

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf55k42t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1	:		28-PIN ALI	LOCATION	TABLE (PIC18(L)F2XK42)													
0/1	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	I²C	IdS	UART	WSQ	Timers/SMT	CCP and PWM	CWG	сгс	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RA0	2	27	ANA0	-	—	C1IN0- C2IN0-	—	-	-	-	—	—	-	-	CLCIN0 ⁽¹⁾	-	-	IOCA0	-
RA1	3	28	ANA1	-	—	C1IN1- C2IN1-	—	-	_	-	—	—	—	—	CLCIN1 ⁽¹⁾	_	-	IOCA1	-
RA2	4	1	ANA2	VREF-	DAC1OUT1	C1IN0+ C2IN0+	—	—	-	-	—	—	-	—	—	-	-	IOCA2	-
RA3	5	2	ANA3	VREF+	_	C1IN1+	_	_	_	_	MDCARL ⁽¹⁾	_	-	_	_	_	_	IOCA3	_
RA4	6	3	ANA4	_	_	-		_	-		MDCARH ⁽¹⁾	T0CKI ⁽¹⁾	_	_	_	_	_	IOCA4	
RA5	7	4	ANA5	—	—	—	—	—	SS1 ⁽¹⁾	_	MDSRC ⁽¹⁾	—	—	—	_	_	—	IOCA5	-
RA6	10	7	ANA6	—	—	_		-			_	_	—	_		-	-	IOCA6	OSC2 CLKOUT
RA7	9	6	ANA7	-	—	—		-			_	_	—	_		-	Ι	IOCA7	OSC1 CLKIN
RB0	21	18	ANB0	—	—	C2IN1+	ZCD	-			_	_	CCP4 ⁽¹⁾	CWG1IN ⁽¹⁾		-	-	INT0 ⁽¹⁾ IOCB0	
RB1	22	19	ANB1	-	—	C1IN3- C2IN3-		SCL2 ^(3,4)			_	_	—	CWG2IN ⁽¹⁾		-	Ι	INT1 ⁽¹⁾ IOCB1	
RB2	23	20	ANB2	—	—	_		SDA2 ^(3,4)			_	_	—	CWG3IN ⁽¹⁾		-	-	INT2 ⁽¹⁾ IOCB2	
RB3	24	21	ANB3	—	—	C1IN2- C2IN2-					_	_	—	-		-	-	IOCB3	
RB4	25	22	ANB4 ADCACT ⁽¹⁾	—	-	—	-	—	—	—	—	T5G ⁽¹⁾	-	-	-	—	—	IOCB4	—
RB5	26	23	ANB5	-	-	_	_	_	_	_	-	T1G ⁽¹⁾	CCP3 ⁽¹⁾	_	_	_	_	IOCB5	_
RB6	27	24	ANB6	-	-	-	—	—	_	CTS2 ⁽¹⁾	—	—	-	—	CLCIN2 ⁽¹⁾	—	_	IOCB6	ICSPCLK
RB7	28	25	ANB7	—	DAC10UT2	—	—	—	_	RX2 ⁽¹⁾	—	T6IN(1)	-	—	CLCIN3 ⁽¹⁾	—	_	IOCB7	ICSPDAT

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All output signals shown in this row are PPS remappable.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins can be configured for I²C and SMB[™] 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUs input buffer thresholds.

TABLE 4-7: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES BANK 60

_				_											
3CFFh	—	3CDFh	—	3CBFh	—	3C9Fh	—	3C7Fh	—	3C5Fh	CLC4GLS3	3C3Fh	—	3C1Fh	—
3CFEh	MD1CARH	3CDEh	_	3CBEh	_	3C9Eh	_	3C7Eh	CLCDATA0	3C5Eh	CLC4GLS2	3C3Eh	_	3C1Eh	_
3CFDh	MD1CARL	3CDDh	—	3CBDh	—	3C9Dh	—	3C7Dh	CLC1GLS3	3C5Dh	CLC4GLS1	3C3Dh	—	3C1Dh	_
3CFCh	MD1SRC	3CDCh	—	3CBCh	—	3C9Ch	—	3C7Ch	CLC1GLS2	3C5Ch	CLC4GLS0	3C3Ch	—	3C1Ch	—
3CFBh	MD1CON1	3CDBh	—	3CBBh	—	3C9Bh	—	3C7Bh	CLC1GLS1	3C5Bh	CLC4SEL3	3C3Bh	—	3C1Bh	—
3CFAh	MD1CON0	3CDAh	—	3CBAh	—	3C9Ah	—	3C7Ah	CLC1GLS0	3C5Ah	CLC4SEL2	3C3Ah	—	3C1Ah	—
3CF9h	—	3CD9h	—	3CB9h	_	3C99h	_	3C79h	CLC1SEL3	3C59h	CLC4SEL1	3C39h	—	3C19h	_
3CF8h	—	3CD8h	—	3CB8h	_	3C98h	_	3C78h	CLC1SEL2	3C58h	CLC4SEL0	3C38h	—	3C18h	_
3CF7h	_	3CD7h	_	3CB7h	_	3C97h	—	3C77h	CLC1SEL1	3C57h	CLC4POL	3C37h	_	3C17h	_
3CF6h	—	3CD6h		3CB6h	—	3C96h	—	3C76h	CLC1SEL0	3C56h	CLC4CON	3C36h	—	3C16h	_
3CF5h	—	3CD5h		3CB5h	—	3C95h	—	3C75h	CLC1POL	3C55h	_	3C35h	—	3C15h	_
3CF4h	—	3CD4h		3CB4h	—	3C94h	—	3C74h	CLC1CON	3C54h	—	3C34h	—	3C14h	
3CF3h	—	3CD3h	—	3CB3h	_	3C93h	_	3C73h	CLC2GLS3	3C53h	—	3C33h	—	3C13h	_
3CF2h	—	3CD2h	—	3CB2h	_	3C92h	_	3C72h	CLC2GLS2	3C52h	—	3C32h	—	3C12h	_
3CF1h	—	3CD1h	—	3CB1h	_	3C91h	_	3C71h	CLC2GLS1	3C51h	—	3C31h	—	3C11h	_
3CF0h	—	3CD0h	—	3CB0h	_	3C90h	_	3C70h	CLC2GLS0	3C50h	—	3C30h	—	3C10h	_
3CEFh	—	3CCFh	—	3CAFh	_	3C8Fh	_	3C6Fh	CLC2SEL3	3C4Fh	—	3C2Fh	—	3C0Fh	_
3CEEh	—	3CCEh	—	3CAEh	_	3C8Eh	_	3C6Eh	CLC2SEL2	3C4Eh	—	3C2Eh	—	3C0Eh	_
3CEDh	—	3CCDh	—	3CADh	_	3C8Dh	_	3C6Dh	CLC2SEL1	3C4Dh	—	3C2Dh	—	3C0Dh	_
3CECh	—	3CCCh	—	3CACh	_	3C8Ch	_	3C6Ch	CLC2SEL0	3C4Ch	—	3C2Ch	—	3C0Ch	_
3CEBh	—	3CCBh	—	3CABh	_	3C8Bh	_	3C6Bh	CLC2POL	3C4Bh	—	3C2Bh	—	3C0Bh	_
3CEAh	—	3CCAh	—	3CAAh	_	3C8Ah	_	3C6Ah	CLC2CON	3C4Ah	—	3C2Ah	—	3C0Ah	_
3CE9h	—	3CC9h	—	3CA9h	—	3C89h	—	3C69h	CLC3GLS3	3C49h	—	3C29h	—	3C09h	—
3CE8h	—	3CC8h	—	3CA8h	—	3C88h	—	3C68h	CLC3GLS2	3C48h	—	3C28h	—	3C08h	—
3CE7h	—	3CC7h	—	3CA7h	_	3C87h	_	3C67h	CLC3GLS1	3C47h	—	3C27h	—	3C07h	_
3CE6h	CLKRCLK	3CC6h	—	3CA6h	—	3C86h	—	3C66h	CLC3GLS0	3C46h	—	3C26h	—	3C06h	—
3CE5h	CLKRCON	3CC5h	—	3CA5h	_	3C85h	_	3C65h	CLC3SEL3	3C45h	—	3C25h	—	3C05h	_
3CE4h	—	3CC4h	—	3CA4h	_	3C84h	_	3C64h	CLC3SEL2	3C44h	—	3C24h	—	3C04h	_
3CE3h	_	3CC3h	_	3CA3h		3C83h		3C63h	CLC3SEL1	3C43h	_	3C23h	_	3C03h	
3CE2h	—	3CC2h		3CA2h	—	3C82h	—	3C62h	CLC3SEL0	3C42h	_	3C22h	—	3C02h	
3CE1h		3CC1h		3CA1h	_	3C81h	_	3C61h	CLC3POL	3C41h	_	3C21h		3C01h	
3CE0h	_	3CC0h	_	3CA0h	_	3C80h	_	3C60h	CLC3CON	3C40h	_	3C20h	_	3C00h	_

Legend: Unimplemented data memory locations and registers, read as '0'.

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

REGISTER 5	-3: CONFIG	URATION W	ORD 2L (30	0002h)			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
BORE	EN<1:0>	LPBOREN	IVT1WAY	MVECEN	PWRT	⁻ S<1:0>	MCLRE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '1'	
-n = Value for	blank device	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7-6 bit 5 bit 4	BOREN<1:0>: When enabled 11 = Brown-ou 01 = Brown-ou 00 = Brown-ou LPBOREN : Lo 1 = Low-Powe 0 = Low-Powe IVT1WAY : IVTI 1 = IVTLOCK cycle 0 = IVTLOCK	Brown-out Res , Brown-out Rest at Reset is enabled at Reset is enabled at Reset is enabled at Reset is disabled at Reset is disabled aw-Power BOR ar BOR is disabled ar BOR is enabled LOCK bit One-1 ED bit can be s	set Enable bit set Voltage (\ bled, SBOREI bled while run bled according bled Enable bit led ed Way Set Enat leared and se et and cleared	s /BOR) is set by N bit is ignored ning, disabled g to SBOREN ble bit t only once; IV ⁻ multiple times	the BORV bit in Sleep; SBC Γ registers ren (subject to the	DREN is ignore nain locked afte unlock sequen	er one clear/set
bit 3	MVECEN: Mul 1 = Multi-vecto 0 = Legacy int	ti-vector Enable or enabled; Vec errupt behavior	e bit stor table used r	d for interrupts			
bit 2-1 bit 0	PWRTS<1:0>: 11 = PWRT is 10 = PWRT se 01 = PWRT se 00 = PWRT se MCLRE: Maste If LVP = 1: RE3 pin function If LVP = 0: 1 = MCLR pin 0 = MCLR pin	Power-up Time disabled et at 64 ms (204 et at 16 ms (512 et at 1 ms (32 Li er Clear (MCLR on is MCLR is MCLR function is a po	er Selection b 8 LFINTOSC 2 LFINTOSC (FINTOSC Cyc 7) Enable bit	its Cycles) Cycles) cles) nction			

REGISTER S	-4: CONFI	GURATION	VORD 2H (3	su uuusn)			
R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
XINST	_	DEBUG	STVREN	PPS1WAY	ZCD	BORV	<1:0>(1)
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '1'	
-n = Value for	blank device	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	XINST: Extend 1 = Extended 0 = Extended	ed Instruction instruction set instruction set	Set Enable bi and Indexed / and Indexed /	t Addressing moo Addressing moo	de are disable de are enable	d (Legacy mode d	e)
bit 6	Unimplemente	ed: Read as '1	,				
bit 5	DEBUG : Debu 1 = Backgrour 0 = Backgrour	gger Enable bind debugger is nd debugger is	t disabled enabled				
bit 4	STVREN: Stac 1 = Stack Ove 0 = Stack Ove	k Overflow/Un rflow or Under rflow or Under	derflow Reset flow will cause flow will not ca	t Enable bit e a Reset ause a Reset			
bit 3	PPS1WAY: PP 1 = PPSLOCK cycle 0 = PPSLOCK	SLOCKED On ED bit can be o ED bit can be	e-Way Set Er cleared and se set and cleare	nable bit et only once; PP ed multiple time	S registers rer s (subject to t	main locked afte he unlock seque	r one clear/se ence)
bit 2	ZCD : Zero-Cro 1 = ZCD is dis 0 = ZCD is alw	oss Detect Ena abled; ZCD ca vays enabled	ble bit n be enabled	by setting the t	oit SEN of the	ZCDCON regis	ter
bit 1-0	BORV<1:0>: E <u>PIC18FXXK42</u> 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou <u>PIC18LFXXK4</u> 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou	Brown-out Rese <u>Devices:</u> It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag <u>2 Device:</u> It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag	et Voltage Sel e (VBOR) is se e (VBOR) is se	ection bits ⁽¹⁾ et to 2.45V et to 2.45V et to 2.7V et to 2.85V et to 1.90V et to 1.90V et to 2.45V et to 2.7V et to 2.85V			

Note 1: The higher voltage setting is recommended for operation at or above 16 MHz.

- - - - - - -

REGISTER 5-5: CONFIGURATION WORD 3L (30 0004h)

U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	WDTE<1:0>			WDTCPS<4:0>						
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '1'

bit 6-5

WDTE<1:0>: WDT Operating Mode bits

 $\tt 00$ = WDT is disabled, SWDTEN is ignored

01 = WDT is enabled/disabled by the SWDTEN bit in WDTCON0

10 = WDT is enabled while Sleep = 0, suspended when Sleep = 1; SWDTEN is ignored

11 = WDT is enabled regardless of Sleep; SWDTEN is ignored

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

		WDTPS	at POR		0
WDTCPS<4:0>	Value	Divider Ra	itio	Typical Time-out (Fɪʌ = 31 kHz)	of WDTPS?
00000	00000	1:32	2 ⁵	1 ms	
00001	00001	1:64	2 ⁶	2 ms	
00010	00010	1:128	2 ⁷	4 ms	
00011	00011	1:256	2 ⁸	8 ms	
00100	00100	1:512	2 ⁹	16 ms	
00101	00101	1:1024	2 ¹⁰	32 ms	
00110	00110	1:2048	2 ¹¹	64 ms	
00111	00111	1:4096	2 ¹²	128 ms	
01000	01000	1:8192	2 ¹³	256 ms	
01001	01001	1:16384	2 ¹⁴	512 ms	No
01010	01010	1:32768	2 ¹⁵	1s	
01011	01011	1:65536	2 ¹⁶	2s	
01100	01100	1:131072	2 ¹⁷	4s	
01101	01101	1:262144	2 ¹⁸	8s	
01110	01110	1:524299	2 ¹⁹	16s	
01111	01111	1:1048576	2 ²⁰	32s	
10000	10000	1:2097152	2 ²¹	64s	
10001	10001	1:4194304	2 ²²	128s	
10010	10010	1:8388608	2 ²³	256s	
10011	10011		_		
 11110	 11110	1:32	2 ⁵	1 ms	No
11111	01011	1:65536	2 ¹⁶	2s	Yes

U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/W-1	
_	_	_	-	_	—	_	CP	
bit 7						•	bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimple	mented bit, read	d as '1'		
-n = Value for b	lank device	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

REGISTER 5-9: CONFIGURATION WORD 5L (30 0008h)

bit 7-1 Unimplemented: Read as '1'

bit 0

CP: User Program Flash Memory and Data EEPROM Code Protection bit

1 = User Program Flash Memory and Data EEPROM code protection is disabled

0 = User Program Flash Memory and Data EEPROM code protection is enabled

REGISTER 5-10: CONFIGURATION WORD 5H (30 0009h)

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	_	_	_	_	_	_
bit 7							bit 0

Legend:									
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'						
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 7-0 Unimplemented: Read as '1'

TABLE 5-2:SUMMARY OF CONFIGURATION WORDS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
30 0000h	CONFIG1L	_	l	RSTOSC<2:0	>		FEXTOSC<2:0>			1111 1111
30 0001h	CONFIG1H	_	_	FCMEN	_	CSWEN		PR1WAY	CLKOUTEN	1111 1111
30 0002h	CONFIG2L	BORE	N<1:0>	LPBOREN	IVT1WAY	MVECEN	PWRT	⁻S<1:0>	MCLRE	1111 1111
30 0003h	CONFIG2H	XINST	—	DEBUG	STVREN	PPS1WAY	ZCD BORV<1:0>		1111 1111	
30 0004h	CONFIG3L	_	WDTI	E<1:0>			WDTCPS		1111 1111	
30 0005h	CONFIG3H	_	—	V	VDTCCS<2:0	>	WDTCWS<2:0>			1111 1111
30 0006h	CONFIG4L	WRTAPP	_	_	SAFEN	BBEN		BBSIZE<2:0)>	1111 1111
30 0007h	CONFIG4H	_	—	LVP	_	WRTSAF	WRTD	WRTC	WRTB	1111 1111
30 0008h	CONFIG5L	_	_	_	_	_	_	_	CP	1111 1111
30 0009h	CONFIG5H	_	_	_	_	_	_	_	_	1111 1111

© 2017 Microchip Technology Inc.

TABLE 15-6: EXAMPLE DMA USE CASE TABLE

Source Module	Source Register(s)	Destination Module	Destination Register(s)	DCHxSIRQ	Comment
Signal Measurement Timer	SMTxCPW[U:H:L]	GPR	GPR[x,y,z]	SMTxPWAIF	Store Captured Pulse-width values
(SMT)	SMTxCPR[U:H:L]			SMTxPRAIF	Store Captured Period values
GPR/SFR/Program Flash/Data EEPROM	MEMORY[x,y]	TMR0	TMR0[H:L]	TMR0IF	Use as a Timer0 reload for custom 16-bit value
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x]	TMR0	PR0	ANY	Update TMR0 frequency based on a specific trigger
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x,y]	TMR1	TMR1[H:L]	TMR1IF	Use as a Timer1 reload for custom 16-bit value
TMR1	TMR1[H:L]	GPR	GPR[x,y]	TMR1GIF	Use TMR1 Gate interrupt flag to read data out of TMR1 register
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x]	TMR2	PR2	TMR2IF	
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x,y,z]	TMR2 CCP or PWM	PR2 CCPR[H:L] or PWMDC[H:L]	ANY	Frequency generator with 50% duty cycle look up table
ССР	CCPR[H:L]	GPR	GPR[x,y]	CCPxIF	Move data from CCP 16b Capture
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x,y]	CCP	CCPR[H:L]	ANY	Load Compare value or PWM values into the CCP
GPR/SFR/ Program Flash/Data EEPROM	MEMORY [x,y,z,u,v,w]	CCPx CCPy CCPz	CCPxR[H:L] CCPyR[H:L] CCPzR[H:L]	ANY	Update multiple PWM values at the same time e.g. 3-phase motor control
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x,y,z]	NCO	NCOxINC[U:H:L]	ANY	Frequency Generator look-up table
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x]	DAC	DACxCON0	ANY	Update DAC values
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x]	OSCTUNE	OSCTUNE	ANY	Automated Frequency dithering

x = bit is unknown u = bit is unchanged

REGISTE	R 15-1: DM	AXCONU: DMAX	CONTROL	. REGISTER	K U		
R/W-0/0	R/W/HC-0/0	R/W/HS/HC-0/0	U-0	U-0	R/W/HC-0/0	U-0	R/HS/HC-0/0
EN	SIRQEN	DGO	_	—	AIRQEN	—	XIP
bit 7							bit 0
Legend:	Legend:						
R = Readable bit W = Writable bit			U = Unimple	mented bit, read	d as '0'		

-n/n = Value at POR	0 = bit is cleared
and BOR/Value at all	
other Resets	

bit 7 EN: DMA Module Enable b	oit
-------------------------------	-----

- 1 = Enables module
- 0 = Disables module
- SIRQEN: Start of Transfer Interrupt Request Enable bits
 - 1 = Hardware triggers are allowed to start DMA transfers
 - 0 = Hardware triggers are not allowed to start DMA transfers

bit 5 DGO: DMA transaction bit

bit 6

- 1 = DMA transaction is in progress
- 0 = DMA transaction is not in progress
- bit 4-3 Unimplemented: Read as '0'

bit 2 AIRQEN: Abort of Transfer Interrupt Request Enable bits

- 1 = Hardware triggers are allowed to abort DMA transfers
- 0 = Hardware triggers are not allowed to abort DMA transfers

bit 1 Unimplemented: Read as '0'

- bit 0 XIP: Transfer in Progress Status bit
 - 1 = The DMAxBUF register currently holds contents from a read operation and has not transferred data to the destination.
 - 0 = The DMAxBUF register is empty or has successfully transferred data to the destination address

U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	
	_			RxyPP	S<5:0>			
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		ʻ0' = Bit is clea	ired					

REGISTER 17-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RxyPPS<5:0>:** Pin Rxy Output Source Selection bits See Table 17-2 for the list of available ports.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
TxCON			CKPS	6<1:0>		SYNC	RD16	ON	313
TxGCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	_	_	314
TxCLK	—	—	—		CS<4:0>				
TxGATE	—	—	—	GSS<4:0>					316
TMRxL	Least Significant Byte of the 16-bit TMR3 Register						317		
TMRxH	Holding Register for the Most Significant Byte of the 16-bit TMR3 Register						317		

TABLE 21-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by TIMER1/3/5.

25.6.11 WINDOWED COUNTER MODE

This mode counts pulses on the SMT1_signal input, within a window dictated by the SMT1WIN input. It begins counting upon seeing a rising edge of the SMT1WIN input, updates the SMT1CPW register on a falling edge of the SMT1WIN input, and updates the SMT1CPR register on each rising edge of the SMT1WIN input beyond the first. See Figure 25-21 and Figure 25-22.

FIGURE 25-22:

PIC18(L)F26/27/45/46/47/55/56/57K42

R/W/HC-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GO	REPEAT	AT MODE<3:0>					
bit 7							bit 0
Legend:							
HC = Bit is clea	ared by hardwa	are		HS = Bit is se	t by hardware		
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	tion	
bit 7	GO: GO Data 1 = Increment 0 = Increment	Acquisition bit ting, acquiring ting, acquiring	data is enableo data is disableo	d d			
bit 6	REPEAT: SM 1 = Repeat D 0 = Single Ac	T Repeat Acquate Acquate Acquate Acquisition quisition mode	iisition Enable mode is enabl is enabled	bit led			
bit 5-4	Unimplemen	ted: Read as '	o'				
bit 3-0	MODE<3:0>	SMT Operatior	Mode Select	bits			
	1111 = Rese	rved					
	•						
	•						
	1011 = Rese	rved					
	1010 = Windo	owed counter					
	1001 = Galet	ter					
	0111 = Captu	ire					
	0110 = Time	of flight					
	0101 = Gated	d windowed me	easure				
	0011 = High a	and low time m	easurement				
	0010 = Perio	d and Duty-Cyo	cle Acquisition				
	0001 = Gated	d Timer					
	0000 = 1 Imer						

REGISTER 25-2: SMT1CON1: SMT CONTROL REGISTER 1

31.21 Register Definitions: UART Control

Long bit name prefixes for the UART peripherals are shown below. Refer to **Section 1.3 "Register and Bit naming conventions**" for more information.

Peripheral	Bit Name Prefix
UART 1	U1
UART 2	U2

REGISTER 31-1: UxCON0: UART CONTROL REGISTER 0

R/W-0/0	R/W/HS/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
BRGS	ABDEN	TXEN	RXEN		MODE	=<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Hardware clear

bit 7	 BRGS: Baud rate Generator Speed Select bit 1 = Baud rate generator is high speed with 4 baud clocks per bit 0 = Baud rate generator is normal speed with 16 baud clocks per bit
bit 6	ABDEN: Auto-baud Detect Enable bit ⁽³⁾ 1 = Auto-baud is enabled. Receiver is waiting for Sync character (0x55) 0 = Auto-baud is not enabled or auto-baud is complete
bit 5	 TXEN: Transmit Enable Control bit⁽²⁾ 1 = Transmit is enabled. TX output pin drive is forced on when transmission is active, and controlled by PORT TRIS control when transmission is idle. 0 = Transmit is disabled. TX output pin drive is controlled by PORT TRIS control
bit 4	RXEN: Receive Enable Control bit ⁽²⁾ 1 = Receiver is enabled 0 = Receiver is disabled
bit 3-0	MODE<3:0>: UART Mode Select bits ⁽¹⁾ 1111 = Reserved 1100 = Reserved 1101 = Reserved 1100 = LIN Master/Slave mode ⁽⁴⁾ 1011 = LIN Slave-Only mode ⁽⁴⁾ 1010 = DMX mode ⁽⁴⁾ 1001 = DALI Control Gear mode ⁽⁴⁾ 1000 = DALI Control Device mode ⁽⁴⁾ 1011 = Reserved 0110 = Reserved 0110 = Reserved 0101 = Reserved 0101 = Reserved 0102 = Asynchronous 9-bit UART Address mode. 9th bit: 1 = address, 0 = data 0011 = Asynchronous 8-bit UART mode with 9th bit even parity 0010 = Asynchronous 8-bit UART mode with 9th bit odd parity 0010 = Asynchronous 8-bit UART mode
Note 1: 2: 3:	Changing the UART MODE while ON = 1 may cause unexpected results. Clearing TXEN or RXEN will not clear the corresponding buffers. Use TXBE or RXBE to clear the buffers. When MODE = $100x$, then ABDEN bit is ignored.

4: UART1 only.

R/S/C-1/1	R/S/C-0/0	R/W/S-0/0	R/W/S-0/0	R/S/C-0/0	R/W/S-0/0	R/W/S-0/0	R/W/S-0/0		
TXMTIF	PERIF	ABDOVF	CERIF	FERIF	RXBKIF	RXFOIF	TXCIF		
bit 7	·	·	·	-	·	• 	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	S = Hardwar	e set	C = Hardware clear			
L H 7					L				
Dit 7	1 = Transmit	shift register is	empty (Set a	terrupt Flag bi	[vite)				
	0 = Transmit	shift register is	actively shifti	ng data	113)				
bit 6	PERIF: Parity	Error Interrupt	Flag bit	-					
	LIN and Parity	<u>y modes</u> :							
	1 = Unread b	yte at top of in	out FIFO has	parity error	4				
		iyte at top of inj mode:	put FIFO does	s not nave pari	ty error				
	1 = Unread b	ovte at top of ini	out FIFO rece	ived as Forwa	rd Frame				
	0 = Unread b	yte at top of in	out FIFO rece	ived as Back F	rame				
	Address mod	<u>e</u> :							
	1 = Unread b	yte at top of in	put FIFO rece	ived as addres	SS				
	Other modes:								
	Not used								
bit 5	ABDOVF: Auto-baud Detect Overflow Interrupt Flag bit								
	DALI mode:								
	1 = Start bit measurement overflowed counter								
	U = NO OVERIOW OUTING Start bit measurement Other modes:								
	1 = Baud rate generator overflowed during the auto detection sequence								
	0 = Baud rate generator has not overflowed								
bit 4	CERIF: Chec	ksum Error Inte	errupt Flag bit	(LIN mode onl	y)				
	1 = Checksul	m error							
hit 3	EEDIE: Erami	ing Error Interri	unt Elag hit						
Dil S FERIF: Framing Error Interrupt Flag Dit									
	0 = Unread b	yte at top of in	put FIFO does	s not have fran	ning error				
bit 2	RXBKIF: Brea	ak Reception Ir	nterrupt Flag b	bit					
	1 = Break de	tected							
bit 1			rflow Interrupt	Elog bit					
	1 = Receive	FIFO has overf	lowed	riay bit					
	0 = Receive	FIFO has not o	verflowed						
bit 0	TXCIF: Trans	mit Collision In	terrupt Flag bi	it					
	1 = Transmitt	ed word is not	equal to the w	ord received	during transmise	sion			
	0 = Transmit	ted word equals	s the word rec	eived during t	ransmission				

REGISTER 31-4: UXERRIR: UART ERROR INTERRUPT FLAG REGISTER

The SPI transmit output (SDO_out) is available to the remappable PPS SDO pin and internally to the following peripherals:

- Configurable Logic Cell (CLC)
- Data Signal Modulator (DSM)

The SPI bus typically operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions typically involve shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new bit is shifted into the device. Unlike older Microchip devices, the SPI on the PIC18(L)F2X/4X/5XK42 contains two separate registers for incoming and outgoing data. Both registers also have 2-byte FIFO buffers and allow for DMA bus connections.

Figure 32-2 shows a typical connection between two PIC18F2X/4X/5XK42 devices configured as master and slave devices.

Data is shifted out of the transmit FIFO on the programmed clock edge and into the receive shift register on the opposite edge of the clock.

The master device transmits information on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

The master device sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its output register (on its SDO pin) and the slave device is reading this bit and saving as the LSb of its input register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its input register.

After eight bits have been shifted out, the master and slave have exchanged register values and stored the incoming data into the receiver FIFOs.

If there is more data to exchange, the registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data) depends on the application software. This leads to three scenarios for data transmission:

· Master sends useful data and slave sends dummy

data

- Master sends useful data and slave sends useful data
- Master sends dummy data and slave sends useful data

In this particular SPI module, dummy data may be sent without software involvement, by clearing either the RXR bit (for receiving dummy data) or the TXR bit (for sending dummy data) (see Table 32-1 as well as Section 32.5 "Master mode" and Section 32.6 "Slave Mode" for further TXR/RXR setting details). This SPI module can send transmissions of any number of bits, and can send information in segments of varying size (from 1-8 bits in width). As such, transmissions may involve any number of clock cycles, depending on the amount of data to be transmitted.

When there is no more data to be transmitted, the master stops sending the clock signal and deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line disregards the clock and transmission signals and does not transmit out any data of its own.

FIGURE 33-16: REPEATED START CONDITION TIMING

33.5.7 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled automatically following an address/data byte transmission. The SCL pin is pulled low and the contents of the Acknowledge Data bits (ACKDT/ACKCNT) are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The master then waits one clock period (TSCL) and the SCL pin is released high. When the SCL pin is sampled high (clock arbitration), the master counts another TSCL. The SCL pin is then pulled low. Figure 33-17 shows the timings for Acknowledge sequence.

FIGURE 33-17: ACKNOWLEDGE SEQUENCE TIMING

33.5.8 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of receive/transmit when I2CxCNT = 0. After the last byte of a receive/transmit sequence, the SCL line is held low. The master asserts the SDA line low. The SCL pin is then released high TscL/2 later and is detected high. The SDA pin is then released. When the SDA pin

transitions high while SCL is high, the PCIF bit of the I2CxIF register is set. Figure 33-18 shows the timings for a Stop condition.

REGISTE	R 33-2: I2C>	CON1: I ² C CO	ONTROL REC	GISTER 1					
R/W-0	R/W-0	R-0	R-0	U-0	R/W/HS-0	R/W/HS-0	R/W-0		
ACKCNT ⁽	⁽²⁾ ACKDT ^(1,2)	ACKSTAT	ACKT	—	RXO	TXU	CSD		
bit 7							bit 0		
Legend:									
R = Reada	able bit	W = Writable b	it	U = Unimple	mented bit, reac	l as '0'			
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other F							her Resets		
'1' = Bit is set'0' = Bit is clearedHS = Hardware setHC = Hardware clear									
bit 7	ACKCNT: A Acknowledg 1 = Not Ack 0 = Acknow	cknowledge End e value transmit nowledge (copie ledge (copied to	d of Count bit ⁽²⁾ ted after receiv ed to SDA outpi 9 SDA output)	ed data, when ut)	I2CCNT = 0				
bit 6	ACKDT: Acknowledge Data bit ^(1,2) Acknowledge value transmitted after matching address Acknowledge value transmitted after received data, when I2CCNT! = 0 1 = Not Acknowledge (copied to SDA output) 0 = Acknowledge (copied to SDA output)								
bit 5	ACKSTAT: A 1 = Acknow 0 = Acknow	ACKSTAT: Acknowledge Status bit (Transmission only) 1 = Acknowledge was not received for most recent transmission 0 = Acknowledge was received for most recent transmission							
bit 4	ACKT: Acknowledge Time Status bit 1 = Indicates the I ² C bus is in an Acknowledge sequence, set on 8th falling edge of SCL clock 0 = Not in Acknowledge sequence, cleared on 9th rising edge of SCL								
bit 3	Unimpleme	Unimplemented: Read as 1'b0							
bit 2	RXO: Receive Overflow Status bit (MODE<2:0> = 0xx & 11x) This bit can only be set when CSD= 1 1 = Set when SMA = 1, and a master clocks in data when RXBF = 1 0 = No slave overflow condition								
bit 1	TXU: Transmit Underflow Status bit (MODE<2:0> = $0 \times \times \& 11 \times$) This bit can only be set when CSTRDIS = 1 1 = Set when SMA = 1, and a master clocks out data when TXBE = 1 0 = No slave underflow condition								
bit 0	CSD: Clock 1 = When S 0 = Slave cl	Stretching Disat MA = 1, the CS lock stretching p	ble bit (MODE< TR bit will neve roceeds norma	2:0> = 0xx & : er be set illy	11x)				
Note 1: 2:	Software writes NACK may still	to ACKDT bit m be generated by	ust be followed [,] I ² C hardware	by a minimum when bus erro	SDA data-seturs are indicated	p time before cle in the I2CxSTA	earing CSTR. T1 or		

I2CxERR registers.

REGISTER 36-32: ADLTHL: ADC LOWER THRESHOLD LOW BYTE REGISTER

R/W-0/0	R/W-0/0	W-0/0 R/W-0/0 R/W-0/0		R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			LTH<	:7:0>					
bit 7									
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown				-n/n = Value a	at POR and BO	R/Value at all o	other Resets		

bit 7-0 LTH<7:0>: ADC Lower Threshold LSB. LTH and UTH are compared with ERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 36-33: ADUTHH: ADC UPPER THRESHOLD HIGH BYTE REGISTER

'0' = Bit is cleared

UTH<15:8> bit 7	0/0										
bit 7	UTH<15:8>										
	bit 0										
Legend:											

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **UTH<15:8>**: ADC Upper Threshold MSB. LTH and UTH are compared with ERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 36-34: ADUTHL: ADC UPPER THRESHOLD LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 I				R/W-0/0	R/W-0/0		
UTH<7:0>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **UTH<7:0>**: ADC Upper Threshold LSB. LTH and UTH are compared with ERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

© 2017 Microchip Technology Inc.

= Bit is set

Mnemonic,		Description	Cycles	16-Bit Instruction Word				Status	Notos
Operan	nds	Description	Cycles	MSb		LSb		Affected	Notes
BYTE-ORIE	NTED FI	LE REGISTER INSTRUCTIONS						•	
ADDWF	f, d ,a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	
MOVF	f, d, a	Move f to WREG or f	1	0101	00da	ffff	ffff	Z, N	
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	2, 3
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVFFL	f _s , f _d	Move f _s (source) to	3	0000	0000	0110	ffff	None	2
	0 u	g (full destination)		1111	ffff	ffff	ffgg		
		f _d (full destination)3rd word		1111	gggg	gggg	gggg		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	
BYTE-ORIE	NTED SI								
CPESEQ	fa	Compare f with WREG_skin =	1 (2 or 3)	0110	001a	ffff	ffff	None	1
CPESGT	fa	Compare f with WREG skip >	1(2 or 3)	0110	010a	ffff	ffff	None	1
CPESLT	fa	Compare f with WREG skip <	1(2 or 3)	0110	000a	ffff	ffff	None	1
DECESZ	fda	Decrement f Skip if 0	1(2 or 3)	0010	11da	ffff	ffff	None	1
DCESNZ	fda	Decrement f. Skip if Not 0	1(2 or 3)	0100	11da	ffff	ffff	None	1
INCES7	fda	Increment f. Skip if 0	1(2 or 3)	0011	11da	ffff	ffff	None	1
INESNZ	fda	Increment f Skip if Not 0	1(2 or 3)	0100	10da	ffff	ffff	None	1
TSTESZ	fa	Test f skip if 0	1(2 or 3)	0110	011a	ffff	ffff	None	1
BIT-ORIENT			1 (2 01 0)	0110	UIIU			Hono	
BCF	f h a	Rit Clear f	1	1001	hhha	ffff	ffff	None	
BSE	f b a	Bit Sot f	1	1001	bbbb	1 I I I F F F F	1111 1111	None	
BTG	fda	Bit Togale f		0111	bbba	1 I I I I I I I	1111 1111	None	
				UTTT	buba	TTTT	TTTT	INOLIC	
BIT-ORIENT	EDSKI								
BIFSC	t, b, a	Bit lest f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	
RIESS	t, b, a	Bit lest f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	1

TABLE 41-2: INSTRUCTION SET

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3: f_s and f_d do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.