

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k42t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.0 INTERRUPT CONTROLLER

The Vectored Interrupt Controller module reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. This module includes the following major features:

- Interrupt Vector Table (IVT) with a unique vector for each interrupt source
- · Fixed and ensured interrupt latency
- Programmable base address for Interrupt Vector Table (IVT) with lock
- Two user-selectable priority levels High priority and Low priority
- Two levels of context saving
- Interrupt state status bits to indicate the current execution status of the CPU

The Interrupt Controller module assembles all of the interrupt request signals and resolves the interrupts based on both a fixed natural order priority (i.e., determined by the Interrupt Vector Table), and a user-assigned priority (i.e., determined by the IPRx registers), thereby eliminating scanning of interrupt sources.

9.1 Interrupt Control and Status Registers

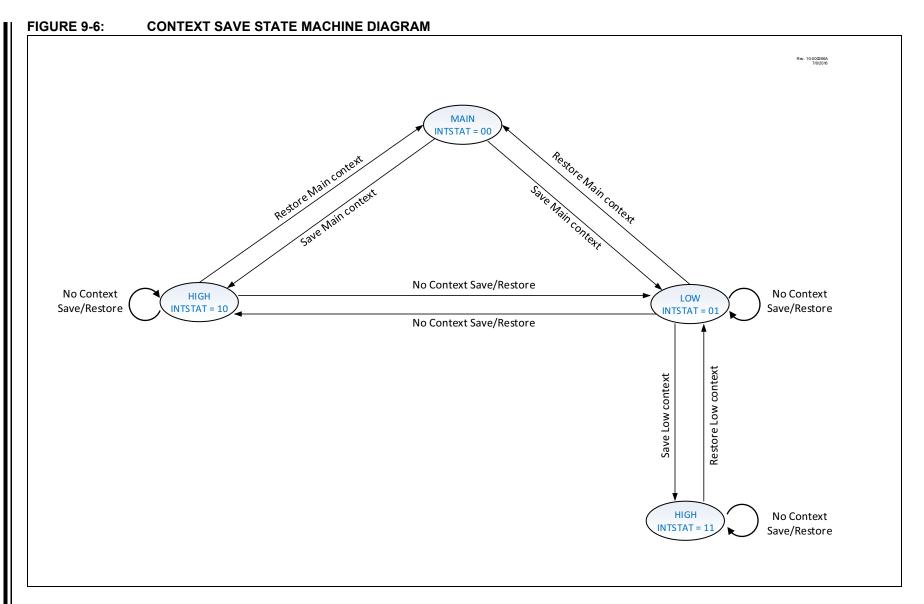
The devices in this family implement the following registers for the interrupt controller:

- INTCON0, INTCON1 Control Registers
- PIRx Peripheral Interrupt Status Registers
- PIEx Peripheral Interrupt Enable Registers
- IPRx Peripheral Interrupt Priority Registers
- IVTBASE<20:0> Address Registers
- IVTLOCK Register

Global interrupt control functions and external interrupts are controlled from the INTCON0 register. The INTCON1 register contains the status flags for the Interrupt controller.

The PIRx registers contain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or an external signal and is cleared via software.

The PIEx registers contain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.


The IPRx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to either a high or low priority.

The IVTBASE register is user programmable and is used to determine the start address of the Interrupt Vector Table and the IVTLOCK register is used to prevent any unintended writes to the IVTBASE register. There are two other configuration bits that control the way the interrupt controller can be configured.

- · CONFIG2L<3>, MVECEN bit
- CONFIG2L<4>, IVT1WAY bit

The MVECEN bit in CONFIG2L determines whether the Vector table is used to determine the interrupt priorities.

 When the IVT1WAY determines the number of times the IVTLOCKED bit can be cleared and set after a device Reset. See Section
 9.2.3 "Interrupt Vector Table (IVT) address calculation" for details.

	J-21. 11L7.								
U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0		
_	-	INT2IE	CLC2IE	CWG2IE	—	CCP2IE	TMR4IE		
bit 7							bit (
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is se	et	'0' = Bit is clea	ared						
bit 7-6	Unimplemen	nted: Read as '	0'						
bit 5	INT2IE: Exte	rnal Interrupt 2	Enable bit						
	1 = Enabled								
	0 = Disabled								
bit 4		C2 Interrupt Ena	able bit						
	1 = Enabled								
	0 = Disabled								
bit 3		VG2 Interrupt E	nable bit						
	1 = Enabled 0 = Disabled	I							
bit 2		ted: Read as '	∩'						
bit 1	-	P2 Interrupt En							
	1 = Enabled	rz menupi En							
	0 = Disabled	I							
bit 0		R4 Interrupt En	able bit						
	1 = Enabled								
	0 = Disabled								

REGISTER 9-21: PIE7: PERIPHERAL INTERRUPT ENABLE REGISTER 7

FIGURE 10-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1	01/02/03/04		Q3 Q4 Q1 Q2 Q3 Q4
	Tost ⁽³⁾	·/	
Interrupt flag	/ Interrupt Late	ncy ⁽⁴⁾	
GIE bit (INTCON reg.) Sleet		<u>.</u>	
Instruction Flow PC X PC X PC + 1 X	PC + 2 X PC + 2	PC+2 00	004h X 0005h
Instruction { Inst(PC) = Sleep Inst(PC + 1)	Inst(PC + 2)	Inst	(0004h) Inst(0005h)
Instruction { Inst(PC - 1) Sleep	Inst(PC + 1)	Forced NOP Force	ed NOP Inst(0004h)
Note 1: External clock. High, Medium, Low mode ass	umed.		

2: CLKOUT is shown here for timing reference.

3: TOST = 1024 TOSC. This delay does not apply to EC and INTOSC Oscillator modes.

4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

10.2.3 LOW-POWER SLEEP MODE

The PIC18F26/27/45/46/47/55/56/57K42 device family contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

The PIC18F26/27/45/46/47/55/56/57K42 devices allow the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register.

10.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

TRIGEN	BURSTMD	Scanner Operation
0	0	Memory access is requested when the CRC module is ready to accept data; the request is granted if no other higher priority source request is pending.
1	0	Memory access is requested when the CRC module is ready to accept data and trigger selection is true; the request is granted if no other higher priority source request is pending.
x	1	Memory access is always requested, the request is granted if no other higher priority source request is pending.

TABLE 14-1: SCANNER OPERATING MODES⁽¹⁾

Note 1: See Section 3.1 "System Arbitration" for Priority selection and Section 3.2 "Memory Access Scheme" for Memory Access Scheme.

REGISTER 14-12: SCANLADRU: SCAN LOW ADDRESS UPPER BYTE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			LADR<2	21:16> (1,2)		
bit 7	•	•					bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **LADR<21:16>:** Scan Start/Current Address bits^(1,2) Upper bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - 2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 14-13: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
LADR<15:8> ^(1, 2)								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1, 2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - **2:** While SGO = 1 (SCANCON0 register), writing to this register is ignored.

15.9.5 OVERRUN INTERRUPT

The Overrun Interrupt flag is set if the DMA receives a trigger to start a new message before the current message is completed.

	1 2 3	(4)	6 6) (8)	9 10	(i) (i)	13 14	15	19 f)	13	Ray. 10.000275E 8/11/2016
Instruction Clock											
EN											
SIRQEN											
Source Hardware Trigger -											
DGO-											
DMAxSPTR	(0x100)	0x101	X	0x100		0x101	X	0x10	0	
DMAxDPTR	(0x200)	0x201	_X	0x202		0x203	χ	0x20	0	
DMAxSCNT	2		1	_X	2		1	X	2		
DMAxDCNT	4		3	_X	2		1	χ	4		
DMA STATE	IDLE	SR ⁽¹⁾ D	W ⁽²⁾ SR ⁽¹⁾ DW	/ ⁽²⁾	IDLE	SR ⁽¹⁾ DW ⁽²⁾	SR ⁽¹⁾ DW ⁽²⁾		IDLE		
DMAxSCNTIF					1						
DMAxDCNTIF											
DMAxORIF _								1			
	DMAxCON1bits.SM	A = 01									
	DMAxSSA 0x10	00	DMAxDSA	0x200							
	DMAxSSZ 0x2	2	DMAxDSZ	0x20							
Note 1:	SR - Source Re	ead									
2:	DW - Destinatio	on Write									

FIGURE 15-9: OVERRUN INTERRUPT

REGISTER 15-9: DMAxSPTRU: DMAx SOURCE POINTER UPPER REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
—	—	SPTR<21:16>					
bit 7							bit 0

Legend: W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other 1 = bit is set 0 = bit is cleared x = bit is unknown u = bit is unchanged u = bit is unchanged

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SPTR<21:16>: Current Source Address Pointer

REGISTER 15-10: DMAxSSZL: DMAx SOURCE SIZE LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			SSZ	<7:0>			
bit 7							bit 0
Legend:							
	L 14		1	1.1. 1.1		(0)	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	s '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set		x = bit is unknown u = bit is unchanged

bit 7-0 SSZ<7:0>: Source Message Size bits

REGISTER 15-11: DMAxSSZH: DMAx SOURCE SIZE HIGH REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		SSZ<	11:8>	
bit 7							bit 0

Legend:								
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'					
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged					

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SSZ<11:8>: Source Message Size bits

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSELx7 | ANSELx6 | ANSELx5 | ANSELx4 | ANSELx3 | ANSELx2 | ANSELx1 | ANSELx0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

REGISTER 16-4: ANSELX: ANALOG SELECT REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0''1' = Bit is set'0' = Bit is clearedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0

- ANSELx<7:0>: Analog Select on Pins Rx<7:0>
- 1 = Digital Input buffers are disabled.
- 0 = ST and TTL input devices are enabled

TABLE 16-5: ANALOG SELECT PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELA	ANSELA7	ANSELA6	ANSELA5	ANSELA4	ANSELA3	ANSELA2	ANSELA1	ANSELA0
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0
ANSELD ⁽¹⁾	ANSELD7	ANSELD6	ANSELD5	ANSELD4	ANSELD3	ANSELD2	ANSELD1	ANSELD0
ANSELE ⁽¹⁾	_	_	_	—	_	ANSELE2	ANSELE1	ANSELE0
ANSELF ⁽²⁾	ANSELF7	ANSELF6	ANSELF5	ANSELF4	ANSELF3	ANSELF2	ANSELF1	ANSELF0

Note 1: Unimplemented in PIC18(L)F26/27K42.

2: Unimplemented in PIC18(L)F26/45/46/47K42.

REGISTER 21-5: TMRxL: TIMERx LOW BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			TMR	«L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMRxL<7:0>:Timerx Low Byte bits

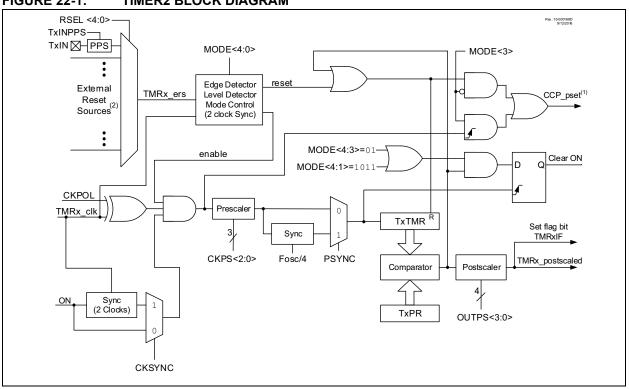
REGISTER 21-6: TMRxH: TIMERx HIGH BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	
TMRxH<7:0>								
bit 7 b								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TMRxH<7:0>:Timerx High Byte bits

22.0 TIMER2/4/6 MODULE

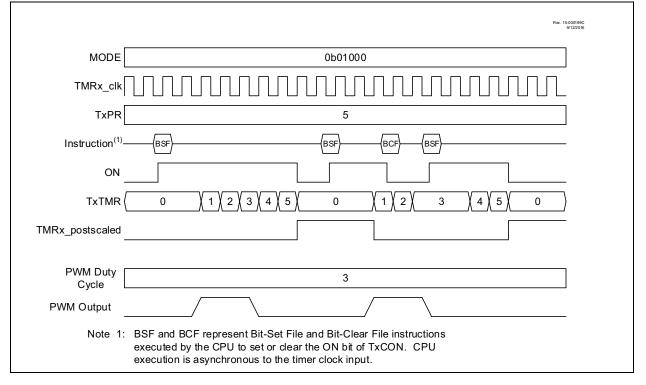

The Timer2/4/6 modules are 8-bit timers that can operate as free-running period counters or in conjunction with external signals that control start, run, freeze, and reset operation in One-Shot and Monostable modes of operation. Sophisticated waveform control such as pulse density modulation are possible by combining the operation of these timers with other internal peripherals such as the comparators and CCP modules. Features of the timer include:

- 8-bit timer register
- 8-bit period register
- Selectable external hardware timer resets
- Programmable prescaler (1:1 to 1:128)
- Programmable postscaler (1:1 to 1:16)
- Selectable synchronous/asynchronous operation
- Alternate clock sources
- Interrupt on period

- Three modes of operation:
 - Free Running Period
 - One-Shot
 - Monostable

See Figure 22-1 for a block diagram of Timer2. See Figure 22-2 for the clock source block diagram.

Note: Three identical Timer2 modules are implemented on this device. The timers are named Timer2, Timer4, and Timer6. All references to Timer2 apply as well to Timer4 and Timer6. All references to T2PR apply as well to T4PR and T6PR.


FIGURE 22-1: TIMER2 BLOCK DIAGRAM

22.5.5 SOFTWARE START ONE-SHOT MODE

In One-Shot mode, the timer resets and the ON bit is cleared when the timer value matches the T2PR period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 22-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

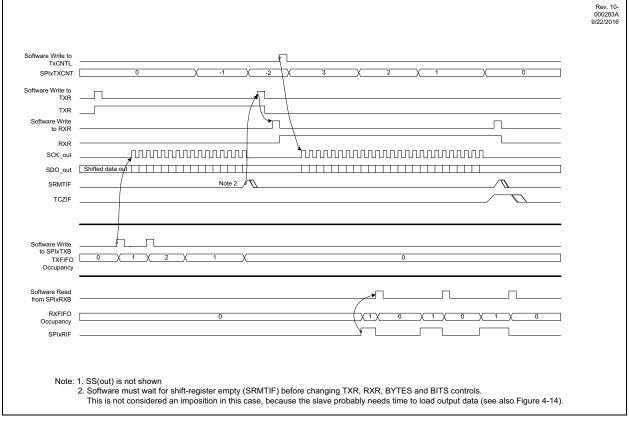
When One-Shot mode is used in conjunction with the CCP PWM operation, the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the T2PR match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a T2PR period count match.

FIGURE 22-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
ON		CKPS<2:0>			OUTP	S<3:0>			
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardv	vare			
h:+ 7	ON: Timerx	On hit(1)							
bit 7	1 = Timerx i								
		s Off: all counte	rs and state n	achines are re	set				
bit 6-4		: Timerx-type Cl							
	111 = 1:128								
	110 = 1:64 Prescaler								
	101 = 1:32	Prescaler							
	100 = 1:16								
	011 = 1:8 P	Prescaler							
	010 = 1:4 P								
	001 = 1:2 P								
	000 = 1:1 P								
bit 3-0		>: Timerx Output	It Postscaler S	Select bits					
	1111 = 1:16								
	1110 = 1 : 1 5								
	1101 = 1:14								
	1100 = 1:13 1011 = 1:12								
	1011 - 1.12 1010 = 1:11								
	1001 = 1:10								
	1000 = 1:9								
	0111 = 1:8								
	0110 = 1.7 Postscaler								
	0101 = 1:6	Postscaler							
	0100 = 1:5	Postscaler							
	0011 = 1:4	Postscaler							
	0010 = 1:3								
	0001 = 1:2								
	0000 = 1:1	Postscaler							

REGISTER 22-5: TxCON: TIMERx CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 22.1.2 "One-Shot Mode".


25.6.5 WINDOWED MEASURE MODE

This mode measures the window duration of the SMTWINx input of the SMT. It begins incrementing the timer on a rising edge of the SMTWINx input and updates the SMT1CPR register with the value of the timer and resets the timer on a second rising edge. See Figure 25-10 and Figure 25-11.

32.5.3 RECEIVE ONLY MODE

When RXR is set and TXR is clear, the SPI master is in Receive Only mode. In this mode, data transfers when the RXFIFO is not full and the Transfer Counter is nonzero. In this mode, writing a value to SPIxTCNTL will start the clocks for transfer. The clocks will suspend while the RXFIFO is full and cease when the SPIxTCNT reaches zero (see Section 32.4 "Transfer Counter"). If there is any data in the TXFIFO, the first data written to the TXFIFO will be transmitted on each data exchange, although the TXFIFO occupancy will not change, meaning that the same message will be sent on each transmission. If there is no data in the TXFIFO, the most recently received data will instead be transmitted. Figure 32-5 shows an example of sending a command using Section 32.5.2 "Transmit Only Mode" and then receiving a byte of data using this mode.

32.5.4 TRANSFER OFF MODE

When both TXR and RXR are cleared, the SPI master is in Transfer Off mode. In this mode, SCK will not toggle and no data is exchanged. However, writes to SPIxTXB will be transferred to the TXFIFO which will be transmitted if the TXR bit is set.

32.9 Register definitions: SPI

		F: SPI INTER									
R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	U-0				
SRMTIF	TCZIF	SOSIF	EOSIF		RXOIF	TXUIF					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable b	t		plemented bit, re						
				HS = Bit c	an be set by har	dware					
bit 7	SRMTIF: Shift	Register Empty	Interrupt Flag bi	it							
	Slave mode:										
	This bit is ignor	ed									
	Master mode:										
	1 = The data transfer is complete										
	0 = Either no da	ata transfers hav	ve occurred or a	a data transi	fer is in progress	;					
bit 6	TCZIF: Transfer Counter is Zero Interrupt Flag bit										
	1 = The transfer counter (as defined by BMODE in Register 32-7, TCNTH/L, and TWIDTH) has decremented to zero										
	0= No interrupt pending										
bit 5	SOSIF: Start of Slave Select Interrupt Flag bit										
	1 = SS(in) transitioned from false to true										
	0 = No interrupt pending										
bit 4	EOSIF: End of Slave Select Interrupt Flag bit										
	1 = SS(in) transitioned from true to false										
	0 = No interrupt pending										
bit 3	Unimplemente	ed: Read as '0'									
bit 2	RXOIF: Receiv	er Overflow Inte	rrupt Flag bit								
	1 = Data transf	er completed wh	en RXBF = 1 (e	edge trigger	red) and RXR =	1					
	0 = No interrup	t pending									
bit 1	TXUIF: Transm	itter Underflow I	nterrupt Flag bi	t							
	1 = Slave Data	transfer started	when TXBE = 2	and TXR :	= 1						
	0 = No interrup	t pending									
bit 0	Unimplemente	ed: Read as '0'									

REGISTER 32-1: SPIXINTF: SPI INTERRUPT FLAG REGISTER

33.5.11 MASTER TRANSMISSION IN 10-BIT ADDRESSING MODE

This section describes the sequence of events for the I^2C module configured as an I^2C master in 10-bit Addressing mode and is transmitting data. Figure 33-21 is used as a visual reference for this description

1. If ABD = 0; i.e., Address buffers are enabled

Master software loads number of bytes to be transmitted in one sequence in I2CxCNT, high address byte of slave address in I2CxADB1 with R/W = 0, low address byte in I2CxADB0 and the first byte of data in I2CxTXB. Master software has to set the Start (S) bit to initiate communication.

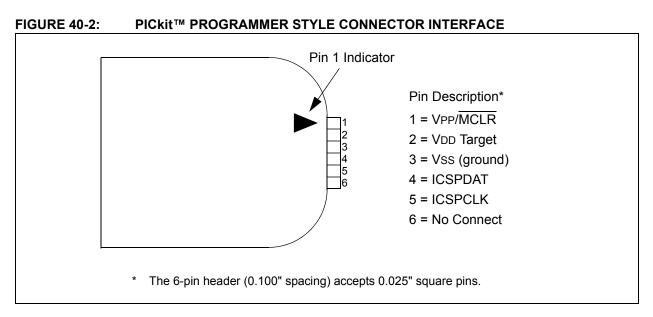
If ABD = 1; i.e., Address buffers are disabled

Master software loads the number of bytes to be transmitted in one sequence in I2CxCNT and the high address byte of the slave address with R/W = 0 into the I2CxTXB register. Writing to the I2CxTXB will assert the start condition on the bus and sets the S bit. Software writes to the S bit are ignored in this case.

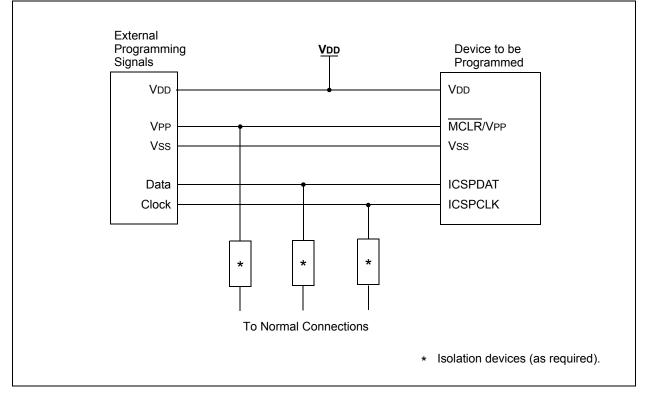
- 2. Master hardware waits for BFRE bit to be set; then shifts out the start and high address and waits for acknowledge.
- 3. If NACK, master hardware sends Stop.
- 4. If ABD = 0; i.e., Address buffer are enabled

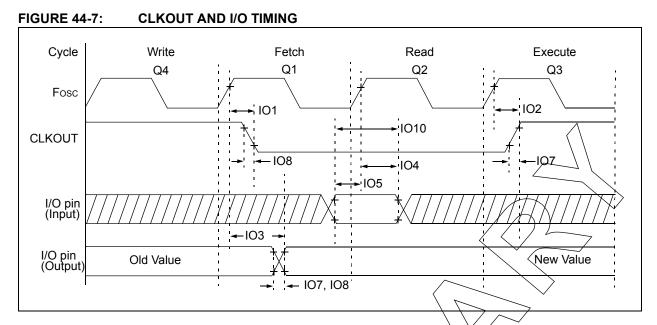
If ACK, master hardware sends the low address byte from I2CxADB0.

If ABD = 1; i.e., Address buffer are disabled

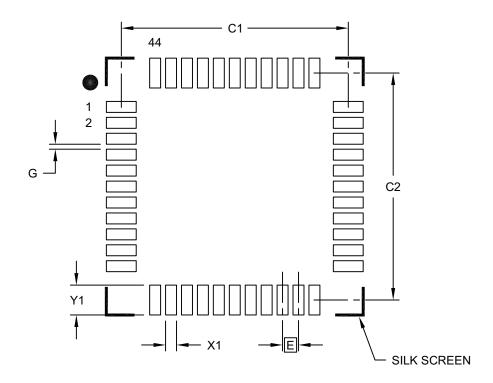

If ACK, master hardware sets TXIF and MDR bits and the software has to write the low address byte into I2CxTXB. Writing to I2CxTXB sends the low address on the bus.

- If TXBE = 1 and I2CxCNT! = 0, I2CxTXIF and MDR bits are set. Clock is stretched on 8th falling SCL edge until master software writes next data byte to I2CxTXB.
- Master hardware sends ninth SCL pulse for ACK from slave and loads the shift register from I2CxTXB. I2CxCNT is decremented.
- 7. If slave sends a NACK, master hardware sends Stop and ends transmission.
- If slave sends an ACK, master hardware outputs data in the shift register on SDA. I2CxCNT value is checked on the 8th falling SCL edge. If I2CxCNT = 0; master hardware sends 9th SCL pulse for ACK and CNTIF is set.
- 9. If I2CxCNT! = 0; go to step 5.


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
I2CxBTO	—	_	_	_			BTO<2:0>		582
I2CxCLK		_	—	_	_		CLK<2:0>		581
I2CxPIE	CNTIE	ACKTIE	_	WRIE	ADRIE	PCIE	RSCIE	SCIE	588
I2CxPIR	CNTIF	ACKTIF	—	WRIF	ADRIF	PCIF	RSCIF	SCIF	587
I2CxERR	_	BTOIF	BCLIF	NACKIF	—	BTOIE	BCLIE	NACKIE	585
I2CxSTAT0	BFRE	SMA	MMA	R	D		—	—	583
I2CxSTAT1	TXWE	—	TXBE		RXRE	CLRBF	—	RXBF	584
I2CxCON0	EN	RSEN	S	CSTR	MDR		MODE<2:0>	•	577
I2CxCON1	ACKCNT	ACKDT	ACKSTAT	ACKT		RXOV	TXU	CSD	579
I2CxCON2	ACNT	ACNT GCEN FME ADB SDAHT<3:2> BFRET<1:0>							580
I2CxADR0		ADR<7:0>							
I2CxADR1		ADR<7:1> —							
I2CxADR2				A	DR<7:0>				591
I2CxADR3				A	DR<7:1>			—	592
I2CxADB0				A	DB<7:0>				593
I2CxADB1				A	DB<7:0>				594
I2CxCNT				CI	NT<7:0>				586
I2CxPIR	CNTIF	ACKTIF		WRIF	ADRIF	PCIF	RSCIF	SCIF	587
I2CxPIE	CNTIE	ACKTIE		WRIE	ADRIE	PCIE	RSCIE	SCIE	588
I2CxADR0	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	589
I2CxADR1	ADR14	ADR13	ADR12	ADR11	ADR10	ADR9	ADR8		590
I2CxADR2	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	591
I2CxADR3	ADR14	ADR13	ADR12	ADR11	ADR10	ADR9	ADR8	—	592
I2CxADB0	ADB7	ADB6	ADB5	ADB4	ADB3	ADB2	ADB1	ADB0	593
I2CxADB1	ADB7	ADB6	ADB5	ADB4	ADB3	ADB2	ADB1	ADB0	594


TABLE 33-18: SUMMARY OF REGISTERS FOR I²C 8-BIT MACRO

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the I^2C module.



Standa	rd Operating	g Conditions (unless otherwise stated	I)	\ \	$\langle \rangle$		
Param No.	Sym.	Characteristic	Min.	Typt	, Max.	Units	Conditions
IO1*	T _{CLKOUTH}	CLKOUT rising edge delay (rising edge Fosc (Q1 cycle) to falling edge CLKOUT			70	ns	
IO2*	T _{CLKOUTL}	CLKOUT falling edge delay (rising edge Fosc (Q3 cycle) to rising edge CLKQUT			72	ns	
IO3*	T _{IO_VALID}	Port output valid time (rising edge Fosc (Q1 cycle) to port valid)		50	70	ns	
IO4*	T _{IO_SETUP}	Port input setup time (Setup time before rising edge Fosc – Q2 cxcle)	20			ns	
IO5*	T _{IO_HOLD}	Port input hold time (Hold time after rising edge Fosc – Q2 cycle)	50		_	ns	
IO6*	T _{IOR_SLREN}	Port I/O rise time, slew rate enabled	—	25	_	ns	VDD = 3.0V
107*	TIOR_SLRDIS	Port I/O rise time, slew rate disabled	—	5	_	ns	VDD = 3.0V
IO8*	T _{IOF_SLREN}	Port I/O fall time, slew rate enabled	—	25	_	ns	VDD = 3.0V
IO9*	T _{IOF_SLRDIS}	Port I/O fall time, slew rate disabled	_	5		ns	VDD = 3.0V
IO10*	T _{INT}	INT pin high or low time to trigger an interrupt	25	_	_	ns	
IO11*	TIOC	Interrupt-on-Change minimum high or low time to trigger interrupt	25	_	_	ns	

*These parameters are characterized but not tested.

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B