

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

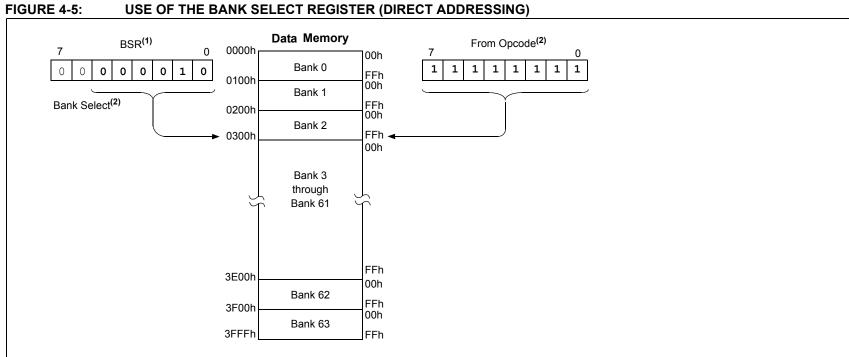
Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf47k42t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

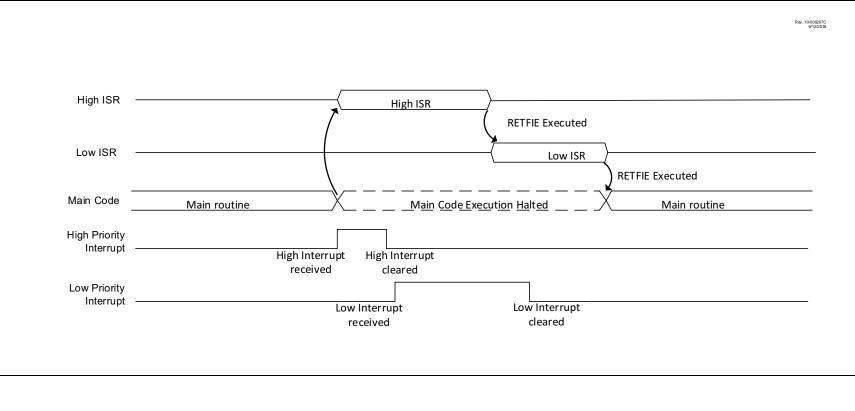

3.1 System Arbitration

The System Arbiter resolves memory access between the System Level Selections (i.e., Main, Interrupt Service Routine) and Peripheral Selection (i.e., DMA and Scanner) based on user-assigned priorities. Each of the system level and peripheral selections has its own priority selection registers. Memory access priority is resolved using the number written to the corresponding Priority registers, 0 being the highest priority and 4 the lowest. The default priorities are listed in Table 3-1.

In case the user wants to change priorities, ensure each Priority register is written with a unique value from 0 to 4.

Sele	Priority register Reset value	
System Level	ISR	0
	MAIN	1
Peripheral	DMA1	2
	DMA2	3
	SCANNER	4

TABLE 3-1: DEFAULT PRIORITIES


Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<5:0>) to the registers of the Access Bank.

9.4.2 SERVING A HIGH PRIORITY INTERRUPT WHILE A LOW PRIORITY INTERRUPT PENDING

A high priority interrupt request will always take precedence over any interrupt of a lower priority. The high priority interrupt is acknowledged first, then the low-priority interrupt is acknowledged. Upon a return from the high priority ISR (by executing the RETFIE instruction), the low priority interrupt is serviced, see Figure 9-3.

If any other high priority interrupts are pending and enabled, then they are serviced before servicing the pending low priority interrupt. If no other high priority interrupt requests are active, the low priority interrupt is serviced.

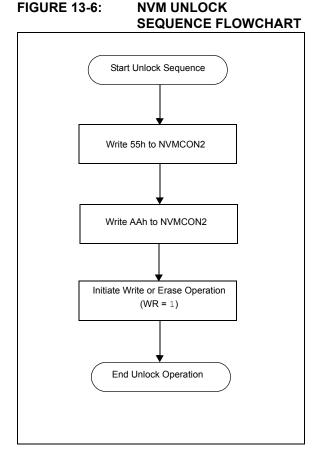
FIGURE 9-3: INTERRUPT EXECUTION: HIGH PRIORITY INTERRUPT WITH A LOW PRIORITY INTERRUPT PENDING

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TMR0IP	U1IP	U1EIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP
bit 7							bit C
Legend: R = Readable	hit	W = Writable	hit	II – Unimplor	nented bit, read	as '0'	
u = Bit is unch		x = Bit is unkr			at POR and BOI		othor Pocote
'1' = Bit is set	-	0' = Bit is clear				value at all t	
			areu				
bit 7	TMR0IP: TM	R0 Interrupt Pri	ority bit				
	1 = High prio 0 = Low prior						
bit 6	U1IP: UART1	Interrupt Prior	ity bit				
	1 = High prio	•					
	0 = Low prior	•					
bit 5		1 Framing Err	or Interrupt Pr	iority bit			
	1 = High prio 0 = Low prio						
bit 4	•	RT1 Transmit Ir	terrupt Priorit	v bit			
	1 = High prio			,			
	0 = Low prior						
bit 3		RT1 Receive In	terrupt Priority	y bit			
	1 = High prio						
h # 0	0 = Low prior	•					
bit 2	1 = High prio	1 Error Interrup	ot Priority bit				
	0 = Low prior						
bit 1		Interrupt Priorit	ty bit				
	1 = High prio	rity					
	0 = Low prior						
bit 0		C1 Transmit Int	errupt Priority	bit			
	1 = High prio						
	0 = Low prior	TITV					

REGISTER 9-28: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

13.1.4 NVM UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the NVM from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:


- PFM Row Erase
- Write of PFM write latches to PFM memory
- Write of PFM write latches to User IDs
- Write to Data EEPROM Memory
- Write to Configuration Words

The unlock sequence consists of the following steps and must be completed in order:

- Write 55h to NVMCON2
- Write AAh to NMVCON2
- · Set the WR bit of NVMCON1

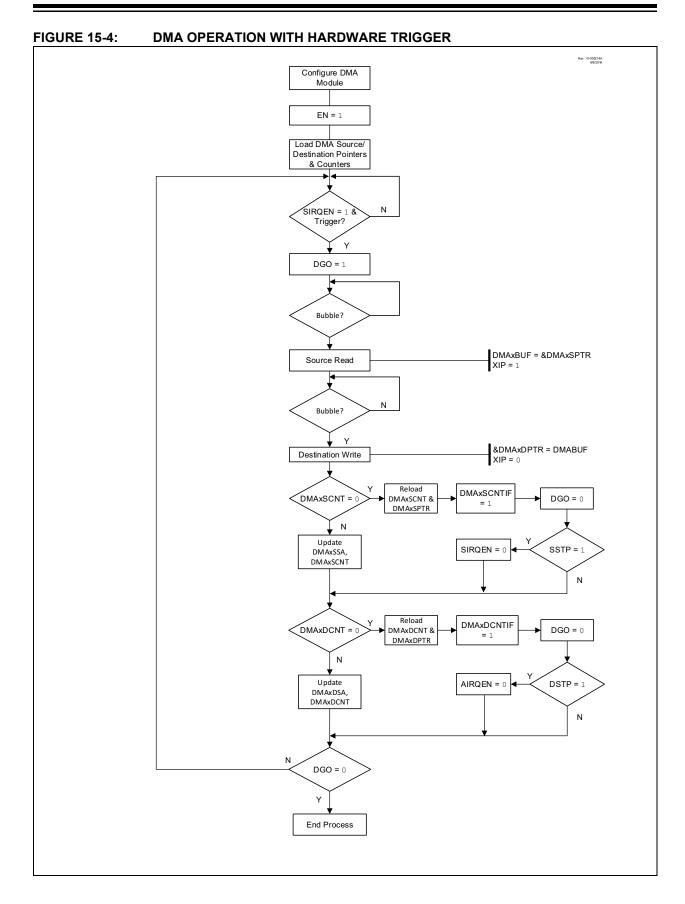
Once the WR bit is set, the processor will stall internal operations until the operation is complete and then resume with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

		-	
BCF	INTCON0,GIE	;	Recommended so sequence is not interrupted
BANKSEL	NVMCON1		
BSF	NVMCON1,WREN	;	Enable write/erase
MOVLW	55h	;	Load 55h
MOVWF	NVMCON2	;	Step 1: Load 55h into NVMCON2
MOVLW	AAh	;	Step 2: Load W with AAh
MOVWF	NVMCON2	;	Step 3: Load AAh into NVMCON2
BSF	INTCON1,WR	;	Step 4: Set WR bit to begin write/erase
BSF	INTCON0,GIE	;	Re-enable interrupts
Note 1: Sequen	ce begins when NVMCON2 is wr	itte	en; steps 1-4 must occur in the cycle-accurate order
	0		rupted by an interrupt or a debugger Halt, the action
	take place.		

2: Opcodes shown are illustrative; any instruction that has the indicated effect may be used.

EXAMPLE 13-2: NVM UNLOCK SEQUENCE


14.0 CYCLIC REDUNDANCY CHECK (CRC) MODULE WITH MEMORY SCANNER

The Cyclic Redundancy Check (CRC) module provides a software-configurable hardware-implemented CRC checksum generator. This module includes the following features:

- Any standard CRC up to 16 bits can be used
- Configurable Polynomial
- · Any seed value up to 16 bits can be used
- · Standard and reversed bit order available
- Augmented zeros can be added automatically or by the user
- Memory scanner for fast CRC calculations on program/Data EEPROM memory user data
- Software loadable data registers for communication CRC's

14.1 CRC Module Overview

The CRC module provides a means for calculating a check value of program/Data EEPROM memory. The CRC module is coupled with a memory scanner for faster CRC calculations. The memory scanner can automatically provide data to the CRC module. The CRC module can also be operated by directly writing data to SFRs, without using a scanner.

16.2.1 DATA REGISTER

PORTx is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISx (Register 16-2). Setting a TRISx bit ('1') will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISx bit ('0') will make the corresponding PORTx pin an output (i.e., it enables output driver and puts the contents of the output latch on the selected pin). Example 16-1 shows how to initialize PORTx.

Reading the PORTx register (Register 16-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATx).

The PORT data latch LATx (Register 16-3) holds the output port data and contains the latest value of a LATx or PORTx write.

EXAMPLE 16-1: INITIALIZING PORTA

<pre>; This code example illustrates ; initializing the PORTA register. The ; other ports are initialized in the same ; manner.</pre>						
BANKSEL	PORTA	;				
CLRF	PORTA	;Init PORTA				
BANKSEL	LATA	;Data Latch				
CLRF	LATA	;				
BANKSEL	ANSELA	;				
CLRF	ANSELA	;digital I/O				
BANKSEL	TRISA	;				
MOVLW	B'11111000'	;Set RA<7:3> as inputs				
MOVWF	TRISA	;and set RA<2:0> as				
		;outputs				

16.2.2 DIRECTION CONTROL

The TRISx register (Register 16-2) controls the PORTx pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISx register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

16.2.3 ANALOG CONTROL

The ANSELx register (Register 16-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELx bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELx bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELx bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

16.2.4 OPEN-DRAIN CONTROL

The ODCONx register (Register 16-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONx bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONx bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is necessary to set open-drain control					
	when using the pin for I ² C.					

16.2.5 SLEW RATE CONTROL

The SLRCONx register (Register 16-7) controls the slew rate option for each port pin. Slew rate for each port pin can be controlled independently. When an SLRCONx bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONx bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

x = Bit is unknown

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLx7	INLVLx6	INLVLx5	INLVLx4	INLVLx3	INLVLx2	INLVLx1	INLVLx0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	d as '0'		

REGISTER 16-8: INLVLx: INPUT LEVEL CONTROL REGISTER

-n/n = Value at POR and BOR/Value at all other Resets

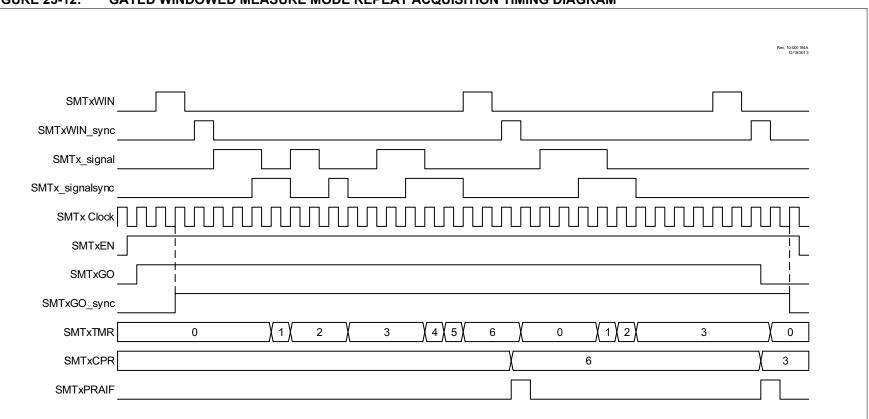
'0' = Bit is cleared

bit 7-0

'1' = Bit is set

- INLVLx<7:0>: Input Level Select on Pins Rx<7:0>, respectively
- 1 = ST input used for port reads and interrupt-on-change

0 = TTL input used for port reads and interrupt-on-change


TABLE 16-9: INPUT LEVEL PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2 ⁽¹⁾	INLVLB1 ⁽¹⁾	INLVLB0
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4 ⁽¹⁾	INLVLC3 ⁽¹⁾	INLVLC2	INLVLC1	INLVLC0
INLVLD ⁽²⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1 ⁽¹⁾	INLVLD0 ⁽¹⁾
INLVLE		_	_	—	INLVLE3	INLVLE2 ⁽²⁾	INLVLE1 ⁽²⁾	INLVLE0 ⁽²⁾
INLVLF ⁽³⁾	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0

Note 1: Any peripheral using the I^2C pins read the I^2C ST inputs when enabled via Rxyl2C.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

FIGURE 25-12: GATED WINDOWED MEASURE MODE REPEAT ACQUISITION TIMING DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
SMT1CON0	EN	—	STP	WPOL	SPOL	CPOL	SMT1P	S<1:0>	394
SMT1CON1	GO	REPEAT	_			MODE	<3:0>		395
SMT1STAT	CPRUP	CPWUP	RST		—	TS	WS	AS	396
SMT1CLK	_				_	(CSEL<2:0>	•	397
SMT1SIG	SSEL<4:0>							399	
SMT1WIN	— — — WSEL<4:0>								398
SMT1TMRL	TMR<7:0>								400
SMT1TMRH	TMR<15:8>								400
SMT1TMRU	TMR<23:16>								400
SMT1CPRL	CPR<7:0>								401
SMT1CPRH				CPR<	15:8>				401
SMT1CPRU				CPR<2	23:16>				401
SMT1CPWL				CPW<	<7:0>				402
SMT1CPWH				CPW<	15:8>				402
SMT1CPWU	CPW<23:16>								402
SMT1PRL	PR<7:0>							403	
SMT1PRH	PR<15:8>								403
SMT1PRU				PR<2	3:16>				403

TABLE 25-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMT1

Legend: -= unimplemented read as '0'. Shaded cells are not used for SMT1 module.

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	PWS<2:0>(1,)	2)			CKS	<3:0>				
bit 7							bit (
Legend:										
R = Readable bit W = Writable		oit	•	nented bit, read						
u = Bit is und	changed	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all o	other Resets			
'1' = Bit is se	et	'0' = Bit is clea	ared							
bit 7-5		NCO1 Output P								
		1 output is activ								
	110 = NCO1 output is active for 64 input clock periods									
		01 = NCO1 output is active for 32 input clock periods								
)1 output is activ								
		01 output is activ								
		010 = NCO1 output is active for 4 input clock periods 001 = NCO1 output is active for 2 input clock periods								
		000 = NCO1 output is active for 1 input clock periods								
bit 4		nted: Read as '(clock polica						
bit 3-0	-	NCO1 Clock Sou		ite						
bit 5-0	1111 = Rese			11.5						
	•									
	•									
	•									
	1011 = Rese									
	1010 = CLC									
	1001 = CLC3_out									
	1000 = CLC2_out									
	0111 = CLC									
		0110 = CLKREF_out 0101 = SOSC								
		NTOSC/4 (32 kH	7)							
		NTOSC (500 kH)	,							
	0010 = LFIN	•	-,							
	0001 = HFIN									

- **Note 1:** N1PWS applies only when operating in Pulse Frequency mode.
 - 2: If NCO1 pulse width is greater than NCO1 overflow period, operation is undefined.

32.4.3 TRANSFER COUNTER IN SLAVE MODE

In Slave Mode, the transfer counter will still decrement as data is shifted in and out of the SPI module, but it will not control data transfers. In addition, in slave mode, the BMODE bit along with the transfer counter is used to determine when the device should look for Slave Select faults. If BMODE = 0, the SSFLT bit will be set if Slave Select transitions from its active to inactive state during bytes of data, as well as if it transitions before the last bit sent during the final byte (if SPIx-TWIDTH≠0). If BMODE=1, the SSFLT bit will be set if Slave Select transitions from its active to inactive state before the final bit of each individual transfer is completed. Note that SSFLT does not have an associated interrupt, so it should be checked in software. An ideal time to do this is when the End of Slave Select Interrupt (EOSIF) is triggered (see Section 32.8.3.3 "Start of Slave Select and End of Slave Select Interrupts").

32.5 Master mode

In master mode, the device controls the SCK line, and as such, initiates data transfers and determines when any slaves broadcast data onto the SPI bus.

Master mode of this device can be configured in four different modes, configured by the TXR and RXR bits:

- Full Duplex mode
- Receive Only mode
- · Transmit Only mode
- Transfer Off mode

The modes are illustrated in Table 32-1, below:

	TXR = 1	TXR = 0
RXR = 1	Full Duplex Mode If BMODE = 1, transfer when RxFIFO is not full and TxFIFO is not empty If BMODE = 0, Transfer when RXFIFO is not full, TXFIFO is not empty, and the Transfer Counter is non- zero	Receive Only mode Transfer when RxFIFO is not full and the Transfer Counter is non-zero Transmitted data is either the top of the FIFO or the most recently received data
RXR = 0	Transmit Only Mode If BMODE = 1, transfer when TxFIFO is not empty If BMODE = 0, Transfer when TXFIFO is not empty and the Transfer Counter is non-zero Received data is not stored	No Transfers

TABLE 32-1:MASTER MODE TXR/RXR SETTINGS

REGISTER 32-12: SPIxTxB: SPI TRANSMIT BUFFER REGISTER

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
TXB7	TXB6	TXB5	TXB4	TXB3	TXB2	TXB1	TXB0	
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

bit 7-0 **TXB<7:0>**: Transmit Buffer bits (write only)

If TXFIFO is not full:

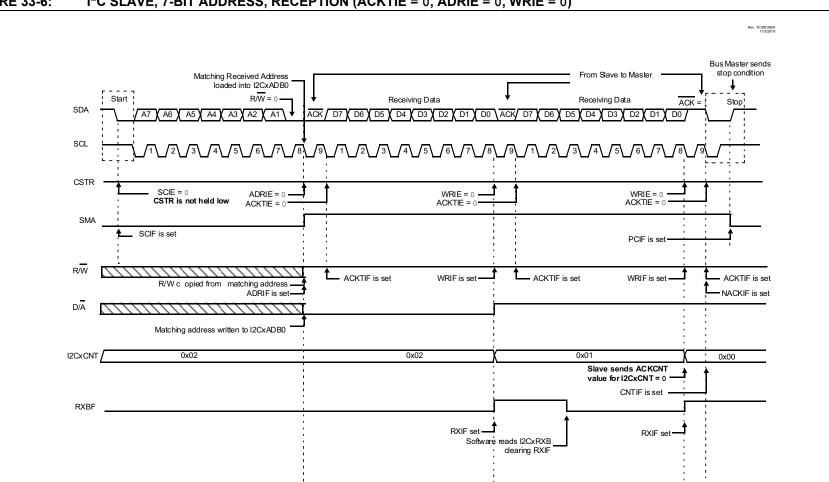
Writing to this register adds the data to the top of the TXFIFO and increases the occupancy of the TXFIFO write pointer

If TXFIFO is full:

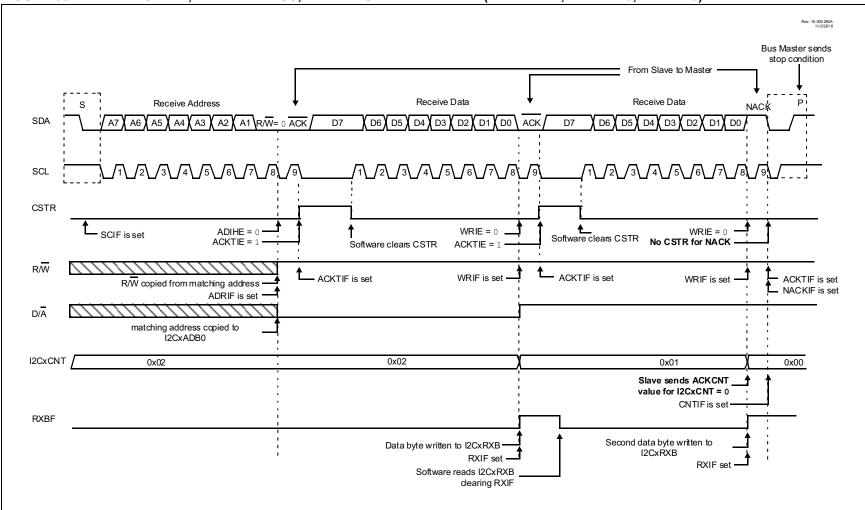
Writing to this register does not affect the data in the TXFIFO or the write pointer, and the TXWE bit of SPIxSTATUS will be set

REGISTER 32-13: SPIxCLK: SPI CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0 R/W-0/0		R/W-0/0	
_	—	—	-	CLKSEL3	CLKSEL2	CLKSEL1	CLKSEL0	
bit 7 bit 0								


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

bit 7-4 Unimplemented: Read as '0'


bit 3-0 CLKSEL<3:0>: SPI Clock Source Selection bits

1111-1001 = Reserved

- 1000 = SMT_match
- 0111 = TMR6_Postscaled
- 0110 = TMR4_Postscaled
- 0101 = TMR2_Postscaled
- 0100 = TMR0_overflow
- 0011 = CLKREF
- 0010 = MFINTOSC
- 0001 = HFINTOSC
- 0000 **= FOSC**

FIGURE 33-6: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (ACKTIE = 0, ADRIE = 0, WRIE = 0)

FIGURE 33-7: $I^{2}C$ SLAVE, 7-BIT ADDRESS, RECEPTION WITH I2CxCNT (ACKTIE = 1, ADRIE = 0, WRIE = 0)

bit 3	 MDR: Master Data Request (Master pause) 1 = Master state mechine pauses until data is read/written to proceed (SCL is output held low) 0 = Master clocking of data is enabled.
	MMA = 1 & RXBF = 1 pause_for_rx - Set by hardware on 7th falling SCL edge - User must read from I2CRXB to release SCL MMA = 1 & TXBE = 1 & I2CCNT!= 0 pause_for_tx - Set by hardware on 8th falling SCL edge - User must write to I2CTXB to release SCL ADB = 1 - I2CCNT is ignored for the high and low address in 10-bit mode pause_for_restart - Set by hardware on 9th falling SCL edge RSEN = 1 & MMA = 1 & I2CCNT = 0 ACKSTAT = 1
bit 2-0	- User must set START or write to I2CTXB to release SCL and shift Restart onto bus MODE<2:0>: I ² C Mode Select bits
bit 2-0	$111 = I^2 C$ Muti-Master mode (SMBus 2.0 Host), ⁽⁵⁾
	Works as both mode<2:0> = 001 and mode<2:0> = 100
	110 = I ² C Muti-Master mode (SMBus 2.0 Host), ⁽⁵⁾
	Works as both mode<2:0> = 000 and mode<2:0> = 100
	$101 = I^2 C$ Master mode, 10-bit address
	 100 = I²C Master mode, 7-bit address 11 = I²C Slave mode, one 10-bit address with masking
	$011 = 1^{\circ}$ C Slave mode, one to bit address with masking $010 = 1^{\circ}$ C Slave mode, two 10-bit address
	$001 = 1^2 C$ Slave mode, two 7-bit address with masking
	$000 = I^2 C$ Slave mode, four 7-bit address
Note 1:	SDA and SCL pins must be configured for open-drain with internal or external pull-up
	SDA and SCL pins must be selected as both input and output in PPS
	CSTR can be set by more than one hardware source, all sources must be addressed by user software before the SCL line is released. CSTR is a module status bit, and does not show the true bus state.
4:	SMA is set on the same SCL edge as CSTR for a matching received address

- 5: In this mode, ADRIE should be set, this allows an interrupt to clear the BCLIF condition and allow the ACK of matching address.
- 6: In 10-bit Slave mode, when ADB = 1, CSTR will set when the high address has not been read out of I2CxRXB before the low address is shifted in.

Register Definitions: FVR Control 34.3

REGISTE	R 34-1: FVI	RCON: FIXED V	OLTAGE RE	FERENCE O	ONTROL RE	GISTER	
R/W-0/0		R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	RDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF	VR<1:0>	ADFV	R<1:0>
bit 7							bit
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is u	inchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared	q = Value de	pends on condit	ion	
bit 7	1 = Fixed	Voltage Reference Voltage Reference Voltage Reference	e is enabled				
bit 6	1 = Fixed	ed Voltage Referen Voltage Referend Voltage Referend	e output is rea	ady for use	enabled		
bit 5	1 = Temp	mperature Indicator erature Indicator i erature Indicator i	s enabled)			
bit 4	1 = VOUT	Femperature Indica = 3V⊤ (High Rang = 2V⊤ (Low Rang	je)	election bit ⁽³⁾			
bit 3-2	11 = FVR 10 = FVR 01 = FVR	<1:0>: Comparato Buffer 1 Gain is 4 Buffer 1 Gain is 2 Buffer 1 Gain is 1 Buffer 1 Gain is 1	x, (4.096V) ⁽²⁾ x, (2.048V) ⁽²⁾	Gain Selection	bits		
bit 1-0	11 = FVR 10 = FVR 01 = FVR	:0>: ADC FVR Bu Buffer 2 Gain is 4 Buffer 2 Gain is 2 Buffer 2 Gain is 1 Buffer 2 Gain is 1	x, (4.096V) ⁽²⁾ x, (2.048V) ⁽²⁾	ection bit			
2:	•	vays '1'. Reference output (5.0 "Temperature			tional information		

DECISTED 2

3: See Section 35.0 "Temperature Indicator Module" for additional information.

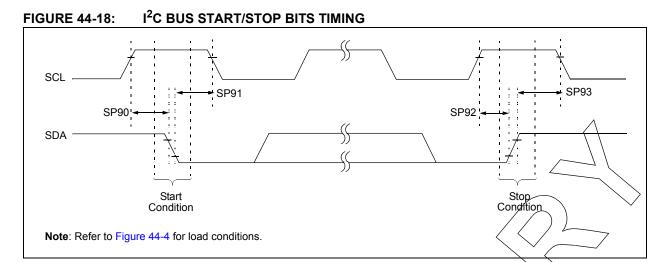
TABLE 34-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	EN	RDY	TSEN	TSRNG	CDAFVR<1:0>		ADFV	R<1:0>	597

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

41.2.2 EXTENDED INSTRUCTION SET

ADDULNK	Add Literal to FSR2 and Return								
Syntax:	ADDULN	Κk							
Operands:	$0 \le k \le 63$	3							
Operation:	FSR2 + k	$x \rightarrow FSR2$,						
	$(TOS) \rightarrow$	PC							
Status Affected:	None								
Encoding:	1110 1000 11kk kkkk								
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.								
Words:	1								
Cycles:	2		2						


Q Cycle Activity:

Q1 Q2		Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instructi	ion	
FSR2	=	0422h
PC	=	(TOS)

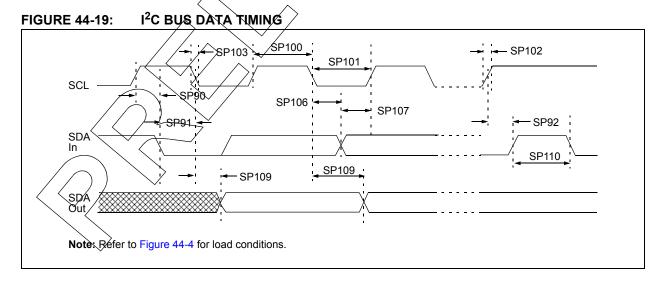

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

TABLE 44-25: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							$\left \right $	
Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz mode	4700	_	$ \geq $	ns	Only relevant for Repeated Start
		Setup time	400 kHz mode	600	$\langle - \rangle$		\land	condition
			1 MHz mode	260	λ	1		
SP91*	THD:STA	HD:STA Start condition Hold time	100 kHz mode	4060	1		ns	After this period, the first clock pulse is generated
			400 kHz mode	600	$\overline{)}$, ,	
			1 MHz	260	\checkmark	\succ		
SP92*	Tsu:sto	Stop condition	100 kHz mode	4000	<u> </u>	~_	ns	
		Setup time	400 kHz modę	600	\rightarrow	_		
			1 MHz	260	→ —	_		
SP93	THD:STO	Stop condition	100 kHz mode	4700	_	_	ns	
		Hold time	400 kHz mode	1300	—	_		
			1 MHz	500	—	_		

* These parameters are characterized but not tested.

© 2017 Microchip Technology Inc.