

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf47k42-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER S	-4: CONFI	GURATION	VORD 2H (3	su uuusn)				
R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
XINST	_	DEBUG	STVREN	PPS1WAY	ZCD	BORV	<1:0>(1)	
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '1'		
-n = Value for	blank device	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 7	XINST: Extend 1 = Extended 0 = Extended	ed Instruction instruction set instruction set	Set Enable bi and Indexed / and Indexed /	t Addressing moo Addressing moo	de are disable de are enable	d (Legacy mode d	e)	
bit 6	Unimplemente	ed: Read as '1	,					
bit 5	 DEBUG: Debugger Enable bit 1 = Background debugger is disabled 0 = Background debugger is enabled 							
bit 4	STVREN: Stac 1 = Stack Ove 0 = Stack Ove	k Overflow/Un rflow or Under rflow or Under	derflow Reset flow will cause flow will not ca	t Enable bit e a Reset ause a Reset				
bit 3	PPS1WAY: PP 1 = PPSLOCK cycle 0 = PPSLOCK	SLOCKED On ED bit can be o ED bit can be	e-Way Set Er cleared and se set and cleare	nable bit et only once; PP ed multiple time	S registers rer s (subject to t	main locked afte he unlock seque	r one clear/se ence)	
bit 2	ZCD : Zero-Cro 1 = ZCD is dis 0 = ZCD is alw	oss Detect Ena abled; ZCD ca vays enabled	ble bit n be enabled	by setting the t	oit SEN of the	ZCDCON regis	ter	
bit 1-0	BORV<1:0>: E <u>PIC18FXXK42</u> 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou <u>PIC18LFXXK4</u> 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou	Brown-out Rese <u>Devices:</u> It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag <u>2 Device:</u> It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag	et Voltage Sel e (VBOR) is se e (VBOR) is se	ection bits ⁽¹⁾ et to 2.45V et to 2.45V et to 2.7V et to 2.85V et to 1.90V et to 1.90V et to 2.45V et to 2.7V et to 2.85V				

Note 1: The higher voltage setting is recommended for operation at or above 16 MHz.

- - - - - - -

BODEN-1:05	SPOPEN	Dovico Modo	BOB Mode	Instruction Execution upon:		
BORENST.02	SBOREN	Device Mode	BOK WOUL	Release of POR	Wake-up from Sleep	
11	Х	х	Active	Wait for release of BOR (BORRDY = 1)	Begins immediately	
1.0	V	Awake	Active	Wait for release of BOR (BORRDY = 1)	N/A	
10	X	Sleep	Hibernate	N/A	Wait for release of BOR (BORRDY = 1)	
0.1	1	Х	Active	Wait for release of BOR	Pogina immodiately	
01	0	Х	Hibernate	(BORRDY = 1)	Begins inimediately	
00	Х	Х	Disabled	Begins immediately		

TABLE 6-1: BOR OPERATING MODES

FIGURE 6-3: BROWN-OUT SITUATIONS

R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR		PLLR
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Reset val	ue is determine	ed by hardware	;
bit 7	EXTOR: EXT	OSC (external) Oscillator Rea	ady bit			
	1 = The oscillation	cillator is ready	to be used	t vot roodv to b			
hit C			ableu, or is no	l yel ready to b	e useu		
DILO	1 = The ose	cillator is readv	to be used				
	0 = The osc	illator is not en	abled, or is not	t yet ready to b	e used		
bit 5	MFOR: MFIN	ITOSC Oscillat	or Ready				
	1 = The osc	illator is ready	to be used				
	0 = The osc	allator is not en	abled, or is not	t yet ready to b	e used		
bit 4	LFOR: LFINI	OSC Oscillato	r Ready bit				
	0 = The osc	illator is not en	abled, or is not	vet ready to b	e used		
bit 3	SOR: Second	dary (Timer1) C	Dscillator Read	y bit			
	1 = The os	cillator is ready	to be used				
	0 = The osc	cillator is not er	nabled, or is no	t yet ready to b	be used		
bit 2	ADOR: ADC	Oscillator Rea	dy bit				
	1 = The osc 0 = The osc	cillator is ready	abled or is no	t vet ready to h	ne used		
hit 1		ited: Read as '	0'	t yet ready to t			
bit 0		Ready hit	0				
	1 = The PL	L is ready to be	e used				
	0 = The PLL	is not enable	d, the required	input source is	s not ready, or t	he PLL is not lo	ocked.

REGISTER 7-4: OSCSTAT: OSCILLATOR STATUS REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	—
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	EXTOEN: Ext	ternal Oscillato	r Manual Requ	uest Enable bit			
	1 = EXTOS(C is explicitly e	nabled, operat	ing as specified	d by FEXTOSC	;	
hit C			tor Monuel Do				
DILO					ied by OSCEP	O (Register 7)	5)
	0 = HFINTO	SC could be e	nabled by requ	lesting periphe	ral		5)
bit 5	MFOEN: MF	INTOSC (500	kHz/31.25 kHz	z) Oscillator M	Ianual Reques	t Enable bit (Derived from
	HFINTOSC)						
	1 = MFINTC	OSC is explicitly	enabled				
1.11.4			nabled by requ	lesting periphe			
Dit 4	1 - LEINTO	NUSC (31 KHz	2) Uscillator Ma	anual Request	Enable bit		
	1 = LFINTO	SC is explicitly SC could be ei	nabled by requ	estina periphe	ral		
bit 3	SOSCEN: Se	condary Oscill	ator Manual R	equest Enable	bit		
	1 = Seconda	ary Oscillator is	explicitly enal	bled, operating	as specified by	y SOSCPWR	
	0 = Seconda	ary Oscillator c	ould be enable	ed by requestin	g peripheral		
bit 2	ADOEN: ADO	C Oscillator Ma	nual Request	Enable bit			
	1 = ADC oscillation	cillator is explic	itly enabled				
	0 = ADC osci	cillator could be	e enabled by re	equesting perip	neral		
bit 1-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-7: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

U-0	R/W ⁽³⁾ -q/q ⁽¹⁾ R/W ⁽³⁾ -q/q ⁽¹⁾ R/W ⁽³⁾ -q/q ⁽¹⁾	U-0	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ _q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾
—	CS<2:0>	_		WINDOW<2:0>	
bit 7					bit 0
Legend:					

REGISTER 11-2: WDTCON1: WATCHDOG TIMER CONTROL REGISTER 1

Ecgena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7 Unimplemented: Read as '0'

bit 6-4 **CS<2:0>:** Watchdog Timer Clock Select bits

- 111 = Reserved •
 - •
 - •
 - 011 = Reserved
 - 010 = SOSC
 - 001 = MFINTOSC 31.25 kHz
- 000 = LFINTOSC 31 kHz
- bit 3 Unimplemented: Read as '0'

bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

WINDOW<2:0>	Window delay Percent of time	Window opening Percent of time
111	N/A	100
110	12.5	87.5
101	25	75
100	37.5	62.5
011	50	50
010	62.5	37.5
001	75	25
000	87.5	12.5

Note 1: If WDTCCS <2:0> in CONFIG3H = 111, the Reset value of CS<2:0> is 000.

2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3H register.

3: If WDTCCS<2:0> in CONFIG3H \neq 111, these bits are read-only.

4: If WDTCWS<2:0> in CONFIG3H \neq 111, these bits are read-only.

14.0 CYCLIC REDUNDANCY CHECK (CRC) MODULE WITH MEMORY SCANNER

The Cyclic Redundancy Check (CRC) module provides a software-configurable hardware-implemented CRC checksum generator. This module includes the following features:

- Any standard CRC up to 16 bits can be used
- Configurable Polynomial
- · Any seed value up to 16 bits can be used
- · Standard and reversed bit order available
- Augmented zeros can be added automatically or by the user
- Memory scanner for fast CRC calculations on program/Data EEPROM memory user data
- Software loadable data registers for communication CRC's

14.1 CRC Module Overview

The CRC module provides a means for calculating a check value of program/Data EEPROM memory. The CRC module is coupled with a memory scanner for faster CRC calculations. The memory scanner can automatically provide data to the CRC module. The CRC module can also be operated by directly writing data to SFRs, without using a scanner.

16.4 Register Definitions: Port Control

REGISTER 16-1: PORTx: PORTx REGISTER⁽¹⁾

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0		
bit 7				•		•	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
-n/n = Value at POR and BOR/Value at all other Resets									

bit 7-0 **Rx<7:0>:** Rx7:Rx0 Port I/O Value bits 1 = Port pin is ≥ VIH

 $0 = Port pin is \le VIL$

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from PORTx register return actual I/O pin values.

TABLE 16-2: PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
PORTB	RB7 ⁽¹⁾	RB6 ⁽¹⁾	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTD ⁽³⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
PORTE	-	—	—	—	RE3 ⁽²⁾	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾
PORTF ⁽⁴⁾	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0

Note 1: Bits RB6 and RB7 read '1' while in Debug mode.

2: Bit PORTE3 is read-only, and will read '1' when MCLRE = 1 (Master Clear enabled).

3: Unimplemented in PIC18(L)F26/27K42.

4: Unimplemented in PIC18(L)F26/27/45/46/47K42.

x = Bit is unknown

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WPUx7	WPUx6	WPUx5	WPUx4	WPUx3	WPUx2	WPUx1	WPUx0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	

REGISTER 16-5: WPUx: WEAK PULL-UP REGISTER

bit 7-0

'1' = Bit is set

WPUx<7:0>: Weak Pull-up PORTx Control bits

'0' = Bit is cleared

1 = Weak Pull-up enabled

-n/n = Value at POR and BOR/Value at all other Resets

0 = Weak Pull-up disabled

TABLE 16-6: WEAK PULL-UP PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
WPUD ⁽²⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0
WPUE	—	_	—	_	WPUE3 ⁽¹⁾	WPUE2 ⁽²⁾	WPUE1 ⁽²⁾	WPUE0 ⁽²⁾
WPUF ⁽³⁾	WPUF7	WPUF6	WPUF5	WPUF4	WPUF3	WPUF2	WPUF1	WPUF0

Note 1: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
IOCEP	—	—	-	—	IOCEP3 ⁽¹⁾	_	_	—
IOCEN					IOCEN3 ⁽¹⁾			
IOCEF	_	_	_	_	IOCEF3 ⁽¹⁾	_	_	_

TABLE 18-1: IOC REGISTERS

Note 1: If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and IOC on RE3 is not available.

TABLE 18-2: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
IOCxF	IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	287
IOCxN	IOCxN7	IOCxN6	IOCxN5	IOCxN4	IOCxN3	IOCxN2	IOCxN1	IOCxN0	287
IOCxP	IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	287

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

FIGURE 21-4: TIMER1/3/5 GATE ENABLE MODE

22.5.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE

In Edge-Triggered Hardware Limit One-Shot modes, the timer starts on the first external signal edge after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is set is needed to start the timer. The counter will resume counting automatically two clocks after all subsequent external Reset edges. Edge triggers are as follows:

- Rising edge Start and Reset (MODE<4:0> = 01100)
- Falling edge Start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON bit when the timer value matches the T2PR period value. External signal edges will have no effect until after software sets the ON bit. Figure 22-10 illustrates the rising edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP then the first starting edge trigger, and all subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer matches the CCPRx pulse width value and stay deactivated until the timer halts at the T2PR period match unless an external signal edge resets the timer before the match occurs.

FIGURE 22-10: EDGE TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 01100))

Rev. 10-000201C 9/12/2016 MODE 0b01100 TMRx clk TxPR 5 Instruction⁽¹⁾ BSF ON TMRx_ers 5 0 2 3 0 2 TxTMR 4) 1 0 2 3 4 5 Λ TMRx postscaled PWM Duty 3 Cycle **PWM Output** 1: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to Note set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

FIGURE 25-9: HIGH AND LOW MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC18(L)F26/27/45/46/47/55/56/57K42

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
_	—	CHPOL	CHSYNC			CLPOL	CLSYNC
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as	0'				
bit 5	CHPOL: Mod	dulator High Ca	arrier Polarity S	elect bit			
	1 = Selected	d high carrier si	gnal is inverted	l			
	0 = Selected	d high carrier si	gnal is not inve	rted			
bit 4	CHSYNC: M	odulator High (Carrier Synchro	nization Enab	le bit		
	1 = Modulate low time	or waits for a fa e carrier	alling edge on t	the high time	carrier signal be	efore allowing a	a switch to the
	0 = Modulate	or output is not	synchronized t	to the high tim	e carrier signal ⁽	1)	
bit 3-2	Unimplemer	nted: Read as	0'				
bit 1	CLPOL: Mod	dulator Low Ca	rrier Polarity Se	elect bit			
	1 = Selected 0 = Selected	d low carrier sig d low carrier sig	nal is inverted nal is not inver	ted			
bit 0	CLSYNC: M 1 = Modulat time ca	odulator Low C or waits for a fa rrier	arrier Synchror lling edge on th	nization Enable e low time carr	e bit rier signal befor	e allowing a sw	itch to the high
	0 = Modulate	or output is not	synchronized f	to the low time	carrier signal ⁽¹)	

REGISTER 30-2: MD1CON1: MODULATION CONTROL REGISTER 1

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

U-0	R/W/HS-0	R/W/HS-0	R/W/HS-0	U-0	R/W-0	R/W-0	R/W-0				
_	BTOIF ^(1,2)	BCLIF ⁽¹⁾	NACKIF ⁽¹⁾	_	BTOIE	BCLIE	NACKIE				
bit 7							bit 0				
Legend:	Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'					
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets				
'1' = Bit is s	set	'0' = Bit is clea	ared	HS = Hardwa	re set HC =	Hardware clear	r				
bit 7	Unimplement	ted: Read as '	0'								
bit 6	BTOIF: Bus T 1 = Bus Time 0 = No bus tir	ime-Out Interro out occurred meout	upt Flag bit ^{(1,2})							
bit 5	 5 BCLIF: Bus Collision Detect Interrupt Flag bit⁽¹⁾ 1 = Bus collision detected (On the rising edge of SCL input, SDA output is high and input is sampled low) Slave and Master Mode the module immediately goes idle Multi-Master Mode attempts to match slave addresses, and/or goes idle 0 = No bus collision detected 										
bit 4	NACKIF: NAC 1 = When (SM NACKIF 0 = No NACK NACKIF	CK Detect Inter MA = 1 MMA is also set wh C/Error detected is not set by t	rupt Flag bit ⁽¹ = 1) and a N/ en any of the d he NACK send) ACK is detecte TXWRE, RXRI d for non-matcl	d on the bus DE, TXUF, RXO hing slave addre	VR bits are set	t.				
bit 3	Unimplement	ted: Read as '	0'								
bit 2	BTOIE: Bus T 1 = Enable in 0 = Bus Tim-o	ïme-Out Intern terrupt on bus out not enabled	upt Enable bit time out d								
bit 1	BCLIE: Bus C 1 = Enable in 0 = Bus collis	collision Detect terrupt on bus ion interrupts a	Interrupt Ena collision are disabled	ble bit							
bit 0	 NACKIE: NACK Detect Interrupt Enable bit 1 = Enable interrupt on NACKIF 0 = NACKIF interrupt is disabled 										
Note 1: 2:	Enabled error interr User software mus	rupt flags are C t select the Bu	OR'd to produc s Time-out So	ce the PIRx <i20 urce in the I2C</i20 	CEIF> bit. BTO register.						

REGISTER 33-8: I2CxERR: I²C ERROR REGISTER

38.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 38-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 38-2) contains Control bits for the following:

• Interrupt on positive/negative edge enables

The CMxPCH and CMxNCH registers are used to select the positive and negative input channels, respectively.

38.2.1 COMPARATOR ENABLE

Setting the EN bit of the CMxCON0 register enables the comparator for operation. Clearing the EN bit disables the comparator resulting in minimum current consumption.

38.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the CxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 17-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

38.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the POL bit of the CMxCON0 register. Clearing the POL bit results in a noninverted output.

 Table 38-1
 shows
 the output
 state
 versus
 input

 conditions, including polarity control.

 <t

TABLE 38-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	POL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

39.10 Register Definitions: HLVD Control

Long bit name prefixes for the HLVD peripheral is shown in Table 39-1. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

TABLE 39-1:

Peripheral	Bit Name Prefix
HLVD	HLVD

REGISTER 39-1: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0

R/W-0/0	U-0	R-x	R-x	U-0	U-0	R/W-0/0	R/W-0/0
EN	—	OUT	RDY	—	—	INTH	INTL
bit 7	•						bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	 EN: High/Low-voltage Detect Power Enable bit 1 = Enables HLVD, powers up HLVD circuit and supporting reference circuitry 0 = Disables HLVD, powers down HLVD and supporting circuitry
bit 6	Unimplemented: Read as '0'
bit 5	OUT: HLVD Comparator Output bit
	 1 = Voltage ≤ selected detection limit (HLVDL<3:0>) 0 = Voltage ≥ selected detection limit (HLVDL<3:0>)
bit 4	RDY: Band Gap Reference Voltages Stable Status Flag bit
	 1 = Indicates HLVD Module is ready and output is stable 0 = Indicates HLVD Module is not ready
bit 3-2	Unimplemented: Read as '0'
bit 1	INTH: HLVD Positive going (High Voltage) Interrupt Enable
	 1 = HLVDIF will be set when voltage ≥ selected detection limit (SEL<3:0>) 0 = HLVDIF will not be set
bit 0	INTL: HLVD Negative going (Low Voltage) Interrupt Enable
	 1 = HLVDIF will be set when voltage ≤ selected detection limit (SEL<3:0>) 0 = HLVDIF will not be set

44.2 Standard Operating Conditions

The standard operating conditions for any device are defined as: **Operating Voltage:** $VDDMIN \leq VDD \leq VDDMAX$ Operating Temperature: TA MIN \leq TA \leq TA MAX VDD — Operating Supply Voltage⁽¹⁾ PIC18(L)F26/27/45/46/47/55/56/57K42 +2.5V VDDMIN (Fosc \leq 64 MHz) 2.7V VDDMAX +§.6V PIC18F26/45/46/55/56K42 VDDMIN (Fosc ≤ 16 MHz) +2.3₩ VDDMIN (Fosc \leq 32 MHz))...... +2.5V */*....,*¥*3.0V VDDMIN (Fosc \leq 64 MHz) VDDMAX+5.5V TA — Operating Ambient Temperature Range Industrial Temperature ΤΑ ΜΙΝ..... -40°C Та мах.....+85°C **Extended Temperature** -40°C ΤΑ ΜΙΝ..... Та_мах..... ,..... +125°C Note 1: See Parameter Supply Voltage, DS Characteristics: Supply Voltage.

44.3 **DC Characteristics**

TABLE 44-1: SUPPLY VOLTAGE

PIC18(L)F26/27/45/46/47/55/56/57K42				Standard Operating Conditions (unless otherwise stated)				
PIC18F26/45/46/55/56K42								
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
Supply '	Voltage							
D002	Vdd		1.8 2.5 2.7		3.6 3.6 3.6	V V V	$ Fosc \le 16 \text{ MHz} \\ Fosc > 32 \text{ MHz} \\ Fosc > 64 \text{ MHz} $	
D002	Vdd		2.3 2.5 2.7		5.5 5.5 5.5	V V V	$ Fosc \le 16 \text{ MHz} \\ Fosc > 32 \text{ MHz} \\ Fosc > 64 \text{ MHz} \\ $	
RAM Da	ta Retent	tion ⁽¹⁾				-		
D003	Vdr		1.5	_	_	V	Device in Sleep mode	
D003	Vdr		1.7	_	—	V	Device in Sleep mode	
Power-c	on Reset	Release Voltage ⁽²⁾					\sim	
D004	VPOR		_	1.6	—	V	BOR or LPBOR disabled ⁽³⁾	
D004	VPOR		_	1.6	—	V	BOR of LPBOR disabled ⁽³⁾	
Power-c	on Reset	Rearm Voltage ⁽²⁾				\frown	\setminus	
D005	VPORR		_	0.8	—	∕v∕	BOR or PBOR disabled ⁽³⁾	
D005	VPORR		_	1.5	<u> </u>	-N	BOR or LPBOR disabled ⁽³⁾	
VDD Rise Rate to ensure internal Power-on F				ınal ⁽²⁾	7			
D006	SVDD		0.05	$-\langle$	/- /	V/ms	BOR or LPBOR disabled ⁽³⁾	
D006	SVDD		0.05	$\overline{}$	/-/	Vims	BOR or LPBOR disabled ⁽³⁾	

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
2: See Figure 44-3, POR and POR REARM with Slow Rising VDD.

- 3: See Table 44-13 for BOR and LPBOR trip point information.

TABLE 44-7: I	MEMORY PROGRAMMING SPECIFICATIONS
---------------	-----------------------------------

Standard Operating Conditions (unless otherwise stated)										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
Data EEPROM Memory Specifications										
MEM20	ED	DataEE Byte Endurance	100k	_	_	E/W	-40°C ≤ TA ≤ +85°C			
MEM21	T _{D_RET}	Characteristic Retention		40		Year	Provided no other specifications are violated			
MEM22	N _{D_REF}	Total Erase/Write Cycles before Refresh	1M 500k	10M —		E/W	-40°C ≤ TA ≤ +60°C -40°C ≤)TA ≤ +85°C			
MEM23	$V_{D_{RW}}$	VDD for Read or Erase/Write operation	VDDMIN	Ι	VDDMAX	٧<				
MEM24	$T_{D_{BEW}}$	Byte Erase and Write Cycle Time		4.0	5.0 <	ms				
Program	Flash Me	emory Specifications			\langle					
MEM30	E _P	Memory Cell Endurance	10k	Ι	- /	EN	-40°C			
MEM32	T _{P_RET}	Characteristic Retention	_	40 <	1	Year	Provided no other specifications are violated			
MEM33	$V_{P_{RD}}$	VDD for Read operation	VDDMIN		VDBMAX	\checkmark				
MEM34	V _{P_REW}	VDD for Row Erase or Write operation		Á		/ v				
MEM35	T _{P_REW}	Self-Timed Row Erase or Self-Timed Write		80	2.5	ms				

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Memory Cell Endurance for the Program memory is defined as: One Row Erase operation and one Self-Timed Write.