

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf56k42-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.2 Interrupt Vector Table (IVT)

The interrupt controller supports an Interrupt Vector Table (IVT) that contains the vector address location for each interrupt request source.

The Interrupt Vector Table (IVT) resides in program memory, starting at address location determined by the IVTBASE registers; refer to Register 9-36, Register 9-37 and Register 9-38 for details. The IVT contains 68 vectors, one for each source of interrupt. Each interrupt vector location contains the starting address of the associated Interrupt Service Routine (ISR).

The MVECEN bit in Configuration Word 2L controls the availability of the vector table.

9.2.1 INTERRUPT VECTOR TABLE BASE ADDRESS (IVTBASE)

The start address of the vector table is user programmable through the IVTBASE registers. The user must ensure the start address is such that it can encompass the entire vector table inside the program memory.

Each vector address is a 16-bit word (or two address locations on PIC18 devices). So for n interrupt sources, there are 2n address locations necessary to hold the table starting from IVTBASE as the first location. So the staring address of IVTBASE should be chosen such that the address range form IVTBASE to (IVTBASE +2n-1) can be encompassed inside the program flash memory.

For example, the K42 devices have the highest vector number: 81. So IVTBASE should be chosen such that (IVTBASE + 0xA1) is less than the last memory location in program flash memory.

A programmable vector table base address is useful in situations to switch between different sets of vector tables, depending on the application. It can also be used when the application program needs to update the existing vector table (vector address values).

Note: It is required that the user assign an even address to the IVTBASE register for correct operation.

9.2.2 INTERRUPT VECTOR TABLE CONTENTS

MVECEN = 0

When MVECEN = 0, the address location pointed by the IVTBASE registers has a GOTO instruction for a high priority interrupt. Similarly, the corresponding low priority vector location also has a GOTO instruction, which is executed in case of a low priority interrupt.

MVECEN = 1

When MVECEN = 1, the value in the vector table of each interrupt, points to the address location of the first instruction of the interrupt service routine.

ISR Location = Interrupt Vector Table entry << 2.

9.2.3 INTERRUPT VECTOR TABLE (IVT) ADDRESS CALCULATION

MVECEN = 0

When the MVECEN bit in Configuration Word 2L (Register 5-3) is cleared, the address pointed by IVTBASE registers is used as the high priority interrupt vector address. The low priority interrupt vector address is offset eight instruction words from the address in IVTBASE registers.

For PIC18 devices the IVTBASE registers default to 00 0008h, the high priority interrupt vector address will be 00 0008h and the low priority interrupt vector address will be 00 0018h.

MVECEN = 1

Each interrupt has a unique vector number associated with it as defined in Table 9-2. This vector number is used for calculating the location of the interrupt vector for a particular interrupt source.

Interrupt Vector Address = IVTBASE + (2*Vector Number).

This calculated Interrupt Vector Address value is stored in the IVTAD<20:0> registers when an interrupt is received (Registers 9-39 through 9-41).

User-assigned software priority assigned using the IPRx registers does not affect address calculation and is only used to resolve concurrent interrupts.

If for any reason the address of the ISR could not be fetched from the vector table, it will cause the system to reset and clear the memory execution violation flag (MEMV bit) in PCON1 register (Register 6-3). This occurs due to any one of the following:

- The entry for the interrupt in the vector table lies outside the executable PFM area (SAF area is non-executable when SAFEN = 1).
- ISR pointed by the vector table lies outside the executable PFM area (SAF area is nonexecutable when SAFEN = 1).

TABLE 9-1: IVT ADDRESS CALCULATION SUMMARY

IVT Address Calculation		Interrupt Priority INTCON0 Register, IPEN bit			
		0	1		
Multi-Vector Enable CONFIG 2L register MVECEN bit	0		High Priority IVTBASE		
	U	IVIBASE	Low Priority IVTBASE + 8 words		
	1	IVTBASE + 2*(Vector Number)		

9.2.4 ACCESS CONTROL FOR IVTBASE REGISTERS

The Interrupt controller has an IVTLOCKED bit which can be set to avoid inadvertent changes to the IVT-BASE registers contents. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes.

To allow writes to IVTBASE registers, the interrupts must be disabled (GIEH = 0) and the IVTLOCKED bit must be cleared. The user must follow the sequence shown in Example 9-1 to clear the IVTLOCKED bit.

EXAMPLE 9-1: IVT UNLOCK SEQUENCE

;	Disable Interrupts:	
	BCF	INTCON0, GIE;
;	Bank to IVTLOCK regi	ster
	BANKSEL	IVTLOCK;
	MOVLW	55h;
;	Required sequence, r	next 4 instructions
	MOVWF	IVTLOCK;
	MOVLW	AAh;
	MOVWF	IVTLOCK;
;	Clear IVTLOCKED bit	to enable writes
	BCF	IVTLOCK, IVTLOCKED;
;	Enable Interrupts	
	BSF	INTCONO, GIE;

The user must follow the sequence shown in Example 9-2 to set the IVTLOCKED bit.

EXAMPLE 9-2: IVT LOCK SEQUENCE

S
ED;
E

When the IVT1WAY Configuration bit is set, the IVTLOCKED bit can be cleared and set only once after a device Reset. The unlock operation in Example 9-1 will have no effect after the lock sequence in Example 9-2 is used to set the IVTLOCK. Unlocking is inhibited until a system Reset occurs.

PIC18(L)F26/27/45/46/47/55/56/57K42

R-0/0	R-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
I2C2TXIF	(2) I2C2RXIF ⁽²⁾	DMA2AIF	DMA2ORIF	DMA2DCNTIF	DMA2SCNTIF	C2IF	INT1IF ⁽³⁾
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable b	bit	U = Unimpleme	ented bit, read a	s '0'	
u = Bit is	unchanged	x = Bit is unkn	own	-n/n = Value at	POR and BOR/	Value at all ot	her Resets
'1' = Bit is	set	'0' = Bit is clea	ired	HS = Bit is set	in hardware		
bit 7	I2C2TXIF : I ²	C2 Transmit Int	errupt Flag bit ⁽²	2)			
	1 = Interrupt	has occurred	_				
	0 = Interrupt	event has not o	occurred				
bit 6		C2 Receive Inte	errupt Flag bit ^v	-)			
	1 = Interrupt 0 = Interrupt	t event has not (occurred				
bit 5	DMA2AIF: D	MA2 Abort Inte	rrupt Flag bit				
	1 = Interrupt 0 = Interrupt	t has occurred (t event has not o	must be cleare	d by software)			
bit 4	DMA2ORIF:	DMA2 Overrun	Interrupt Flag	bit			
	1 = Interrupt 0 = Interrupt	t has occurred (event has not o	must be cleare	d by software)			
bit 3	DMA2DCNT	IF: DMA2 Desti	nation Count Ir	nterrupt Flag bit			
	1 = Interrupt 0 = Interrupt	: has occurred (event has not (must be cleare	d by software)			
bit 2	DMA2SCNT	IF: DMA2 Source	ce Count Interro	upt Flag bit			
	1 = Interrupt 0 = Interrupt	t has occurred (t event has not o	must be cleare	d by software)			
bit 1	C2IF: C2 Inte	errupt Flag bit					
	1 = Interrupt 0 = Interrupt	t has occurred (event has not o	must be cleare occurred	d by software)			
bit 0	INT1IF: Exte	rnal Interrupt 1	Interrupt Flag b	oit ⁽³⁾			
	1 = Interrupt 0 = Interrupt	t has occurred (event has not o	must be cleare occurred	d by software)			
Note 1:	Interrupt flag bit enable bit, or th clear prior to en	s get set when a e global enable abling an interr	an interrupt cor bit. User softw upt.	ndition occurs, re are should ensur	gardless of the s the appropriat	state of its cor te interrupt fla	responding g bits are
2:	I2CxTXIF and I register must be	2CxRXIF are re	ead-only bits. To	o clear the interru	upt condition, the	e CLRBF bit ir	1 I2CxSTAT1
3:	The external in	terrupt GPIO pir	n is selected by	the INTxPPS re	egister.		

REGISTER 9-8: PIR5: PERIPHERAL INTERRUPT REGISTER 5⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
I2C1RXIE	SPI1IE	SPI1TXIE	SPI1RXIE	DMA1AIE	DMA10RIE	DMA1DCNTIE	DMA1SCNTIE	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	e bit	U = Unimplem	ented bit, read a	as '0'		
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value at	POR and BOR	/Value at all othe	r Resets	
'1' = Bit is se	t	'0' = Bit is cle	eared					
bit 7	I2C1RXIE: I	² C1 Receive I	nterrupt Enab	le bit				
	1 = Enabled	1						
	0 = Disable	d						
bit 6	SPI1IE: SPI	1 Interrupt Ena	able bit					
	1 = Enableo	1 H						
bit 5		SPI1 Transmit	Interrunt Enal	hle hit				
Site	1 = Fnablec							
	0 = Disable	d						
bit 4	SPI1RXIE: S	SPI1 Receive	Interrupt Enat	ole bit				
	1 = Enabled	ł						
	0 = Disable	d						
bit 3	bit 3 DMA1AIE: DMA1 Abort Interrupt Enable bit							
	1 = Enablec	1						
hit 2			un Intorrunt E	nabla bit				
DIL Z	1 = Enablec		un interrupt 🗆					
	0 = Disable	d						
bit 1	DMA1DCNT	TE: DMA1 De	stination Cou	nt Interrupt Enat	ole bit			
	1 = Enabled	ł		•				
	0 = Disable	d						
bit 0	DMA1SCNT	IE: DMA1 So	urce Count In	terrupt Enable b	it			
	1 = Enabled	1						
		u						

REGISTER 9-16: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
I2C2TXIE	I2C2RXIE	DMA2AIE	DMA2ORIE	DMA2DCNTIE	DMA2SCNTIE	C2IE	INT1IE
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is und	changed	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	Value at all ot	her Resets
'1' = Bit is se	t	'0' = Bit is clea	red				
bit 7	I2C2TXIE: I ²	² C2 Transmit Int	errupt Enable b	it			
	1 = Enabled	1					
h # 0							
DILO	1 = Enabled		errupt Enable b	IL			
	0 = Disable	d					
bit 5	DMA2AIE:	DMA2 Abort Inte	rrupt Enable bit				
	1 = Enabled	1					
	0 = Disable	d					
bit 4	DMA2ORIE:	: DMA2 Overrun	Interrupt Enab	le bit			
	1 = Enablec	1					
h # 0			notion Count In	termunt Enchle hi			
DIL S	1 = Enabled	IE: DIVIAZ DESU	nation Count in	terrupt Enable bi	L		
	0 = Disable	d					
bit 2	DMA2SCNT	IE: DMA2 Sour	ce Count Interru	ıpt Enable bit			
	1 = Enabled	1					
	0 = Disable	d					
bit 1	C2IE: C2 Int	errupt Enable bi	t				
	1 = Enabled						
hit 0		u Arnal Intorrupt 1	Enable bit				
	1 = Enablec	anannienupi i 1					
	0 = Disable	d					

REGISTER 9-19: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

REGISTER 13-2: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	NVMCON2<7:0>									
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable bit	t	U = Unimpler	nented bit, read	d as '0'				
x = Bit is unkno	own	'0' = Bit is cleare	ed	'1' = Bit is set						
-n = Value at F	POR									

bit 7-0 NVMCON2<7:0>:

Refer to Section 13.1.4 "NVM Unlock Sequence".

Note 1: This register always reads zeros, regardless of data written.

Register 13-3: NVMADRL: Data EEPROM Memory Address Low

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
ADR<7:0>								
bit 7 bit 0								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set	
-n = Value at POR			

bit 7-0 ADR<7:0>: EEPROM Read Address bits

REGISTER 13-4: NVMADRH: DATA EEPROM MEMORY ADDRESS HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	—	—	ADR<9:8>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set	
-n = Value at POR			

bit 7-2 Unimplemented: Read as '0'

bit 1-0 ADR<9:8>: EEPROM Read Address bits

Note 1: The NVMADRH register is not implemented on PIC18(L)F45/55K42.

REGISTER 14-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown -n/n = Value a		at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 ACC<7:0>: CRC Accumulator Register bits

REGISTER 14-7: CRCSHIFTH: CRC SHIFT HIGH BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
SHIFT<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<15:8>: CRC Shifter Register bits

Reading from this register reads the CRC Shifter.

REGISTER 14-8: CRCSHIFTL: CRC SHIFT LOW BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SHIFT<7:0>									
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<7:0>: CRC Shifter Register bits Reading from this register reads the CRC Shifter.

x = Bit is unknown

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
INLVLx7	INLVLx6	INLVLx5	INLVLx4	INLVLx3	INLVLx2	INLVLx1	INLVLx0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

REGISTER 16-8: INLVLx: INPUT LEVEL CONTROL REGISTER

-n/n = Value at POR and BOR/Value at all other Resets

'0' = Bit is cleared

bit 7-0

'1' = Bit is set

- INLVLx<7:0>: Input Level Select on Pins Rx<7:0>, respectively
- 1 = ST input used for port reads and interrupt-on-change

0 = TTL input used for port reads and interrupt-on-change

TABLE 16-9: INPUT LEVEL PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2 ⁽¹⁾	INLVLB1 ⁽¹⁾	INLVLB0
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4 ⁽¹⁾	INLVLC3 ⁽¹⁾	INLVLC2	INLVLC1	INLVLC0
INLVLD ⁽²⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1 ⁽¹⁾	INLVLD0 ⁽¹⁾
INLVLE		—		—	INLVLE3	INLVLE2 ⁽²⁾	INLVLE1 ⁽²⁾	INLVLE0 ⁽²⁾
INLVLF ⁽³⁾	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0

Note 1: Any peripheral using the I^2C pins read the I^2C ST inputs when enabled via Rxyl2C.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

17.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 17-1.

The peripheral input is selected with the peripheral xxxPPS register (Register 17-1), and the peripheral output is selected with the PORT RxyPPS register (Register 17-2). For example, to select PORTC<7> as the UART1 RX input, set U1RXPPS to 0b1 0111, and to select PORTC<6> as the UART1 TX output set RC6PPS to 0b01 0011.

17.1 PPS Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Multiple peripherals can operate from the same source simultaneously. Port reads always return the pin level regardless of peripheral PPS selection. If a pin also has analog functions associated, the ANSEL bit for that pin must be cleared to enable the digital input buffer.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 17-1.

Note:	The notation "xxx" in the register name is
	a place holder for the peripheral identifier.
	For example, INT0PPS.

17.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals include:

• UART

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 17-2.

Note: The notation "Rxy" is a place holder for the pin identifier. For example, RA0PPS.

m = value depends on default location for that input

17.8 Register Definitions: PPS Input Selection

'1' = Bit is set

'0' = Bit is cleared

REGISTER 17-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

U = Unimplemented bit,

read as '0'

U-0	U-0	R/W-m/u ^(1,3)	R/W-m/u ⁽¹⁾	R/W-m/u ⁽¹⁾	R/W-m/u ⁽¹⁾	R/W-m/u ⁽¹⁾	R/W-m/u ⁽¹⁾
—	_			xxxPF	°S<5:0>		
bit 7 bi							
Legend:							
R = Readable bit W = Wr		W = Writable	' = Writable bit -n/n = Value at POR and BOR/Value at all of			ther Resets	
u = Bit is unchanged x = Bit is unknown		nown	q = value depends on peripheral				

bit 7-6	Unimplemented: Read as '0'
bit 5-3	xxxPPS<5:3>: Peripheral xxx Input PORTx Pin Selection bits
	See Table 17-1 for the list of available ports and default pin locations. $101 = PORTF^{(2)}$ $100 = PORTE^{(3)}$ $011 = PORTD^{(3)}$ 010 = PORTC 001 = PORTB 000 = PORTA
oit 2-0	xxxPPS<2:0>: Peripheral xxx Input PORTx Pin Selection bits
	 111 = Peripheral input is from PORTx Pin 7 (Rx7) 110 = Peripheral input is from PORTx Pin 6 (Rx6) 101 = Peripheral input is from PORTx Pin 5 (Rx5) 100 = Peripheral input is from PORTx Pin 4 (Rx4) 011 = Peripheral input is from PORTx Pin 3 (Rx3) 010 = Peripheral input is from PORTx Pin 2 (Rx2) 001 = Peripheral input is from PORTx Pin 1 (Rx1) 000 = Peripheral input is from PORTx Pin 0 (Rx0)

Note 1: The Reset value 'm' of this register is determined by device default locations for that input.

2: Reserved on PIC18LF26/27/45/46/57K42 parts.

3: Reserved on PIC18LF26/27K42 parts.

REGISTER 21-4: TxGATE: TIMERx GATE ISM REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	—	_			GSS<4:0>		
bit 7		·					bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **GSS<4:0>:** Timerx Gate Source Selection bits

	Timer1	Timer3	Timer5
655	Gate Source	Gate Source	Gate Source
11111-11011	Reserved	Reserved	Reserved
11010	CLC4_out	CLC4_out	CLC4_out
11001	CLC3_out	CLC3_out	CLC3_out
11000	CLC2_out	CLC2_out	CLC2_out
10111	CLC1_out	CLC1_out	CLC1_out
10110	ZCDOUT	ZCDOUT	ZCDOUT
10101	CMP2OUT	CMP2OUT	CMP2OUT
10100	CMP10UT	CMP1OUT	CMP10UT
10011	NCO10UT	NCO10UT	NCO10UT
10010-10001	Reserved	Reserved	Reserved
10000	PWM8OUT	PWM8OUT	PWM8OUT
01111	PWM7OUT	PWM7OUT	PWM7OUT
01110	PWM6OUT	PWM6OUT	PWM6OUT
01101	PWM5OUT	PWM5OUT	PWM5OUT
01100	CCP4OUT	CCP4OUT	CCP4OUT
01011	CCP3OUT	CCP3OUT	CCP3OUT
01010	CCP2OUT	CCP2OUT	CCP2OUT
01001	CCP10UT	CCP10UT	CCP10UT
01000	SMT1_match	SMT1_match	SMT1_match
00111	TMR6OUT (postscaled)	TMR6OUT (postscaled)	TMR6OUT (postscaled)
00110	TMR5 overflow	TMR5 overflow	Reserved
00101	TMR4OUT (postscaled)	TMR4OUT (postscaled)	TMR4OUT (postscaled)
00100	TMR3 overflow	Reserved	TMR3 overflow
00011	TMR2OUT (postscaled)	TMR2OUT (postscaled)	TMR2OUT (postscaled)
00010	Reserved	TMR1 overflow	TMR1 overflow
00001	TMR0 overflow	TMR0 overflow	TMR0 overflow
00000	Pin selected by T1GPPS	Pin selected by T3GPPS	Pin selected by T5GPPS

22.5 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the T2CON register are cleared).
- The diagrams illustrate any clock except FOSC/4 and show clock-sync delays of at least two full cycles for both ON and T2TMR_ers. When using FOSC/4, the clocksync delay is at least one instruction period for T2TMR_ers; ON applies in the next instruction period.
- ON and T2TMR_ers are somewhat generalized, and clock-sync delays may produce results that are slightly different than illustrated.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in Section 23.0 "Capture/ Compare/PWM Module" and Section 24.0 "Pulse-Width Modulation (PWM)". The signals are not a part of the T2TMR module.

22.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the T2TMR_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high, then the duty cycle is also extended.

When MODE<4:0> = 00001, then the timer is stopped when the external signal is high. When MODE<4:0> = 00010, then the timer is stopped when the external signal is low.

Figure 22-5 illustrates the Hardware Gating mode for MODE<4:0>= 00001 in which a high input level starts the counter.

MODE 0b00001 TMRx_clk TMRx_ers TxPR 5 TxTMR 0 1 2 3 4 5 0 1 TMRx_postscaled		Rex 10-000196C 91/2/2016
TMRx_clk TMRx_ers TMRx_ers 5 TxPR 5 TxTMR 0 1 / 2 / 3 / 4 / 5 / 0 / 1 / 2 3 / 4 / 5 / 0 / 1 TMRx_postscaled	MODE	0b00001
TMRx_ers 5 TxPR 5 TxTMR 0 1 2 3 4 5 0 1 FMRx_postscaled	TMRx_clk	
TxPR 5 TxTMR 0 1 2 3 4 5 0 1 FMRx_postscaled	TMRx_ers	
TxTMR 0 1 2 3 4 5 0 1 FMRx_postscaled	TxPR	5
FMRx_postscaled	TxTMR	$\begin{array}{c c} 0 \\ \hline \end{array} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
PWM Duty 3 Cycle ////////////////////////////////////	TMRx_postscaled	
PWM Output	PWM Duty Cycle	3
	PWM Output	

22.5.3 EDGE-TRIGGERED HARDWARE LIMIT MODE

In Hardware Limit mode the timer can be reset by the TMRx_ers external signal before the timer reaches the period count. Three types of Resets are possible:

- Reset on rising or falling edge (MODE<4:0> = 00011)
- Reset on rising edge (MODE<4:0> = 0010)
- Reset on falling edge (MODE<4:0> = 00101)

When the timer is used in conjunction with the CCP in PWM mode then an early Reset shortens the period and restarts the PWM pulse after a two clock delay. Refer to Figure 22-6.

FIGURE 22-6: EDGE TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM (MODE=00100)

REGISTER 27-3: CLCxSEL0: GENERIC CLCx DATA 0 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			D1S	8<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D1S<5:0>: CLCx Data1 Input Selection bits See Table 27-1.

REGISTER 27-4: CLCxSEL1: GENERIC CLCx DATA 1 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			D28	6<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D2S<5:0>: CLCx Data 2 Input Selection bits See Table 27-1.

See Table 27-1.

REGISTER 27-5: CLCxSEL2: GENERIC CLCx DATA 2 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—			D3S	8<5:0>		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement	ted bit, read as '0'		
u = Bit is unchange	d	x = Bit is unknown		-n/n = Value at P	OR and BOR/Value	at all other Resets	
'1' = Bit is set		'0' = Bit is cleared					

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D3S<5:0>: CLCx Data 3 Input Selection bits See Table 27-1.

REGISTER 27-6: CLCxSEL3: GENERIC CLCx DATA 3 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—			D4S	6<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 D4S<5:0>: CLCx Data 4 Input Selection bits See Table 27-1.

32.6 Slave Mode

32.6.1 SLAVE MODE TRANSMIT OPTIONS

The SDO output of the SPI module in Slave mode is controlled by the TXR bit of SPIxCON2, the TRIS bit associated with the SDO pin, the Slave Select input, and the current state of the TXFIFO. This control is summarized in Table 32-2. In this table, TRISxn refers to the bit in the TRIS register corresponding to the pin that SDO has been assigned with PPS, TXR is the Transmit Data Required Control bit of SPIxCON2, SS is the state of the Slave Select input, and TXBE is the TXFIFO Buffer Empty bit of SPIxSTATUS.

32.6.1.1 SDO Drive/Tri-state

The TRIS bit associated with the SDO pin controls whether the SDO pin will tri-state. When this TRIS bit is cleared, the pin will always be driving to a level, even when the SPI module is inactive. When the SPI module is inactive (either due to the master not clocking the SCK line or the SS being false), the SDO pin will be driven to the value of the LAT bit associated with the

TABLE 32-2: SLAVE MODE TRANSMIT

SDO pin. When the SPI module is active, its output is determined by both TXR and whether there is data in the TXFIFO.

When the TRIS bit associated with the SDO pin is set, the pin will only have an output level driven to it when TXR = 1 and the slave select input is true. In all other cases, the pin will be tri-stated.

32.6.1.2 SDO Output Data

The TXR bit controls the nature of the data that is transmitted in Slave mode. When TXR is set, transmitted data is taken from the TXFIFO. If the FIFO is empty, the most recently received data will be transmitted and the TXUIF flag will be set to indicate that a transmit FIFO underflow has occurred.

When TXR is cleared, the data will be taken from the TXFIFO, and the TXFIFO occupancy will not decrease. If the TXFIFO is empty, the most recently received data will be transmitted, and the TXUIF bit will not be set. However, if the TRIS bit associated with the SDO pin is set, clearing the TXR bit will cause the SPI module to not output any data to the SDO pin.

TRISxn ⁽¹⁾	TXR	SS	ТХВЕ	SDO State
0	0	FALSE	0	Drives state determined by LATxn(2)
0	0	FALSE	1	Drives state determined by LATxn(2)
0	0	TRUE	0	Outputs the oldest byte in the TXFIFO Does not remove data from the TXFIFO
0	0	TRUE	1	Outputs the most recently received byte
0	1	FALSE	0	Drives state determined by LATxn(2)
0	1	FALSE	1	Drives state determined by LATxn(2)
0	1	TRUE	0	Outputs the oldest byte in the TXFIFO Removes transmitted byte from the TXFIFO Decrements occupancy of TXFIFO
0	1	TRUE	1	Outputs the most recently received byte Sets the TXUIF bit of SPIxINTF
1	0	FALSE	0	Tri-stated
1	0	FALSE	1	Tri-stated
1	0	TRUE	0	Tri-stated
1	0	TRUE	1	Tri-stated
1	1	FALSE	0	Tri-stated
1	1	FALSE	1	Tri-stated
1	1	TRUE	0	Outputs the oldest byte in the TXFIFO Removes transmitted byte from the TXFIFO Decrements occupancy of TXFIFO
1	1	TRUE	1	Outputs the most recently received byte Sets the TXUIF bit of SPIxINTF

Note 1: TRISxn is the bit in the TRISx register corresponding to the pin that SDO has been assigned with PPS.

2: LATxn is the bit in the LATx register corresponding to the pin that SDO has been assigned with PPS.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
SPIxINTF	SRMTIF	TCZIF	SOSIF	EOSIF	—	RXOIF	TXUIF	—	535
SPIxINTE	SRMTIE	TCZIE	SOSIE	EOSIE	_	RXOIE	TXUIE	—	536
SPIxTCNTH	—	—		—	—	TCNT10	TCNT9	TCNT8	537
SPIxTCNTL	TCNT7	TCNT6	TCNT5	TCNT4	TCNT3	TCNT2	TCNT1	TCNT0	536
SPIxTWIDTH	—	_	_	_	_	TWIDTH2	TWIDTH1	TWITDH0	537
SPIxBAUD	BAUD7	BAUD6	BAUD5	BAUD4	BAUD3	BAUD2	BAUD1	BAUD0	538
SPIxCON0	EN	_	_	_	_	LSBF	MST	BMODE	538
SPIxCON1	SMP	CKE	CKP	FST	_	SSP	SDIP	SDOP	539
SPIxCON2	BUSY	SSFLT	_	_	_	SSET	TXR	RXR	540
SPIxSTATUS	TXWE	_	TXBE	_	RXRE	CLRBF	—	RXBF	541
SPIxRXB	RXB7	RXB6	RXB5	RXB4	RXB3	RXB2	RXB1	RXB0	541
SPIxTXB	TXB7	TXB6	TXB5	TXB4	TXB3	TXB2	TXB1	TXB0	542
SPIxCLK	_	_	_	_	CLKSEL3	CLKSEL2	CLKSEL1	CLKSEL0	542

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH SPI

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the SPI module.

37.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- FVR Buffer
- External VREF+ pin
- VDD supply voltage

The negative input source (VSOURCE-) of the DAC can be connected to:

- External VREF- pin
- Vss

The output of the DAC (DAC1_output) can be selected as a reference voltage to the following:

- · Comparator positive input
- ADC input channel
- DAC1OUT1 pin
- DAC1OUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the EN bit of the DAC1CON0 register.

Rev. 10-000026H 10/12/2016 Reserved 11 VSOURCE+ DATA<4:0> FVR Buffer 5 10 R VREF+ 01 AVDD 00 Ş R PSS 5 R R 32-to-1 MUX DACx output 32 • • To Peripherals Steps ΕN \leq R DACxOUT1⁽¹⁾ 2 R OE1 R DACxOUT2⁽¹⁾ VREF-OE2 1 VSOURCE-AVss 0 NSS Note 1: The unbuffered DACx_output is provided on the DACxOUT pin(s).

FIGURE 37-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

PIC18(L)F26/27/45/46/47/55/56/57K42

TABLE 41-1. C	FCODE FIELD DESCRIFTIONS (CONTINUED)
Field	Description
< >	Register bit field
E	In the set of
italics	User defined term (font is courier)

TABLE 41-1: OPCODE FIELD DESCRIPTIONS (CONTINUED)

FIGURE 41-1: General Format for Instructions (1/2)

Byte-oriented file register operations	Example Instruction
15 10 9 8 7 OPCODE d a f (FILE #)	0 ADDWF MYREG, W, B
 d = 0 for result destination to be WREG I d = 1 for result destination to be file regis a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	register ster (f)
Byte to Byte move operations (2-word)	
15 12 11 (OPCODE f (Source Ell E #)	MOWEE MYDEC1 MYDEC2
15 12 11 (Cource Fill #)	MOVEF MIREGI, MIREGZ
1111 f (Destination FILE #)	<u>, </u>
f = 12-bit file register address	
Byte to Byte move operations (3-word)	
15 4 3	0
OPCODE	FILE # MOVFFL MYREG1, MYREG2
	0
15 12 11	
Bit-oriented file register operations	
15 12 11 9 8 7 OPCODE b (BIT #) a f (FILE #)	0 BSF MYREG, bit, B
b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address	
Literal operations	
15 8 7	0
OPCODE k (literal)	MOVLW 7Fh

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Microchip Technology Drawing C04-076C Sheet 1 of 2