

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf47k42-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.0 INTERRUPT CONTROLLER

The Vectored Interrupt Controller module reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. This module includes the following major features:

- Interrupt Vector Table (IVT) with a unique vector for each interrupt source
- · Fixed and ensured interrupt latency
- Programmable base address for Interrupt Vector Table (IVT) with lock
- Two user-selectable priority levels High priority and Low priority
- Two levels of context saving
- Interrupt state status bits to indicate the current execution status of the CPU

The Interrupt Controller module assembles all of the interrupt request signals and resolves the interrupts based on both a fixed natural order priority (i.e., determined by the Interrupt Vector Table), and a user-assigned priority (i.e., determined by the IPRx registers), thereby eliminating scanning of interrupt sources.

9.1 Interrupt Control and Status Registers

The devices in this family implement the following registers for the interrupt controller:

- INTCON0, INTCON1 Control Registers
- PIRx Peripheral Interrupt Status Registers
- PIEx Peripheral Interrupt Enable Registers
- IPRx Peripheral Interrupt Priority Registers
- IVTBASE<20:0> Address Registers
- IVTLOCK Register

Global interrupt control functions and external interrupts are controlled from the INTCON0 register. The INTCON1 register contains the status flags for the Interrupt controller.

The PIRx registers contain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or an external signal and is cleared via software.

The PIEx registers contain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPRx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to either a high or low priority.

The IVTBASE register is user programmable and is used to determine the start address of the Interrupt Vector Table and the IVTLOCK register is used to prevent any unintended writes to the IVTBASE register. There are two other configuration bits that control the way the interrupt controller can be configured.

- · CONFIG2L<3>, MVECEN bit
- CONFIG2L<4>, IVT1WAY bit

The MVECEN bit in CONFIG2L determines whether the Vector table is used to determine the interrupt priorities.

 When the IVT1WAY determines the number of times the IVTLOCKED bit can be cleared and set after a device Reset. See Section
 9.2.3 "Interrupt Vector Table (IVT) address calculation" for details.

REGISTER 11-3: WDTPSL: WWDT PRESCALE SELECT LOW BYTE REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCN	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unknow	n	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cleared	b				

bit 7-0 **PSCNT<7:0>:** Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during normal operation.

REGISTER 11-4: WDTPSH: WWDT PRESCALE SELECT HIGH BYTE REGISTER (READ-ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCNT	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>:** Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during normal operation.

REGISTER 14-9: CRCXORH: CRC XOR HIGH BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			X<1	5:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 X<15:8>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 14-10: CRCXORL: CRC XOR LOW BYTE REGISTER

'0' = Bit is cleared

R/W-x/x	U-1						
			X<7:1>				—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 X<7:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '1'

'1' = Bit is set

bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other R '1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 EN: Scanner Enable bit ⁽¹⁾ 1 = Scanner is enabled 0 = Scanner trigger is disabled bit 6 TRIGEN: Scanner Trigger Isable bit ⁽²⁾ 1 = Scanner trigger is disabled Bit 5 SGG: Scanner GO bit ^(3, 4) 1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is to the CRC peripheral. 0 = Scanner operations will not occur bit 4-3 Unimplemented: Read as '0' bit 2 MREG: Scanner Burst Mode bit 1 BURSTMD: Scanner Burst Mode bit 1 BURSTMD: Scanner Burst Mode bit 1 BURSTMD: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is oneyte (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. 2: Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is	R/W-0/0) R/W-0/0	R/W/HC-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other R '1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 EN: Scanner Enable bit ⁽¹⁾ 1 = Scanner is enabled 0 = Scanner is enabled 0 = Scanner trigger Enable bit ⁽²⁾ 1 = Scanner trigger is disabled Refer Table 14-1. bit 5 SGO: Scanner GO bit ^(3, 4) 1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is to the CRC peripheral. 0 = Scanner operations will not occur bit 4-3 Unimplemented: Read as '0' bit 2 MREG: Scanner Memory Region Select bit ⁽²⁾ 1 = Scanner address points to Drata EEPROM 0 = Scanner address points to Program Flash Memory bit 1 BURSTMD: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is in process 0 = Scanner cycle is in process 0 = Scanner cycle is in process	EN	TRIGEN	SGO		_	MREG	BURSTMD	BUSY
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other R '1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 EN: Scanner Enable bit ⁽¹⁾ 1 1 = Scanner is enabled 0 = Scanner trigger Enable bit ⁽²⁾ 1 = Scanner trigger is enabled 0 = Scanner trigger is disabled bit 5 SGO: Scanner Go bit ^(3, 4) 1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is to the CRC peripheral. 0 = Scanner operations will not occur bit 4-3 Unimplemented: Read as '0' bit 1 BURSTIND: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Scanner ddress points to Data EEPROM 0 = Scanner address points to Program Flash Memory bit 1 BURSTIND: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Scanner cycle is in process 0 = Scanner cycle is in process 0 = Scanner cycle is in process 0 = Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It i	bit 7	·			·	-	•	bit
 u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other R (1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 EN: Scanner Enable bit⁽¹⁾ 1 = Scanner is enabled 0 = Scanner is disabled bit 6 TRIGEN: Scanner Trigger Enable bit⁽²⁾ 1 = Scanner trigger is disabled 0 = Scanner trigger is disabled Refer Table 14-1. bit 5 SGO: Scanner GO bit^(3, 4) 1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is to the CRC peripheral. 0 = Scanner operations will not occur bit 4.3 Unimplemented: Read as '0' bit 2 MREG: Scanner Memory Region Select bit⁽²⁾ 1 = Scanner address points to Data EEPROM 0 = Scanner address points to Drogram Flash Memory bit 1 BURSTMD: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is in process 0 = Scanner cycle is compete (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. 2: Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is 	Legend:							
'1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 EN: Scanner Enable bit ⁽¹⁾ 1 = Scanner is disabled 0 = Scanner is disabled 0 = Scanner Trigger Enable bit ⁽²⁾ 1 = Scanner trigger is disabled 0 = Scanner trigger is disabled 0 = Scanner trigger is disabled Refer Table 14-1. bit 5 SGO: Scanner GO bit ^(3, 4) 1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is to the CRC peripheral. 0 = Scanner operations will not occur bit 4-3 Unimplemented: Read as '0' bit 2 MREG: Scanner Memory Region Select bit ⁽²⁾ 1 = Scanner address points to Data EEPROM 0 = Scanner address points to Program Flash Memory bit 1 BURSTMD: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is no process 0 = Scanner cycle is compete (or never started) Note 11: Setting EN = 1 (SCANCON0 register) does not affect any other register content. <	R = Reada	ble bit	W = Writable bi	t	U = Unimple	mented bit, rea	d as '0'	
 bit 7 EN: Scanner Enable bit⁽¹⁾ = Scanner is enabled = Scanner is disabled bit 6 TRIGEN: Scanner Trigger Enable bit⁽²⁾ = Scanner trigger is enabled = Scanner trigger is disabled Refer Table 14-1. bit 5 SGO: Scanner GO bit^(3, 4) = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is to the CRC peripheral. = Scanner operations will not occur bit 4-3 Unimplemented: Read as '0' bit 2 MREG: Scanner Memory Region Select bit⁽²⁾ = Scanner address points to Data EEPROM = Scanner address points to Program Flash Memory bit 1 BURSTMD: Scanner Burst Mode bit = Memory access request to the CPU Arbiter is always true = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit = Scanner cycle is in process = Scanner cycle is compete (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. 2: Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is compete for the set of the compete of the compete of the compete of the compete of the competer of the	u = Bit is u	nchanged	x = Bit is unkno	wn	-n/n = Value	at POR and BC	R/Value at all ot	her Resets
 1 = Scanner is enabled 0 = Scanner is disabled bit 6 TRIGEN: Scanner Trigger Enable bit⁽²⁾ 1 = Scanner trigger is enabled 0 = Scanner trigger is disabled Refer Table 14-1. bit 5 SGO: Scanner GO bit^(3, 4) 1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is to the CRC peripheral. 0 = Scanner operations will not occur bit 4-3 Unimplemented: Read as '0' bit 2 MREG: Scanner Memory Region Select bit⁽²⁾ 1 = Scanner address points to Data EEPROM 0 = Scanner address points to Program Flash Memory bit 1 BURSTMD: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is compete (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. 2: Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is 	'1' = Bit is s	set	'0' = Bit is clear	ed	HC = Bit is c	leared by hardv	vare	
 1 = Scanner trigger is enabled 0 = Scanner trigger is disabled Refer Table 14-1. bit 5 SGO: Scanner GO bit^(3, 4) 1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is to the CRC peripheral. 0 = Scanner operations will not occur bit 4-3 Unimplemented: Read as '0' bit 2 MREG: Scanner Memory Region Select bit⁽²⁾ 1 = Scanner address points to Data EEPROM 0 = Scanner address points to Program Flash Memory bit 1 BURSTMD: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is compete (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. 2: Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is	bit 7	1 = Scanner	is enabled					
 1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is to the CRC peripheral. 0 = Scanner operations will not occur bit 4-3 Unimplemented: Read as '0' bit 2 MREG: Scanner Memory Region Select bit⁽²⁾ 1 = Scanner address points to Data EEPROM 0 = Scanner address points to Program Flash Memory bit 1 BURSTMD: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is compete (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. 2: Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is is 	bit 6	1 = Scanner 0 = Scanner	trigger is enabled trigger is disabled					
 bit 2 MREG: Scanner Memory Region Select bit⁽²⁾ = Scanner address points to Data EEPROM = Scanner address points to Program Flash Memory bit 1 BURSTMD: Scanner Burst Mode bit = Memory access request to the CPU Arbiter is always true = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit = Scanner cycle is in process = Scanner cycle is compete (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. Scanner trigger selection can be set using the SCANTRIG register. This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is in process in the started in the started	bit 5	1 = When the to the C	e CRC is ready, the RC peripheral.		egion set by the	MREG bit will be	e accessed and o	lata is passe
 1 = Scanner address points to Data EEPROM 9 = Scanner address points to Program Flash Memory bit 1 BURSTMD: Scanner Burst Mode bit 1 = Memory access request to the CPU Arbiter is always true 0 = Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is compete (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. 2: Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is in process) 	bit 4-3	Unimpleme	nted: Read as '0'					
 1 = Memory access request to the CPU Arbiter is always true a Memory access request to the CPU Arbiter is dependent on the CRC request and Trigger Refer Table 14-1. bit 0 BUSY: Scanner Busy Indicator bit 1 = Scanner cycle is in process 0 = Scanner cycle is compete (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. 2: Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is in process) 	bit 2	1 = Scanner	address points to	Data EEPP	ROM			
 1 = Scanner cycle is in process 0 = Scanner cycle is compete (or never started) Note 1: Setting EN = 1 (SCANCON0 register) does not affect any other register content. 2: Scanner trigger selection can be set using the SCANTRIG register. 3: This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is 	bit 1	1 = Memory 0 = Memory	access request to access request to	the CPU A			request and Tri	gger
 Scanner trigger selection can be set using the SCANTRIG register. This bit can be cleared in software. It is cleared in hardware when LADR>HADR (and a data cycle is 	bit 0	1 = Scanner	cycle is in proces	S	tarted)			
occurring) or when CRCGO = 0 (CRCCON0 register).	2: 3:	Scanner trigger s This bit can be cle occurring) or whe	election can be se eared in software. en CRCGO = 0 (Cl	t using the It is cleared RCCON0 re	SCANTRIG reg d in hardware w egister).	ister. hen LADR>HAI	DR (and a data c	ycle is not

REGISTER 14-11: SCANCONO: SCANNER ACCESS CONTROL REGISTER 0

- - 4: CRCEN and CRCGO bits (CRCCON0 register) must be set before setting the SGO bit.

								Register	
Name	Bit 7	Bit 6	Bit 5	Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0					
DMAxCON0	EN	SIRQEN	DGO	—	—	AIRQEN	_	XIP	248
DMAxCON1	DMOD	E<1:0>	DSTP	SMR	<1:0>	SMOD	E<1:0>	SSTP	249
DMAxBUF	DBUF7	DBUF6	DBUF5	DBUF4	DBUF3	DBUF2	DBUF1	DBUF0	250
DMAxSSAL	SSA<7:0>								
DMAxSSAH				SSA<	:15:8>				250
DMAxSSAU	—	_			SSA<	21:16>			251
DMAxSPTRL				SPTR	<7:0>				251
DMAxSPTRH				SPTR	<15:8>				251
DMAxSPTRU	—	_			SPTR<	:21:16>			252
DMAxSSZL		SSZ<7:0>						252	
DMAxSSZH	_	SSZ<11:8>						252	
DMAxSCNTL		SCNT<7:0>							253
DMAxSCNTH	_	_		_		SCNT	<11:8>		253
DMAxDSAL		DSA<7:0>							253
DMAxDSAH		DSA<15:8>							254
DMAxDPTRL				DPTR	<7:0>				254
DMAxDPTRH		DPTR<15:8>							254
DMAxDSZL		DSZ<7:0>						255	
DMAxDSZH	— — — — DSZ<11:8>						255		
DMAxDCNTL	DCNT<7:0>						255		
DMAxDCNTH	— — — DCNT<11:8>						256		
DMAxSIRQ							256		
DMAxAIRQ					AIRQ<6:0>				256

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH DMA

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by DMA.

REGISTER 17-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	PPSLOCKED
bit 7	•				•		bit 0
Legend:							

v		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0 **PPSLOCKED:** PPS Locked bit

1 = PPS is locked.

0 = PPS is not locked. PPS selections can be changed.

21.3 Timer1/3/5 Prescaler

Timer1/3/5 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The CKPS bits of the TxCON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMRxH or TMRxL.

21.4 Timer1/3/5 Operation in Asynchronous Counter Mode

If control bit SYNC of the TxCON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake up the processor. However, special precautions in software are needed to read/write the timer (see Section 21.4.1 "Reading and Writing Timer1/3/5 in Asynchronous Counter Mode").

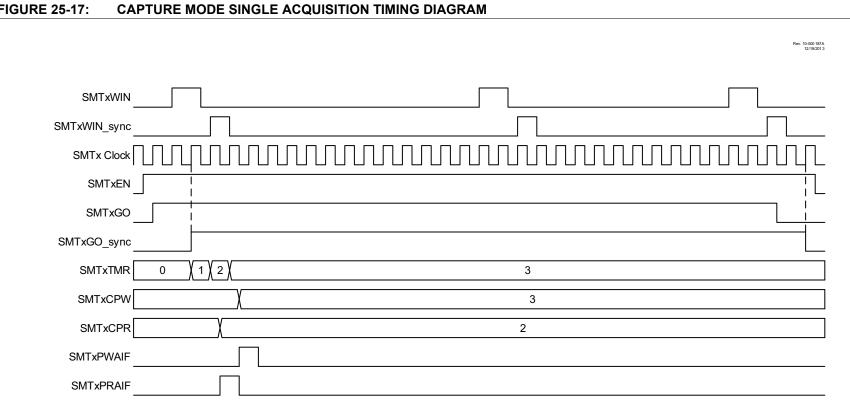
Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

21.4.1 READING AND WRITING TIMER1/3/ 5 IN ASYNCHRONOUS COUNTER MODE

Reading TMRxH or TMRxL while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads. For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMRxH:TMRxL register pair.

21.5 Timer1/3/5 16-Bit Read/Write Mode

Timer1/3/5 can be configured to read and write all 16 bits of data, to and from, the 8-bit TMRxL and TMRxH registers, simultaneously. The 16-bit read and write operations are enabled by setting the RD16 bit of the TxCON register.


To accomplish this function, the TMRxH register value is mapped to a buffer register called the TMRxH buffer register. While in 16-Bit mode, the TMRxH register is not directly readable or writable and all read and write operations take place through the use of this TMRxH buffer register.

When a read from the TMRxL register is requested, the value of the TMRxH register is simultaneously loaded into the TMRxH buffer register. When a read from the TMRxH register is requested, the value is provided from the TMRxH buffer register instead. This provides the user with the ability to accurately read all 16 bits of the Timer1/3/5 value from a single instance in time. Reference the block diagram in Figure 21-2 for more details.

In contrast, when not in 16-Bit mode, the user must read each register separately and determine if the values have become invalid due to a rollover that may have occurred between the read operations.

When a write request of the TMRxL register is requested, the TMRxH buffer register is simultaneously updated with the contents of the TMRxH register. The value of TMRxH must be preloaded into the TMRxH buffer register prior to the write request for the TMRxL register. This provides the user with the ability to write all 16 bits to the TMRxL:TMRxH register pair at the same time.

Any requests to write to the TMRxH directly does not clear the Timer1/3/5 prescaler value. The prescaler value is only cleared through write requests to the TMRxL register.

FIGURE 25-17:

PIC18(L)F26/27/45/46/47/55/56/57K42

31.13 Checksum (UART1 only)

This section does not apply to the LIN mode, which handles checksums automatically.

The transmit and receive checksum adders are enabled when the C0EN bit in the UxCON2 register is set. When enabled, the adders accumulate every byte that is transmitted or received. The accumulated sum includes the carry of the addition. Software is responsible for clearing the checksum registers before a transaction and performing the check at the end of the transaction.

The following is an example of how the checksum registers could be used in the asynchronous modes.

31.13.1 TRANSMIT CHECKSUM METHOD

- 1. Clear the UxTXCHK register.
- 2. Set the COEN bit.
- 3. Send all bytes of the transaction output.
- 4. Invert UxTXCHK and send the result as the last byte of the transaction.

31.13.2 RECEIVE CHECKSUM METHOD

- 1. Clear the UxRXCHK register.
- 2. Set the COEN bit.
- 3. Receive all bytes in the transaction including the checksum byte.
- 4. Set MSb of UxRXCHK if 7-bit mode is selected.
- 5. Add 1 to UxRXCHK.
- 6. If the result is '0', the checksum passes, otherwise it fails.

The CERIF checksum interrupt flag is not active in any mode other than LIN.

31.14 Collision Detection

External forces that interfere with the transmit line are detected in all modes of operation with collision detection. Collision detection is always active when RXEN and TXEN are both set.

When the receive input is connected to the transmit output through either the same I/O pin or external circuitry, a character will be received for every character transmitted. The collision detection circuit provides a warning when the word received does not match the word transmitted. The TXCIF flag in the UxERRIR register is used to signal collisions. This signal is only useful when the TX output is looped back to the RX input and everything that is transmitted is expected to be received. If more than one transmitter is active at the same time, it can be assumed that the TX word will not match the RX word. The TXCIF detects this mismatch and flags an interrupt. The TXCIF bit will also be set in DALI mode transmissions when the received bit is missing the expected mid-bit transition.

Collision detection is always active, regardless of whether or not the RX input is connected to the TX output. It is up to the user to disable the TXCIE bit when collision interrupts are not required.

The software overhead of unloading the receive buffer of transmitted data is avoided by setting the RUNOVF bit in UxCON2 and ignoring the receive interrupt and letting the receive buffer overflow. When the transmission is complete, prepare for receiving data by flushing the receive buffer (see Section 31.11.2, FIFO Reset) and clearing the RXFOIF overflow flag in the UxERRIR register.

31.15 RX/TX Activity Timeout

The UART works in conjunction with the HLT timers to monitor activity on the RX and TX lines. Use this feature to determine when there has been no activity on the receive or transmit lines for a user specified period of time.

To use this feature, set the HLT to the desired timeout period by a combination of the HLT clock source, timer prescale value, and timer period registers. Configure the HLT to reset on the UART TX or RX line and start the HLT at the same time the UART is started. UART activity will keep resetting the HLT to prevent a full HLT period from elapsing. When there has been no activity on the selected TX or RX line for longer than the HLT period then an HLT interrupt will occur signaling the timeout event.

For example, the following register settings will configure HLT2 for a 5 ms timeout of no activity on U1RX:

- T2PR = 0x9C (156 prescale periods)
- T2CLKCON = 0x05 (500 kHz internal oscillator)
- T2HLT = 0x04 (free running, reset on rising edge)
- T2RST = 0x15 (reset on U1RX)
- T2CON = 0xC0 (Timer2 on with 1:16 prescale)

31.16 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

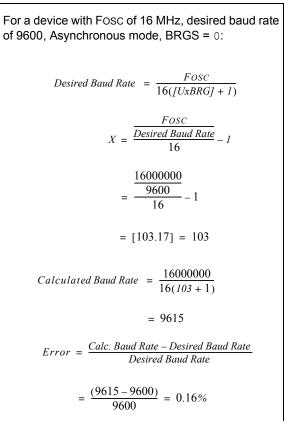
The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value of the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 7.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value of the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see Section **31.17.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change of the peripheral clock frequency.

31.17 UART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is a 16-bit timer that is dedicated to the support of the UART operation.

The UxBRGH, UxBRGL register pair determines the period of the free running baud rate timer. The multiplier of the baud rate period is determined by the BRGS bit in the UxCON0 register.


Table 31-1 contains the formulas for determining the baud rate. Example 31-1 provides a sample calculation for determining the baud rate and baud rate error.

The high baud rate range (BRGS = 1) is intended to extend the baud rate range up to a faster rate when the desired baud rate is not possible otherwise. Using the normal baud rate range (BRGS = 0) is recommended when the desired baud rate is achievable with either range.

Writing a new value to the UxBRGH, UxBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RXIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 31-1: CALCULATING BAUD RATE ERROR

TABLE 31-1: BAUD RATE FORMULAS

BRGS	BRG/UART Mode	Baud Rate Formula
1	High Rate	Fosc/[4 (n+1)]
0	Normal Rate	Fosc/[16(n+1)]

Legend: n = value of UxBRGH, UxBRGL register pair.

REGISTER 32-12: SPIxTxB: SPI TRANSMIT BUFFER REGISTER

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
TXB7	TXB6	TXB5	TXB4	TXB3	TXB2	TXB1	TXB0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

bit 7-0 **TXB<7:0>**: Transmit Buffer bits (write only)

If TXFIFO is not full:

Writing to this register adds the data to the top of the TXFIFO and increases the occupancy of the TXFIFO write pointer

If TXFIFO is full:

Writing to this register does not affect the data in the TXFIFO or the write pointer, and the TXWE bit of SPIxSTATUS will be set

REGISTER 32-13: SPIxCLK: SPI CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	—	-	CLKSEL3	CLKSEL2	CLKSEL1	CLKSEL0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

bit 7-4 Unimplemented: Read as '0'

bit 3-0 CLKSEL<3:0>: SPI Clock Source Selection bits

1111-1001 = Reserved

- 1000 = SMT_match
- 0111 = TMR6_Postscaled
- 0110 = TMR4_Postscaled
- 0101 = TMR2_Postscaled
- 0100 = TMR0_overflow
- 0011 = CLKREF
- 0010 = MFINTOSC
- 0001 = HFINTOSC
- 0000 **= FOSC**

TABLE 36	6-2:	COMPUTATION MO	DES						
		Bit Clear Conditions	Value after Trigg	er completion	Tł	reshold Opera	tions	Value at	ADTIF interrupt
Mode	ADMD	ACC and CNT	ACC	CNT	Retrigger	Threshold Test	Interrupt	ADAOV	FLTR
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sam- ple	If threshold=true	N/A	N/A
Accumulate	1	ADACLR = 1	S + ACC or (S2-S1) + ACC	If (CNT=0xFF): CNT, oth- erwise: CNT+1	No	Every Sam- ple	If threshold=true	ACC Overflow	ACC/2 ^{ADCRS}
Average	2	ADACLR = 1 or CNT>=RPT at GO or retrigger	S + ACC or (S2-S1) + ACC	If (CNT=0xFF): CNT, oth- erwise: CNT+1	No	If CNT>=RPT	If threshold=true	ACC Overflow	ACC/2 ^{ADCRS}
Burst Average	3	ADACLR = 1 or GO set or retrigger	Each repetition: same as Average End with sum of all samples	Each repetition: same as Average End with CNT=RPT	Repeat while CNT <rpt< td=""><td>lf CNT>=RPT</td><td>If threshold=true</td><td>ACC Overflow</td><td>ACC/2^{ADCRS}</td></rpt<>	lf CNT>=RPT	If threshold=true	ACC Overflow	ACC/2 ^{ADCRS}
Low-pass Filter	4	ADACLR = 1	S+ACC-ACC/ 2 ^{ADCRS} or (S2-S1)+ACC-ACC/2 ^{ADCRS}	Count up, stop counting when CNT = 0xFF	No	lf CNT>=RPT	If threshold=true	ACC Overflow	Filtered Value

S1 and S2 are abbreviations for Sample 1 and Sample 2, respectively. When ADDSEN = 0, S1 = ADRES; When ADDSEN = 1, S1 = PREV and S2 = ADRES. Note:

CNT count

count

count

RPT

count

HC = Bit is cleared by hardware

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
_		CALC<2:0>		SOI		TMD<2:0>	
bit 7	•						bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets			

REGISTER 36-4: ADCON3: ADC CONTROL REGISTER 3

bit 7 Unimplemented: Read as '0'

1' = Bit is set

bit 6-4 CALC<2:0>: ADC Error Calculation Mode Select bits

'0' = Bit is cleared

CALC	DSEN = 0 Single- Sample Mode	DSEN = 1 CVD Double- Sample Mode ⁽¹⁾	Application
111	Reserved	Reserved	Reserved
110	Reserved	Reserved	Reserved
101	FLTR-STPT	FLTR-STPT	Average/filtered value vs. setpoint
100	PREV-FLTR	PREV-FLTR	First derivative of filtered value ⁽³⁾ (negative)
011	Reserved	Reserved	Reserved
010	RES-FLTR	(RES-PREV)-FLTR	Actual result vs. averaged/ filtered value
001	RES-STPT	(RES-PREV)-STPT	Actual result vs.setpoint
000	RES-PREV	RES-PREV	First derivative of single measurement ⁽²⁾
			Actual CVD result in CVD mode ⁽²⁾

bit 3	SOI: ADC Stop-on-Interrupt bit					
	If CONT = 1:					
	1 = GO is cleared when the threshold conditions are met, otherwise the conversion is retriggered					
	0 = GO is not cleared by hardware, must be cleared by software to stop retriggers					

bit 2-0 TMD<2:0>: Threshold Interrupt Mode Select bits

- 111 = Interrupt regardless of threshold test results
 - 110 = Interrupt if ERR>UTH
 - 101 = Interrupt if ERR≤UTH
 - 100 = Interrupt if ERR<LTH or ERR>UTH
 - 011 = Interrupt if ERR>LTH and ERR<UTH
 - 010 = Interrupt if ERR≥LTH
 - 001 = Interrupt if ERR<LTH
 - 000 = Never interrupt
- Note 1: When PSIS = 0, the value of (RES-PREV) is the value of (S2-S1) from Table 36-2.
 - 2: When PSIS = 0
 - **3:** When PSIS = 1.

REGISTER 36-27: ADSTPTH: ADC THRESHOLD SETPOINT REGISTER HIGH

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	STPT<15:8>								
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		

bit 7-0 **STPT<15:8>**: ADC Threshold Setpoint MSB. Upper byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 36-29 for more details.

REGISTER 36-28: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW

'0' = Bit is cleared

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | STPT | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **STPT<7:0>**: ADC Threshold Setpoint LSB. Lower byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 36-30 for more details.

'1' = Bit is set

38.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 38-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 38-2) contains Control bits for the following:

• Interrupt on positive/negative edge enables

The CMxPCH and CMxNCH registers are used to select the positive and negative input channels, respectively.

38.2.1 COMPARATOR ENABLE

Setting the EN bit of the CMxCON0 register enables the comparator for operation. Clearing the EN bit disables the comparator resulting in minimum current consumption.

38.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the CxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 17-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

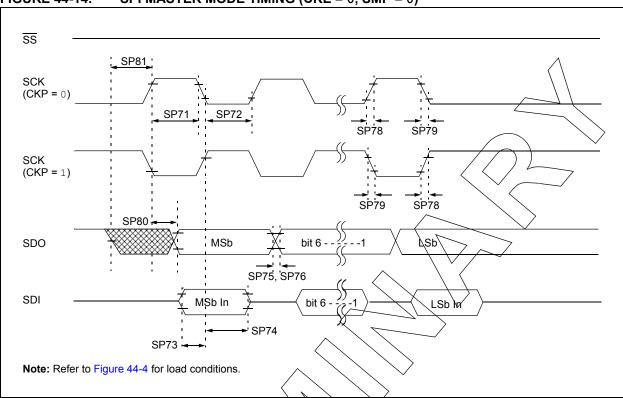
38.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the POL bit of the CMxCON0 register. Clearing the POL bit results in a noninverted output.

Table 38-1shows the output state versus inputconditions, including polarity control.

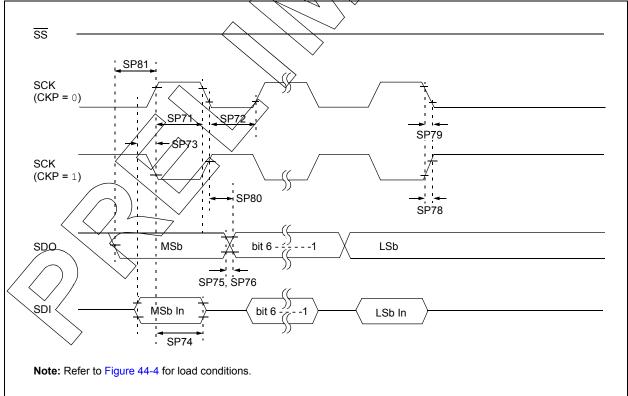
TABLE 38-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	POL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0


IDL	RD	Table Read				
Synta	ax:	TBLRD (*; *+	+; *-; +*)			
Oper	ands:	None				
Oper		if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT;				
Statu	s Affected:	None				
Enco	ding:	0000	0000	0000	10nn nn=0 * =1 *+ =2 *- =3 +*	
		program men	nory, a po	ointer ca	address the lled Table	
		program men Pointer (TBLF The TBLPTR	nory, a po PTR) is u (a 21-bit the progr e addres {[0] = 0:	binter ca ised. t pointer am mem s range. Least S of Prog Word Most S	Iled Table) points to nory. TBLPTR significant Byte ram Memory ignificant Byte	
		program men Pointer (TBLF The TBLPTR each byte in t has a 2-Mbyte TBLPTR TBLPTR	nory, a po PTR) is u (a 21-bit he progr e addres 2[0] = 0: 2[0] = 1:	binter ca lsed. t pointer; am mem s range. Least S of Prog Word Most S of Prog Word Most S	Iled Table) points to hory. TBLPTR Significant Byte ram Memory ignificant Byte ram Memory	
		program men Pointer (TBLF The TBLPTR each byte in t has a 2-Mbyte TBLPTR TBLPTR TBLPTR a: • no change • post-increr • post-decre	nory, a po PTR) is u (a 21-bit the progr. e addres {[0] = 0: c[0] = 1: astruction s follows nent ment	binter ca sed. pointer) am mem s range. Least S of Prog Word Most S of Prog Word Word	Iled Table) points to nory. TBLPTR significant Byte ram Memory ignificant Byte	
Word		program men Pointer (TBLF The TBLPTR each byte in t has a 2-Mbyte TBLPTR TBLPTR TBLPTR a: • no change • post-increr • post-decre • pre-increm	nory, a po PTR) is u (a 21-bit the progr. e addres {[0] = 0: c[0] = 1: astruction s follows nent ment	binter ca sed. pointer) am mem s range. Least S of Prog Word Most S of Prog Word Word	Iled Table) points to hory. TBLPTR Significant Byte ram Memory ignificant Byte ram Memory	
Word	ls:	program men Pointer (TBLF The TBLPTR each byte in t has a 2-Mbyte TBLPTR TBLPTR TBLPTR a: • no change • post-increr • post-decre	nory, a po PTR) is u (a 21-bit the progr. e addres {[0] = 0: c[0] = 1: astruction s follows nent ment	binter ca sed. pointer) am mem s range. Least S of Prog Word Most S of Prog Word Word	Iled Table) points to hory. TBLPTR Significant Byte ram Memory ignificant Byte ram Memory	
Cycle	Is: es:	program men Pointer (TBLF The TBLPTR each byte in t has a 2-Mbyte TBLPTR TBLPTR TBLPTR a: • no change • post-increr • post-decre • pre-increm 1 2	nory, a po PTR) is u (a 21-bit the progr. e addres {[0] = 0: c[0] = 1: astruction s follows nent ment	binter ca sed. pointer) am mem s range. Least S of Prog Word Most S of Prog Word Word	Iled Table) points to hory. TBLPTR Significant Byte ram Memory ignificant Byte ram Memory	
Cycle	ls:	program men Pointer (TBLF The TBLPTR each byte in t has a 2-Mbyte TBLPTR TBLPTR TBLPTR a: • no change • post-increr • post-decre • pre-increm 1 2	nory, a po PTR) is u (a 21-bit the progr. e addres {[0] = 0: c[0] = 1: astruction s follows nent ment	binter ca sed. pointer) am mem s range. Least S of Prog Word Most S of Prog Word Word	Iled Table) points to hory. TBLPTR Significant Byte ram Memory ignificant Byte ram Memory	
Cycle	ls: es: ycle Activity	program men Pointer (TBLF The TBLPTR each byte in t has a 2-Mbyte TBLPTR TBLPTR TBLPTR a: • no change • post-increm • post-decre • pre-increm 1 2	nory, a pr PTR) is u (a 21-bit the progr e addres (0] = 0: (0] = 1: (0] = 1:(1:(1:(1:(1:(1:(1:(1:(1:(1:(1:(1:(1:(1	binter ca sed. t pointer; am mem s range. Least S of Prog Word Most S of Prog Word can mo	Iled Table) points to hory. TBLPTR Significant Byte ram Memory dify the value	

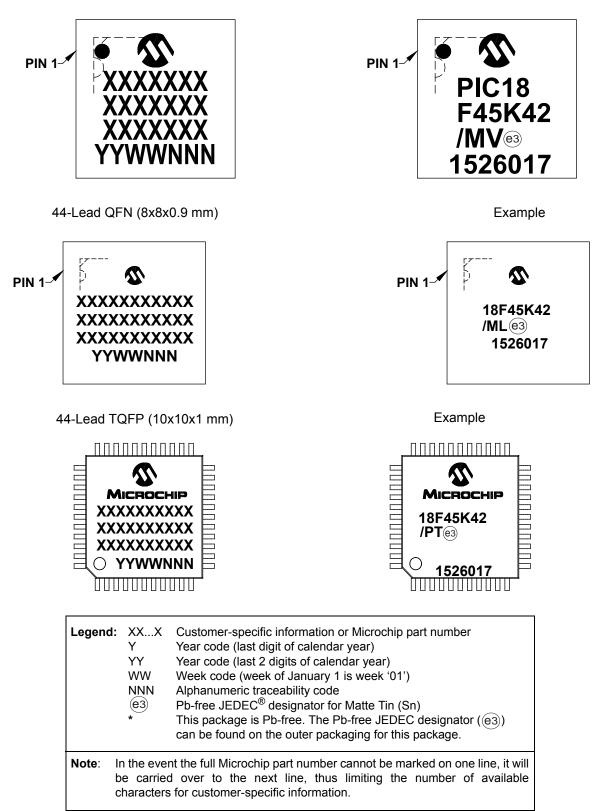
TBLRD	Table Rea	d (C	ontinued)
Example1:	TBLRD *+	;	
Before Instructi TABLAT TBLPTR MEMORY After Instructior TABLAT TBLPTR	(00A356h)		55h 00A356h 34h 34h 00A357h
Example2:	TBLRD +*	;	
Before Instructi TABLAT TBLPTR MEMORY MEMORY After Instructior	(01A357h) (01A358h)	= = =	
TABLAT TBLPTR		= =	34h 01A358h

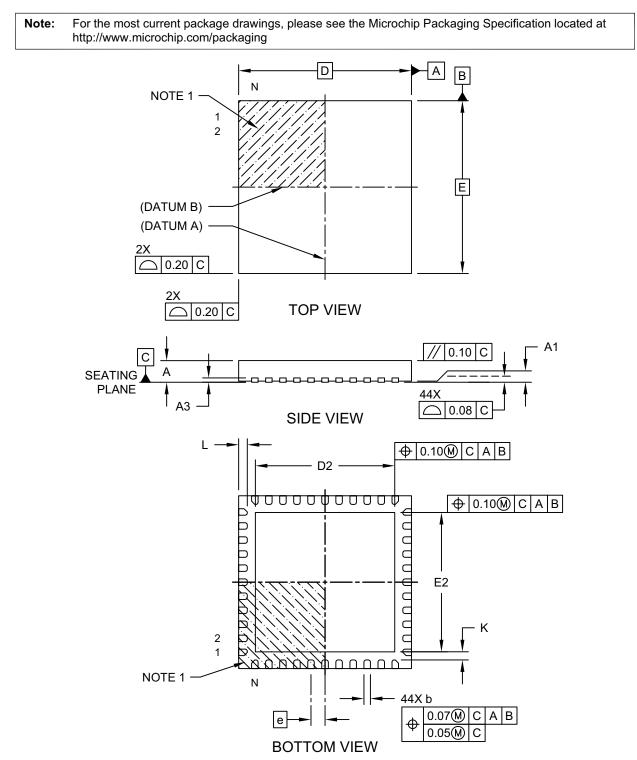
MO	/SS	Move Indexed to Indexed						
Synta	ax:	MOVSS [z _s], [z _d]					
Operands:		0 ≤ z _s ≤ 12	$0 \le z_s \le 127$					
		$0 \le z_d \le 12$	$0 \le z_d^3 \le 127$					
Oper	ation:	$((FSR2) + z_S) \to ((FSR2) + z_d)$						
Statu	s Affected:	None	None					
Enco	ding:							
	vord (source)	1110	1011	1 z z z	ZZZZS			
2nd ۱	word (dest.)	1111	XXXX	XZZZ	zzzzd			
Word	Ic.	addresses registers a 7-bit literal respectivel registers ca the 4096-b (000h to FI The MOVSS PCL, TOSI destination If the result an indirect value retur resultant du an indirect instruction 2	re determ offsets 'z, y, to the v an be loca yte data r Fh). s instruction J, TOSH register. addressir ned will b estination addressir	ined by a ^a or 'z _d ', alue of F ated anyw memory s on canno or TOSL e address ng registe e 00h. If f address ng registe	dding the SR2. Both /here in pace t use the as the s points to r, the he points to r, the			
		_						
Cycle		2						
QC	ycle Activity:	. .			<i></i>			
	Q1	Q2	Q3		Q4			
	Decode	Determine	Determ		Read			
		source addr	source		ource reg			
	Decode	Determine	Determ		Write			
		dest addr	dest a	uur to	dest reg			


DVSS	[05h],	[06h]
=	80h	
=	33h	
=	11h	
=	80h	
=	33h	
=	33h	
	= = =	= 33h = 11h = 80h = 33h

PUSHL	St	ore Liter	al a	t FSF	2, Decr	em	ent FSR2
Syntax:	Ρl	JSHL k					
Operands:	0 ≤	≤ k ≤ 255					
Operation:		→ (FSR2) SR2 – 1 –		R2			
Status Affected:	No	one					
Encoding:		1111	10	010	kkkk		kkkk
Marda	is Th on	decremer	nted tion a	by 1 a allows	after the of users to	оре	R2. FSR2 eration. Jsh values
Words:	1						
Cycles:	1						
Cycles: Q Cycle Activity							
,		Q2			Q3		Q4
Q Cycle Activity	y:	Q2 Read 'l	۲	Pro	Q3 pcess lata		Q4 Write to estination
Q Cycle Activity Q1	y:			Pro	ocess		Write to
Q Cycle Activity Q1 Decode Example: Before Inst FSR2	y:	Read 'I PUSHL		Pro	ocess	d	Write to

FIGURE 44-14: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)




Example

Package Marking Information (Continued)

40-Lead UQFN (5x5x0.5 mm)

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Microchip Technology Drawing C04-103D Sheet 1 of 2