the timer count matches the T2PR period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a T2PR match or by software control, the timer will stay in Reset until both the ON bit is set and the external signal is not at the Reset level.

When Level Triggered Hardware Limit One-Shot modes are used in conjunction with the CCP PWM operation, the PWM drive goes active with either the external signal edge or the setting of the ON bit, whichever of the two starts the timer.

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 22-13: LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 10110)

27.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The INTP enables rising edge interrupts and the INTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the respective PIE register
- INTP bit of the CLCxCON register (for a rising edge detection)
- INTN bit of the CLCxCON register (for a falling edge detection)
- GIE bits of the INTCON0 register

The CLCxIF bit of the respective PIR register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

27.3 Output Mirror Copies

Mirror copies of all CON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the OUT bits in the individual CLCxCON registers.

27.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

27.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

27.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the EN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 27-1).
- Clear any associated ANSEL bits.
- Set all TRIS bits associated with inputs.
- Clear all TRIS bits associated with outputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the GyPOL bits of the CLCxPOL register.
- Select the desired logic function with the MODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the POL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the INTP bit in the CLCxCON register for rising event.
 - Set the INTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the respective PIE register.
 - Set the GIE bits of the INTCON0 register.
- Enable the CLCx by setting the EN bit of the CLCxCON register.

31.21 Register Definitions: UART Control

Long bit name prefixes for the UART peripherals are shown below. Refer to **Section 1.3 "Register and Bit naming conventions**" for more information.

Peripheral	Bit Name Prefix
UART 1	U1
UART 2	U2

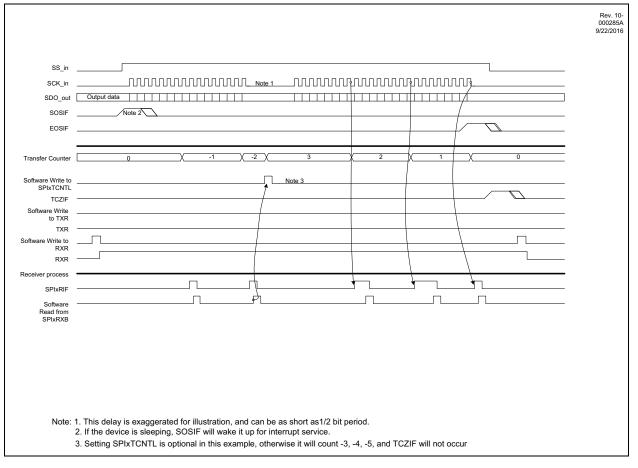
REGISTER 31-1: UxCON0: UART CONTROL REGISTER 0

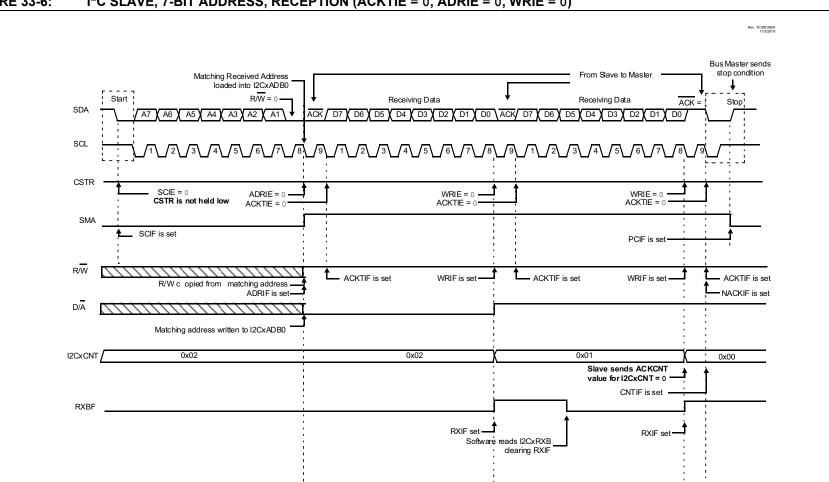
R/W-0/0	R/W/HS/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
BRGS	ABDEN	TXEN	RXEN		MODE	<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Hardware clear

bit 7	 BRGS: Baud rate Generator Speed Select bit 1 = Baud rate generator is high speed with 4 baud clocks per bit 0 = Baud rate generator is normal speed with 16 baud clocks per bit
bit 6	 ABDEN: Auto-baud Detect Enable bit⁽³⁾ 1 = Auto-baud is enabled. Receiver is waiting for Sync character (0x55) 0 = Auto-baud is not enabled or auto-baud is complete
bit 5	 TXEN: Transmit Enable Control bit⁽²⁾ 1 = Transmit is enabled. TX output pin drive is forced on when transmission is active, and controlled by PORT TRIS control when transmission is idle. 0 = Transmit is disabled. TX output pin drive is controlled by PORT TRIS control
bit 4	RXEN: Receive Enable Control bit ⁽²⁾ 1 = Receiver is enabled 0 = Receiver is disabled
bit 3-0	MODE<3:0>: UART Mode Select bits ⁽¹⁾ 1111 = Reserved 1100 = Reserved 1101 = Reserved 1100 = LIN Master/Slave mode ⁽⁴⁾ 1011 = LIN Slave-Only mode ⁽⁴⁾ 1010 = DMX mode ⁽⁴⁾ 1001 = DALI Control Gear mode ⁽⁴⁾ 1000 = DALI Control Device mode ⁽⁴⁾ 1011 = Reserved 0110 = Reserved 0110 = Reserved 0101 = Reserved 0101 = Reserved 0102 = Asynchronous 9-bit UART Address mode. 9th bit: 1 = address, 0 = data 0011 = Asynchronous 8-bit UART mode with 9th bit even parity 0010 = Asynchronous 8-bit UART mode with 9th bit odd parity 0010 = Asynchronous 8-bit UART mode
Note 1: 2: 3:	Changing the UART MODE while ON = 1 may cause unexpected results. Clearing TXEN or RXEN will not clear the corresponding buffers. Use TXBE or RXBE to clear the buffers. When MODE = 100x, then ABDEN bit is ignored.

4: UART1 only.


R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TXMTIE	PERIE	ABDOVE	CERIE	FERIE	RXBKIE	RXFOIE	TXCIE
bit 7							bit (
Legend:							
R = Readable		W = Writable		1	nented bit, read		
u = Bit is unch	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	TXMTIE: Tra	insmit Shift Reg	ister Empty In	iterrupt Enable	bit		
	1 = Interrupt 0 = Interrupt	t enabled					
bit 6	PERIE: Parit	y Error Interrup	Enable bit				
	1 = Interrupt 0 = Interrupt						
bit 5	ABDOVE: A 1 = Interrupt 0 = Interrupt		t Overflow Inte	errupt Enable b	pit		
bit 4	CERIE: Chec 1 = Interrupt 0 = Interrupt		errupt Enable	bit			
bit 3	FERIE: Fram 1 = Interrupt 0 = Interrupt		upt Enable bit				
bit 2	RXBKIE: Bre 1 = Interrupt 0 = Interrupt		nterrupt Enabl	le bit			
bit 1	-	ceive FIFO Ove t enabled	rflow Interrup	t Enable bit			
bit 0		smit Collision In t enabled	terrupt Enable	e bit			


REGISTER 31-5: UXERRIE: UART ERROR INTERRUPT ENABLE REGISTER

32.6.2 SLAVE MODE RECEIVE OPTIONS

The RXR bit controls the nature of receptions in slave mode. When RXR is set, the SDI input data will be stored in the RXFIFO if it is not full. If the RXFIFO is full, the RXOIF bit will be set to indicate an RXFIFO overflow error and the data is discarded. When RXR is cleared, all received data will be ignored and not stored in the RXFIFO (although it may still be used for transmission if TXFIFO is empty). Figure 32-11 shows a typical slave mode communication, showing a case where the master writes two then three bytes, showing interrupts as well as the behavior of the transfer counter in slave mode (see Section 32.4.3 "Transfer Counter in Slave mode" for more details on tSection 32.8 "SPI Interrupts" he transfer counter in slave mode as well as Section X.8 for more information on interrupts).

FIGURE 32-11: SPI SLAVE MODE OPERATION – INTERRUPT-DRIVEN, MASTER WRITES 2+3 BYTES

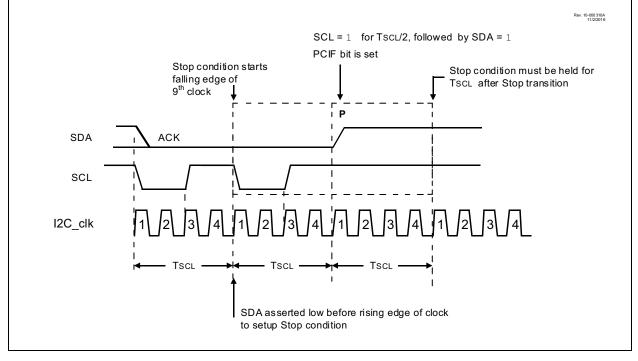


FIGURE 33-6: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (ACKTIE = 0, ADRIE = 0, WRIE = 0)

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 33-18: STOP CONDITION DURING RECEIVE OR TRANSMIT

33.5.9 MASTER TRANSMISSION IN 7-BIT ADDRESSING MODE

This section describes the sequence of events for the I^2C module configured as an I^2C master in 7-bit Addressing mode and is transmitting data. Figure 33-19 is used as a visual reference for this description.

1. If ABD = 0; i.e., Address buffers are enabled

Master software loads number of bytes to be transmitted in one sequence in I2CxCNT, slave address in I2CxADB1 with R/W = 0 and the first byte of data in I2CxTXB. Master software has to set the Start (S) bit to initiate communication.

If ABD = 1; i.e., Address buffers are disabled

Master software loads the number of bytes to be transmitted in one sequence in I2CxCNT and the slave address with R/W = 0 into the I2CxTXB register. Writing to the I2CxTXB will assert the start condition on the bus and sets the S bit. Software writes to the S bit are ignored in this case.

- 2. Master hardware waits for BFRE bit to be set; then shifts out start and address.
- If the transmit buffer is empty (i.e., TXBE = 1) and I2CxCNT!= 0, the I2CxTXIF and MDR bits are set and the clock is stretched on the 8th falling SCL edge. Clock can be started by loading the next data byte in I2CxTXB register.
- 4. Master sends out the 9th SCL pulse for ACK.
- If the Master hardware receives ACK from Slave device, it loads the next byte from the transmit buffer (I2CxTXB) into the shift register and the

value of I2CxCNT register is decremented.

- 6. If a NACK was received, Master hardware asserts Stop or Restart
- 7. If ABD = 0; i.e., Address buffers are enabled

If I2CxCNT = 0, Master hardware sends Stop or sets MDR if RSEN = 1 and waits for the software to set the Start bit again to issue a restart condition.

If ABD = 1; i.e., Address buffers are disabled

If I2CxCNT = 0, Master hardware sends Stop or sets MDR if RSEN = 1 and waits for the software to write the new address to the I2CxTXB register. Software writes to the S bit are ignored in this case.

- 8. Master hardware outputs data on SDA.
- 9. If TXBE = 1 and I2CxCNT! = 0, I2CxTXIF and MDR bits are set and the clock is stretched on 8th falling SCL edge. The user can release the clock by writing the next data byte to I2CxTXB register.
- 10. Master hardware clocks in ACK from Slave, and loads the next data byte from I2CTXB to the shift register. The value of I2CxCNT is decremented.
- 11. Go to step 7.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
ADR14	ADR13	ADR12	ADR11	ADR10	ADR9	ADR8	_
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	_
bit 7							bit 0

REGISTER 33-15: I2CXADR3: I²C ADDRESS 3 REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set HC = Hardware clear

bit 7-0 ADR<7-0>: Address 3 bits

MODE<2:0> = 000 | 110 - 7-bit Slave/Multi-Master Modes

ADR<7:1>:7-bit Slave Address

ADR<0>: Unused in this mode; bit state is a don't care

MODE<2:0> = 001 | 111 - 7-bit Slave/Multi-Master Mode with Masking

MSK1<7:1>:7-bit Slave Address

MSK1<0>: Unused in this mode; bit state is a don't care

MODE<2:0> = 010 - 10-Bit Slave Mode

ADR<14-10>:Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, these bit values are compared by hardware to the received data to determine a match. It is up to the user to set these bits as '11110'
ADR<9-8>:Two Most Significant bits of 10-bit address

MODE<2:0> = 011 - 10-Bit Slave Mode with Masking

MSK0<14-8>:The received address byte, bit *n*, is compared to I2CxADR0 to detect I²C address match

38.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 38-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 38-2) contains Control bits for the following:

• Interrupt on positive/negative edge enables

The CMxPCH and CMxNCH registers are used to select the positive and negative input channels, respectively.

38.2.1 COMPARATOR ENABLE

Setting the EN bit of the CMxCON0 register enables the comparator for operation. Clearing the EN bit disables the comparator resulting in minimum current consumption.

38.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the CxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 17-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

38.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the POL bit of the CMxCON0 register. Clearing the POL bit results in a noninverted output.

 Table 38-1
 shows
 the output
 state
 versus
 input

 conditions, including polarity control.

 <t

TABLE 38-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	POL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

REGISTER 30	5 - 2 . CIVIXO				EGISTERT		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	_	—	—	_	INTP	INTN
bit 7							bit 0

REGISTER 38-2: CMxCON1: COMPARATOR x CONTROL REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'
bit 1	INTP: Comparator Interrupt on Positive-Going Edge Enable bit
	 1 = The CxIF interrupt flag will be set upon a positive-going edge of the CxOUT bit 0 = No interrupt flag will be set on a positive-going edge of the CxOUT bit
bit 0	INTN: Comparator Interrupt on Negative-Going Edge Enable bit
	 1 = The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative-going edge of the CxOUT bit

REGISTER 38-3: CMxNCH: COMPARATOR x INVERTING CHANNEL SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_		—		NCH<2:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Read as '0'

bit 2-0 NCH<2:0>: Comparator Inverting Input Channel Select bits

111 **= V**SS

110 = FVR_Buffer2

101 = NCH not connected

- 100 = NCH not connected
- 011 = CxIN3-
- 010 = CxIN2-
- 001 = CxIN1-
- 000 = CxIN0-

Mnemo	onic,	Description	Cycles	16-	Bit Inst	ruction	Word	Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	INSTRU	CTIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	1
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	1
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	1
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	1
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	1
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	1
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	1
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	1
CALL	n, s	Call subroutine 1st word	2	1110	110s	nnnn	nnnn	None	2
		2nd word		1111	nnnn	nnnn	nnnn		
GOTO	n	Go to address 1st word	2	1110	1111	nnnn	nnnn	None	2
	—	2nd word		1111	nnnn	nnnn	nnnn		
CALLW	—	W -> PCL and Call subroutine	2	0000	0000	0001	0100	None	1
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	1
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	None	1
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	1
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	1
INHERENT	INSTRU	CTIONS							
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	None	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	_	No Operation	1	1111	XXXX	XXXX	XXXX	None	2
POP	_	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	None	

TABLE 41-2: INSTRUCTION SET (CONTINUED)

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3: f_s and f_d do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Regist on pag
3EE8h	ADACCL				AC	CC				631
3EE7h	ADFLTRH				FL	TR				627
3EE6h	ADFLTRL				FL	TR				627 632
3EE5h	ADSTPTH		STPT							
3EE4h	ADSTPTL				ST	PT				632
3EE3h	ADERRH				EF	R				633
3EE2h	ADERRL				EF	RR				633
3EE1h	ADUTHH				U	ГН				634
3EE0h	ADUTHL				U	ГН				634
3EDFh	ADLTHH				LT	Ή				633
3EDEh	ADLTHL				LT	Н				634
3EDDh - 3ED8h	—				Unimple	emented				
3ED7h	ADCP	ON	_	_	_	_	_	_	CPRDY	636
3ED6h - 3ECBh	-				Unimple	emented		1		
3ECAh	HLVDCON1	_	_	—	_		5	SEL		658
3EC9h	HLVDCON0	EN	_	OUT	RDY	—	_	INTH	INTL	657
3EC8h - 3EC4h	-		Unimplemented					•		
3EC3h	ZCDCON	SEN	—	OUT	POL	_	_	INTP	INTN	462
3EC2h	_				Unimple	emented				
3EC1h	FVRCON	EN	RDY	TSEN	TSRNG	CDA	AFVR	A	DFVR	597
3EC0h	CMOUT	_	_	_	_	_	_	C2OUT	C10UT	650
3EBFh	CM1PCH	_			_			PCH		650
3EBEh	CM1NCH	_			_	_		NCH		649
3EBDh	CM1CON1	_		_	_	_	_	INTP	INTN	649
3EBCh	CM1CON0	EN	OUT	_	POL	_	_	HYS	SYNC	648
3EBBh	CM2PCH	_	_		_			PCH		650
3EBAh	CM2NCH			_				NCH		649
3EB9h	CM2CON1							INTP	INTN	649
3EB8h	CM2CON0	EN	OUT		POL			HYS	SYNC	648
3EB7h - 3E9Fh	-	LN	001			emented		1113	51110	040
3E9Eh	DAC1CON0	EN		OE1	OE2	P	SS	_	NSS	640
3E9Dh	_					emented				
3E9Ch	DAC1CON1	_					DATA			641
3E9Bh - 3DFBh	-				Unimple	emented				
3DFAh	U1ERRIE	TXMTIE	PERIE	ABDOVE	CERIE	FERIE	RXBKIE	RXFOIE	TXCIE	502
3DF9h	U1ERRIR	TXMTIF	PERIF	ABDOVF	CERIF	FERIF	RXBKIF	RXFOIF	TXCIF	501
3DF8h	U1UIR	WUIF	ABDIF	_	_	_	ABDIE	_	_	503
3DF7h	U1FIFO	TXWRE	STPMD	TXBE	TXBF	RXIDL	XON	RXBE	RXBF	504
3DF6h	U1BRGH	1				GH				505
3DF5h	U1BRGL				BR					505
3DF4h	U1CON2	RUNOVF	RXPOL	ST		COEN	TXPOL	F	-LO	500
3DF3h	U1CON1	ON		_	WUE	RXBIMD		BRKOVR	SENDB	499
3DF2h	U1CON0	BRGS	 ABDEN	TXEN	RXEN			ODE	OLINDO	498
	010010	51,00	ABDEN		IVALIN				P3H	509

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

x = unknown, u = unchanged, — = unimplemented, q = value depends on condition Legend: Note

1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

Unimplemented in PIC18(L)F45/55K42. 4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3D6Ch	I2C1CNT				CI	IT				586
3D6Bh	I2C1TXB				Tک	(B				
3D6Ah	I2C1RXB				RX	(B				
3D69h - 3D67h	_				Unimple	mented				
3D66h	I2C2BTO		BTO							582
3D65h	I2C2CLK				CI	K				581
3D64h	I2C2PIE	CNTIE	ACKTIE	—	WRIE	ADRIE	PCIE	RSCIE	SCIE	588
3D63h	I2C2PIR	CNTIF	ACKTIF	—	WRIF	ADRIF	PCIF	RSCIF	SCIF	587
3D62h	I2C2STAT1	TXWE	_	—	—	RXRE	CLRBF	—	RXBF	584
3D61h	I2C2STAT0	BFRE	_	MMA	—	D	_	—	—	583
3D60h	I2C2ERR	—	BTOIF	BCLIF	NACKIF		BTOIE	BCLIE	NACKIE	585
3D5Fh	I2C2CON2	ACNT	GCEN	FME	ABD	SD	AHT	BI	FRET	580
3D5Eh	I2C2CON1	ACKCNT	ACKDT	ACKSTAT	ACKT		RXO	TXU	CSD	579
3D5Dh	12C2CON0	EN	RSEN	S	CSTR	MDR		MODE		577
3D5Ch	I2C2ADR3				ADR				_	592
3D5Bh	I2C2ADR2				A	R				591
3D5Ah	I2C2ADR1				ADR				_	590
3D59h	I2C2ADR0				A	R				589
3D58h	I2C2ADB1				A)B				594
3D57h	I2C2ADB0		ADB							593
3D56h	I2C2CNT		CNT						586	
3D55h	I2C2TXB		ТХВ							
3D54h	I2C2RXB		RXB							
3D53h - 3D1Dh	—		Unimplemented							
3D1Ch	SPI1CLK				CLK	SEL				542
3D1Bh	SPI1INTE	SRMTIE	TCZIE	SOSIE	EOSIE	_	RXOIE	TXUIE	—	536
3D1Ah	SPI1INTF	SRMTIF	TCZIF	SOSIF	EOSIF		RXOIF	TXUIF	—	535
3D19h	SPI1BAUD			•	BA	UD		•		538
3D18h	SPI1TWIDTH	—	—	_	—	_		TWIDTH		537
3D17h	SPI1STATUS	TXWE	_	TXBE	_	RXRE	CLRBF	—	RXBF	541
3D16h	SPI1CON2	BUSY	SSFLT	_	_	_	SSET	TXR	RXR	540
3D15h	SPI1CON1	SMP	CKE	CKP	FST	_	SSP	SDIP	SDOP	539
3D14h	SPI1CON0	EN	—	_	_	_	LSBF	MST	BMODE	538
3D13h	SPI1TCNTH	—	—	_	—	_		TCNTH		537
3D12h	SPI1TCNTL				TCI	NTL				536
3D11h	SPI1TXB				Tک	(B				542
3D10h	SPI1RXB				RX	(B				541
3D0Fh - 3CFFh	—				Unimple	mented				
3CFEh	MD1CARH	_	—	_			СН			471
3CFDh	MD1CARL	_	_	_			CL			471
3CFCh	MD1SRC	_	_	_			MS			472
3CFBh	MD1CON1	_	_	CHPOL	CHSYNC	_	_	CLPOL	CLSYNC	470
3CFAh	MD1CON0	EN	_	OUT	OPOL	_	_	_	BIT	469
3CF9h - 3CE7h	—				Unimple	mented				

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

FIGURE 44-1: VOLTAGE FREQUENCY GRAPH, -40°C \leq TA \leq +125°C, PIC18F26/45/46/55/56K42 ONLY

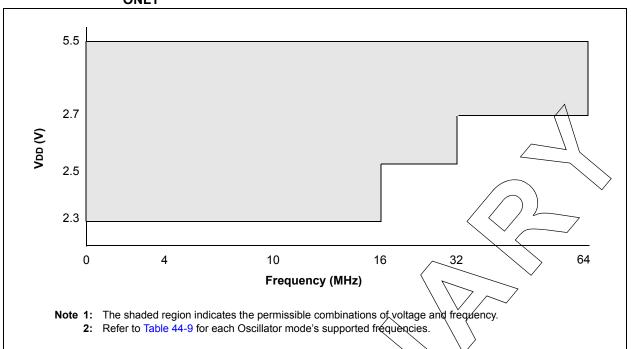
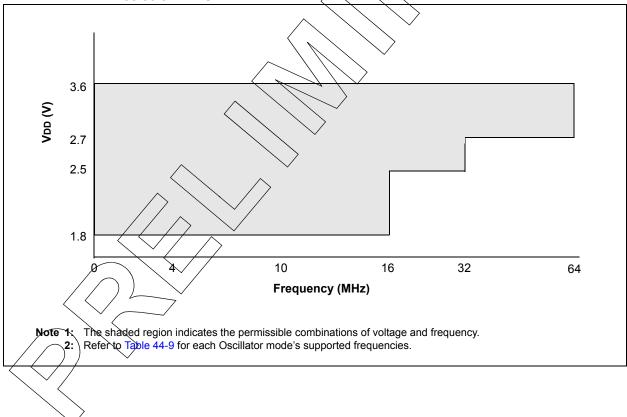



FIGURE 44-2: VOLTAGE FREQUENCY GRAPH, -40°C <- TA <+125°C, PIC18(L)F26/27/45/46/47/ 55/56/57K42 ONLY

