

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf56k42t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	PC<21:0>	PC<21:0>	PC<21:0>	7	
	† 1	\$	¢ I	_	
Note 1	Stack (31 levels)	Stack (31 levels)	Stack (31 levels)	Note 1	
	•		★	_	
00 0000h	Reset Vector	Reset Vector	Reset Vector	00 0000h	
•••	•••	•••	•••	•••	
00 0008h	Interrupt Vector High ⁽²⁾	Interrupt Vector High ⁽²⁾	Interrupt Vector High ⁽²⁾	00 0008h	
•••	•••	• • •	• • •	•••	
00 0018h	Interrupt Vector Low ⁽²⁾	Interrupt Vector Low ⁽²⁾	Interrupt Vector Low ⁽²⁾	00 0018h	
00 001Ah •	Program Flash Memory (16 KW) ⁽³⁾			00 001Ah •	
00 7FFFh	(WV)	Program Flash Memory (32 KW) ⁽³⁾		00 7FFF	
00 8000h		KVV). /	Program Flash Memory (64 KW) ⁽³⁾	00 8000h •	
00 FFFFh				00 FFFF	
01 0000h	Reserved ⁽⁴⁾			01 0000h	
01 FFFFh		Reserved ⁽⁴⁾		01 FFFF	
02 0000h 1F FFFFh			Reserved ⁽⁴⁾	02 0000h 1F FFFFh	
20 0000		User IDs (8 Words) ⁽⁵⁾		20 0000h	
20 000Fh				20 000Fh	
20 0010h		Reserved		20 0010h	
2F FFFFh		Reserved		2F FFFF	
30 0000h		Configuration Words (5 Words) ⁽⁵	5)	30 0000h	
30 0009h		Conliguration words (5 words)	,	30 0009h	
30 000Ah		Deserved		30 000Ah	
30 FFFFh		Reserved		30 FFFF	
31 0000h				31 0000h	
31 00FFh	Data EEPROM (256 Bytes)			••• 31 00FFh	
31 0100h		Data EEPRO	M (1024Bytes)	31 0100h	
•••				•••	
31 03FFh	Reserved		31 03FFh		
31 0400h		Rese	erved	31 0400h	
3E FFFFh				3E FFFF	
3F 0000h		Device Information Area ^{(5),(7)}		3F 0000h	
3F 003Fh				3F 003Fh	
3F0040h		Reserved		3F0040h	
3F FEFFh				3F FEFFI	
3F FF00h	Device C	onfiguration Information (5 Word	(5),(6),(7)	3F FF00h	
3F FF09h		. .		3F FF09h	
3F FF0Ah		Reserved		3F FF0Ah	
3F FFFBh	Reserved				
3F FFFCh	Revision ID (1 Word) ^{(5),(6),(7)}				
3F FFFDh		Revision ID (1 word)		3F FFFD	
3F FFFEh				3F FFFEI	
3F FFFFh		Device ID (1 Word) ^{(5),(6),(7)}		3F FFFF	
Note 1: 2: 3:	The stack is a separate SRAM panel, apart from all user memory panels. 00 0008h location is used as the reset default for the IVTBASE register, the vector table can be relo memory by programming the IVTBASE register. Storage area Flash is implemented as the last 128 Words of user Flash.				

TABLE 4-1: PROGRAM AND DATA EEPROM MEMORY MAP

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

4.7.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains 3FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing.

Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

4.8 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged.

4.8.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0) and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

4.8.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

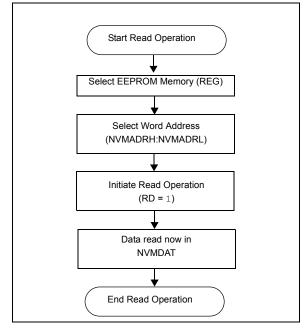
Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 4-7.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 41.2.1 "Extended Instruction Syntax**".

11.0 WINDOWED WATCHDOG TIMER (WWDT)

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WWDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WWDT has the following features:


- Selectable clock source
- Multiple operating modes
 - WWDT is always On
 - WWDT is off when in Sleep
 - WWDT is controlled by software
 - WWDT is always Off
- Configurable time-out period is from 1 ms to 256s (nominal)
- Configurable window size from 12.5% to 100% of the time-out period
- Multiple Reset conditions

13.3.3 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the NVMADRL and NVMADRH register pair, clear REG<1:0> control bit in NVMCON1 register to access Data EEPROM locations and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the NVMDAT register can be read by the next instruction. NVMDAT will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 13-5.

FIGURE 13-11: DATA EEPROM READ FLOWCHART

13.3.4 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the address must first be written to the NVMADRL and NVMADRH register pair and the data written to the NVMDAT register. The sequence in Example 13-6 must be followed to initiate the write cycle.

The write will not begin if NVM Unlock sequence, described in **Section 13.1.4 "NVM Unlock Sequence"**, is not exactly followed for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in NVMCON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, NVMCON1, NVMADRL, NVMADRH and NVMDAT cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. A single Data EEPROM word is written and the operation includes an implicit erase cycle for that word (it is not necessary to set FREE). CPU execution continues in parallel and at the completion of the write cycle, the WR bit is cleared in hardware and the NVM Interrupt Flag bit (NVMIF) is set. The user can either enable this interrupt or poll this bit. NVMIF must be cleared by software.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			HADR<	15:8> ^(1, 2)			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 14-16: SCANHADRH: SCAN HIGH ADDRESS HIGH BYTE REGISTER

bit 7-0 HADR<15:8>: Scan End Address bits^(1, 2)

Most Significant bits of the address at the end of the designated scan

Note 1: Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).

2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 14-17: SCANHADRL: SCAN HIGH ADDRESS LOW BYTE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			HADR<	:7:0> (1, 2)			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bit	t	U = Unimplem	ented bit, read as	ʻ0'	
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/	alue at all other /	Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-0 HADR<7:0>: Scan End Address bits^(1, 2)

Least Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - 2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 21-4: TxGATE: TIMERx GATE ISM REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	_	_			GSS<4:0>		
bit 7			•				bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **GSS<4:0>:** Timerx Gate Source Selection bits

GSS	Timer1	Timer3	Timer5	
655	Gate Source	Gate Source	Gate Source	
11111-11011	Reserved	Reserved	Reserved	
11010	CLC4_out	CLC4_out	CLC4_out	
11001	CLC3_out	CLC3_out	CLC3_out	
11000	CLC2_out	CLC2_out	CLC2_out	
10111	CLC1_out	CLC1_out	CLC1_out	
10110	ZCDOUT	ZCDOUT	ZCDOUT	
10101	CMP2OUT	CMP2OUT	CMP2OUT	
10100	CMP1OUT	CMP1OUT	CMP1OUT	
10011	NC010UT	NCO10UT	NCO10UT	
10010-10001	Reserved	Reserved	Reserved	
10000	PWM8OUT	PWM8OUT	PWM8OUT	
01111	PWM7OUT	PWM7OUT	PWM7OUT	
01110	PWM6OUT	PWM6OUT	PWM6OUT	
01101	PWM5OUT	PWM5OUT	PWM5OUT	
01100	CCP4OUT	CCP4OUT	CCP4OUT	
01011	CCP3OUT	CCP3OUT	CCP3OUT	
01010	CCP2OUT	CCP2OUT	CCP2OUT	
01001	CCP10UT	CCP10UT	CCP1OUT	
01000	SMT1_match	SMT1_match	SMT1_match	
00111	TMR6OUT (postscaled)	TMR6OUT (postscaled)	TMR6OUT (postscaled)	
00110	TMR5 overflow	TMR5 overflow	Reserved	
00101	TMR4OUT (postscaled)	TMR4OUT (postscaled)	TMR4OUT (postscaled)	
00100	TMR3 overflow	Reserved	TMR3 overflow	
00011	TMR2OUT (postscaled)	TMR2OUT (postscaled)	TMR2OUT (postscaled)	
00010	Reserved	TMR1 overflow	TMR1 overflow	
00001	TMR0 overflow	TMR0 overflow	TMR0 overflow	
00000	Pin selected by T1GPPS	Pin selected by T3GPPS	Pin selected by T5GPPS	

25.6.10 GATED COUNTER MODE

This mode counts pulses on the SMT1_signal input, gated by the SMT1WIN input. It begins incrementing the timer upon seeing a rising edge of the SMT1WIN input and updates the SMT1CPW register upon a falling edge on the SMT1WIN input. See Figure 25-19 and Figure 25-20.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
—	_	—	—	—		CSEL<2:0>		
bit 7		•					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets	
'1' = Bit is set '0' = Bit is cleared			ared	q = Value depends on condition				
bit 7-3	Unimplemer	nted: Read as '	0'					

REGISTER 25-4: SMT1CLK: SMT CLOCK SELECTION REGISTER

bit 2-0	CSEL<2:0>: SMT Clock Selection bits
	111 = Reference Clock Output
	110 = SOSC
	101 = MFINTOSC/16 (32 kHz)
	100 = MFINTOSC (500 kHz)

011 = LFINTOSC

010 = HFINTOSC 16 MHz

001 = Fosc

000 = Fosc/4

GURE 28-2	2: FDC OUTPUT MODE OPERATION DIAGRAM
NCOx Clock Source	
NCOx Increment Value	4000h 4000h
NCOx Accumulator Value	00000h \ 04000h \ 08000h \ (04000h \ 08000h \ 04000h \ 04000h \ 08000h \ 080000h \ 08000h \ 0
NCO_overflow	
NCO_interrupt	
NCOx Output FDC Mode	
NCOx Output PF Mode NCOxPWS = - 000	
NCOx Output PF Mode NCOxPWS = - 001	

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TXMTIE	PERIE	ABDOVE	CERIE	FERIE	RXBKIE	RXFOIE	TXCIE
bit 7							bit (
Legend:							
R = Readable		W = Writable		1	nented bit, read		
u = Bit is unch	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	TXMTIE: Tra	insmit Shift Reg	ister Empty In	iterrupt Enable	bit		
	1 = Interrupt 0 = Interrupt	t enabled					
bit 6	PERIE: Parit	y Error Interrup	Enable bit				
	1 = Interrupt 0 = Interrupt						
bit 5	ABDOVE: Auto-baud Detect Overflow Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt not enabled						
bit 4	CERIE: Chec 1 = Interrupt 0 = Interrupt		errupt Enable	bit			
bit 3	FERIE: Framing Error Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt not enabled						
bit 2	RXBKIE: Break Reception Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt not enabled						
bit 1	RXFOIE: Receive FIFO Overflow Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt not enabled						
bit 0		smit Collision In t enabled	terrupt Enable	e bit			

REGISTER 31-5: UXERRIE: UART ERROR INTERRUPT ENABLE REGISTER

32.4 Transfer Counter

In all master modes, the transfer counter can be used to determine how many data transfers the SPI will send/receive. The transfer counter is comprised of the SPIxTCTH/L set of registers, and is also partially controlled by the SPIxTWIDTH register. The Transfer Counter has two primary modes, determined by the BMODE bit of the SPIxCON0 register. Each mode uses the SPIxTCTH/L and SPIxTWIDTH registers to determine the number and size of the transfers. In both modes, when the transfer counter reaches zero, the TCZIF interrupt flag is set.

- Note: When BMODE=1 in all master modes (and at all times in slave modes), the Transfer Counter will still decrement as transfers occur and can be used to count the number of messages sent/received, as well as to control SS(out) and to trigger TCZIF. Also when BMODE = 1, the SPIxTWIDTH register can be used in Master and Slave modes to determine the size of messages sent and received by the SPI, even if the Transfer Counter is not being actively used to control the number of messages being sent/received by the SPI module.
- 32.4.1 TOTAL BIT COUNT MODE (BMODE = 0)

In this mode, SPIxTCTH/L and SPIxTWIDTH are concatenated to determine the total number of bits to be transferred. These bits will be loaded from/into the transmit/receive FIFOs in 8-bit increments and the transfer counter will be decremented by eight until the total number of remaining bits is less than eight. If there are any remaining bits (SPIxTWIDTH \neq 0), the transmit FIFO will send out one final message with any extra bits greater than the remainder ignored. The SPIxTWIDTH is the remaining bit count but the value does not change as it does for the SPIxTCT value. Similarly, the receiver will load a final byte into the receiver FIFO, and pad the extra bits with zeros. The LSBF bit of SPIxCON0 determines whether the Most Significant or Least Significant bits of this final byte are ignored/ padded. For example, when LSBF = 0 and the final transfer contains only two bits then if the last byte sent was 5Fh then the RXB of the receiver will contain 40h which are the two MSbits of the final byte padded with zeros in the LSbits.

In this mode, the SPI master will only transmit messages when the SPIxTCT value is greater than zero, regardless of TXR and RXR settings. In Master Transmit mode, the transfer starts with the data write to the SPIxTXB register or the count value written to the SPIxTCTL register, which ever occurs last. In Master Receive-only mode, the transfer clocks start when the SPIxTCTL value is written. Transfer clocks are suspended when the receive FIFO is full and resume as the FIFO is read.

32.4.2 VARIABLE TRANSFER SIZE MODE (BMODE = 1)

In this mode, SPIxTWIDTH specifies the width of every individual piece of the data transfer in bits. SPIxTCTH/ SPIxTCTL specifies the number of transfers of this bit length. If SPIxTWIDTH = 0, each piece is a full byte of data. If SPIxTWIDTH \neq 0, then only the specified number of bits from the transmit FIFO are shifted out, with the unused bits ignored. Received data is padded with zeros in the unused bit areas when transfered into the receive FIFO. The LSBF bit of SPIxCON0 determines whether the Most Significant or Least Significant bits of the transfers are ignored/padded. In this mode, the transfer counter being zero only stops messages from being sent/received when in "Receive only" mode.

Note: With BMODE = 1, it is possible for the transfer counter (SPIxTCTH/L) to decrement below zero, although when in "Receive only" Master mode, transfer clocks will cease when the transfer counter reaches zero.

33.3.2 BYTE FORMAT

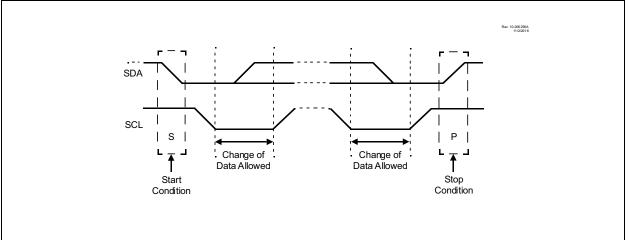
All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent by the receiver. After the 8th falling edge of the SCL line, the device transmitting data on the SDA line releases control of that pin to an input, and reads in an acknowledge value on the next clock pulse. The clock signal is provided by the master. Data is valid to change while the SCL line is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define Start and Stop conditions on the bus which are explained further in the chapter.

33.3.3 SDA AND SCL PINS

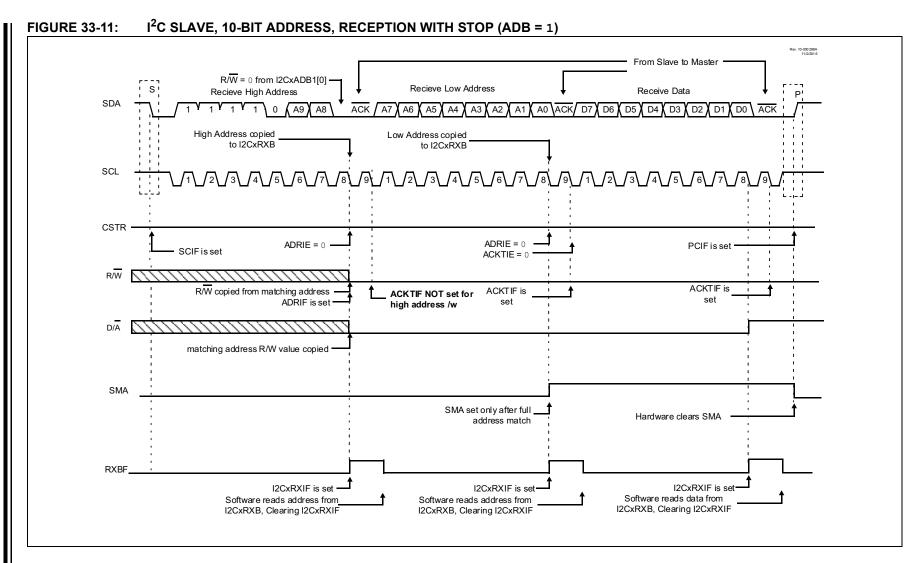
The user must configure these pins as open-drain inputs. This is done by clearing the appropriate TRIS bits and setting the appropriate and ODCON bits. The user may also select the input threshold, slew-rate and internal pull-up settings using the Rxyl2C control registers (Register 16-9).

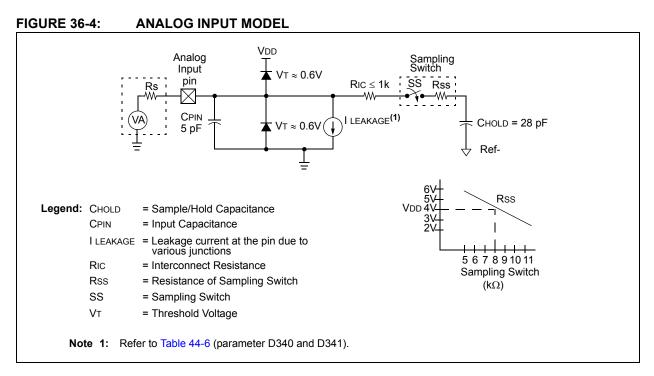
33.3.4 SDA HOLD TIME

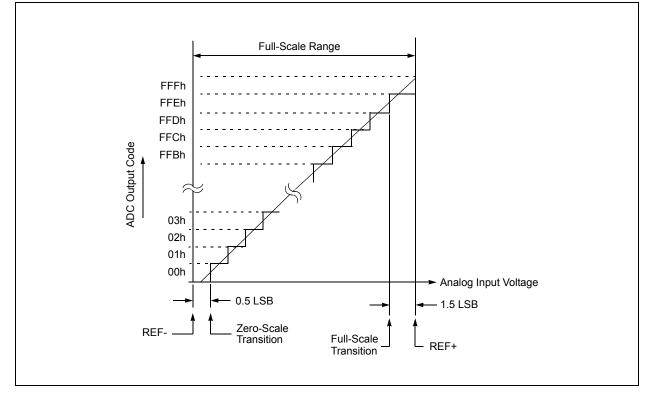
The hold time of the SDA pin is selected by the SDAHT<1:0> bits of the I2CxCON2 register. Hold time is the time SDA is held valid after the falling edge of SCL. A longer hold time setting may help on buses with large capacitance.


33.3.5 START CONDITION

The I²C specification defines a Start condition as a transition of SDA line from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 33-3 shows waveforms for Start conditions. Master hardware waits for the BFRE bit of I2CxSTAT0 to be set, before asserting a Start condition on the SCL and SDA lines. If two masters assert a start at the same time, a collision will occur during the addressing phase.


33.3.6 STOP CONDITION


A Stop condition is a transition of the SDA line from low to high while the SCL line is high. Figure 33-3 shows waveforms for Stop conditions.



Note:	At least one SCL low time must appear			
	before a Stop is valid. Therefore if the			
	SDA line goes low then high again while			
	the SCL line is high, only the Start			
	condition is detected.			

© 2017 Microchip Technology Inc.

DS40001919B-page 608

TABLE 36-6 :	SUMMARY OF REGISTERS ASSOCIATED WITH ADC (CONTINUED)
---------------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ADERRL	ERR<7:0>									
ADERRH				ERR<	:15:8>				633	
ADLTHH	LTH<15:8>									
ADLTHL	LTH<7:0>									
ADUTHH	UTH<15:8>									
ADUTHL	UTH<7:0>									
ADERRL	ERR<15:8>									
ADACT	— — — ADACT<4:0>							619		
ADCP	CPON	_	_	_	_	_	_	CPRDY	636	

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

37.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- FVR Buffer
- External VREF+ pin
- VDD supply voltage

The negative input source (VSOURCE-) of the DAC can be connected to:

- External VREF- pin
- Vss

The output of the DAC (DAC1_output) can be selected as a reference voltage to the following:

- · Comparator positive input
- ADC input channel
- DAC1OUT1 pin
- DAC1OUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the EN bit of the DAC1CON0 register.

Rev. 10-000026H 10/12/2016 Reserved 11 VSOURCE+ DATA<4:0> FVR Buffer 5 10 R VREF+ 01 AVDD 00 Ş R PSS 5 R R 32-to-1 MUX DACx output 32 • • To Peripherals Steps ΕN \leq R DACxOUT1⁽¹⁾ \geq R OE1 R DACxOUT2⁽¹⁾ VREF-OE2 1 VSOURCE-AVss 0 NSS Note 1: The unbuffered DACx_output is provided on the DACxOUT pin(s).

FIGURE 37-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

	Branch if Not Overflow					Branch if Not Zero				
Syntax:	BNOV n			Syntax:	BNZ n	BNZ n				
Operands:	-128 ≤ n ≤ 1	27		Operands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$				
Operation:	if OVERFL0 (PC) + 2 + 2			Operation:		if ZERO bit is '0' (PC) + 2 + 2n \rightarrow PC				
Status Affected:	None			Status Affected:	None					
Encoding:	1110	0101 nn:	nn nnnn	Encoding:	1110	0001 nn	nn nnnn			
Description:	program wil The 2's con added to the incremented instruction,	nplement num e PC. Since th d to fetch the r the new addre n. This instruct	ber '2n' is e PC will have next ess will be	Description:	will branch. The 2's cor added to th incremente instruction,	nplement num e PC. Since th d to fetch the the new addr n. This instruc	ne PC will have next ess will be			
Words:	1			Words:	1					
Cycles:	1(2)			Cycles:	1(2)					
Q Cycle Activity: If Jump:				Q Cycle Activity: If Jump:						
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4			
Decode	Read literal 'n'	Process Data	Write to PC	Decode	Read literal 'n'	Process Data	Write to PC			
No	No	No	No	No	No	No	No			
operation	operation	operation	operation	operation	operation	operation	operation			
If No Jump:	00	00	04	If No Jump:	00	00	04			
Q1 Decode	Q2 Read literal	Q3 Process	Q4 No	Q1 Decode	Q2 Read literal	Q3 Process	Q4 No			
Decode	'n'	Data	operation	Decode	'n'	Data	operation			
Example: Before Instru		BNOV Jump	<u> </u>	Example: Before Instr		BNZ Jump				
PC After Instruct		dress (HERE)	PC After Instruc		dress (HERE))			
After Instruction If OVERFLOW = 0; PC = address (Jump) If OVERFLOW = 1;				After Instruct If ZER						

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Regis on pa
3989h	IPR9	—	—	—	_	CLC3IP	CWG3IP	CCP3IP	TMR6IP	165
3988h	IPR8	TMR5GIP	TMR5IP	_	_	—	_	_	—	164
3987h	IPR7		_	INT2IP	CLC2IP	CWG2IP	-	CCP2IP	TMR4IP	164
3986h	IPR6	TMR3GIP	TMR3IP	U2IP	U2EIP	U2TXIP	U2RXIP	I2C2EIP	I2C2IP	163
3985h	IPR5	I2C2TXIP	I2C2RXIP	DMA2AIP	DMA2ORIP	DMA2DCN- TIP	DMA2SCN- TIP	C2IP	INT1IP	162
3984h	IPR4	CLC1IP	CWG1IP	NCO1IP	_	CCP1IP	TMR2IP	TMR1GIP	TMR1IP	161
3983h	IPR3	TMR0IP	U1IP	U1EIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP	16
3982h	IPR2	I2C1RXIP	SPI1IP	SPI1TXIP	SPI1RXIP	DMA1AIP	DMA10RIP	DMA1DCN- TIP	DMA1SCNTIP	15
3981h	IPR1	SMT1PWAIP	SMT1PRAIP	SMT1IP	C1IP	ADTIP	ADIP	ZCDIP	INT0IP	15
3980h	IPR0	IOCIP	CRCIP	SCANIP	NVMIP	CSWIP	OSFIP	HLVDIP	SWIP	15
397Fh - 397Eh	_				Unimple	emented				
397Dh	SCANTRIG	_	_	—	_		T	SEL		22
397Ch	SCANCON0	EN	TRIGEN	SGO	_	—	MREG	BURSTMD	BUSY	22
397Bh	SCANHADRU	—	—		•	F	IADR	•	•	22
397Ah	SCANHADRH				HA	DR				22
3979h	SCANHADRL	HADR								22
3978h	SCANLADRU	_	_			L	ADR			22
3977h	SCANLADRH				LA	DR				22
3976h	SCANLADRL				LA	DR				22
3975h - 396Ah	-					emented				
3969h	CRCCON1		DLEI	N			Р	LEN		21
3968h	CRCCON0	EN	CRCGO	BUSY	ACCM	_	_	SHIFTM	FULL	21
3967h	CRCXORH	X15	X14	X13	X12	X11	X10	X9	X8	22
3966h	CRCXORL	X7	X6	X5	X4	X3	X2	X1	_	22
3965h	CRCSHIFTH	SHFT15	SHFT14	SHFT13	SHFT12	SHFT11	SHFT10	SHFT9	SHFT8	22
3964h	CRCSHIFTL	SHFT7	SHFT6	SHFT5	SHFT4	SHFT3	SHFT2	SHFT1	SHFT0	22
3963h	CRCACCH	ACC15	ACC14	ACC13	ACC12	ACC11	ACC10	ACC9	ACC8	21
3962h	CRCACCL	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0	22
3961h	CRCDATH	DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8	21
3960h	CRCDATL	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	21
395Fh	WDTTMR			WDTTMR	I		STATE		SCNT	18
395Eh	WDTPSH				PS	CNT				18
395Dh	WDTPSL					CNT				18
395Ch	WDTCON1	_		CS		_		WINDOW		18
395Bh	WDTCON0	_				PS		/ -	SEN	18
395Ah - 38A0h	_				Unimple	emented				
389Fh	IVTADU				A	D				16
389Eh	IVTADH					D				16
389Dh	IVTADL				A					16
389Ch - 3891h	_					emented				
3890h	PRODH SHAD				PRO	DDH				12
		PRODH PRODL								
388Fh	PRODL_SHAD				PRO	DDL				12

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Note 1: Unimplemented in LF devices.

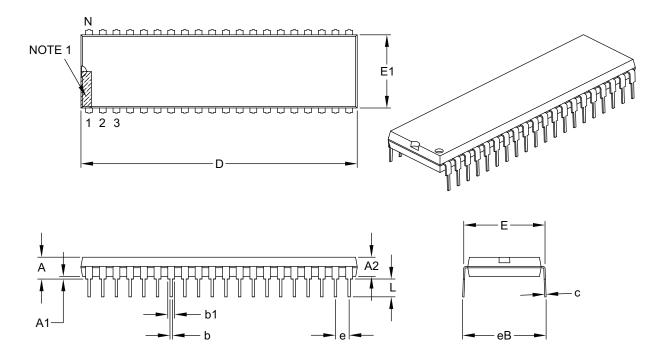
Unimplemented in PIC18(L)F26/27K42. 2:

Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

4: Unimplemented in PIC18(L)F45/55K42.

TABLE 44-24: SPI MODE REQUIREMENTS (SLAVE MODE)

Standard	d Operating C	onditions (unless otherwise stated)					
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions
			47	_	_	ns	Receive only mode
	T		_	20 ⁽¹⁾	_	MHz	\land
	Тѕск	SCK Total Cycle Time	95	_		ns	Full dup(ex/mode
			_	10 ⁽¹⁾		MHz	
SP70*	TssL2scH,	$\overline{\text{SS}}\downarrow$ to SCK \downarrow or SCK \uparrow input	0	_		ns	CKE = Ø
TssL2scL			25	_		ns	CKE = 1
SP71*	TscH	SCK input high time	20	—		/ns/	
SP72*	TscL	SCK input low time	20	—	_ '	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	10	—	-	ns	
SP74*	TscH2DIL, TscL2DIL	Hold time of SDI data input to SCK edge	0	-<	11	ns	
SP75*	TDOR	SDO data output rise time	_	10	25/	ns	CL = 50 pF
SP76*	TDOF	SDO data output fall time	/	10	2 5 <	ns	C∟ = 50 pF
SP77*	TssH2doZ	SS↑ to SDO output high-impedance	_	$\langle \mathcal{I} \rangle$	85	ns	
SP80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge		Z	85	ns	
SP82*	TssL2DoV	SDO data output valid after $\overline{SS}\downarrow$ edge			85	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	20	\triangleright	—	ns	
SP84*	TssH2ssL	SS↑ to SS↓ edge	47	> _		ns	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: SPIxCON1.SMP bit must be set and the slew rate control must be disabled on the clock and data pins (clear the corresponding bits in SLRCONx register) for SPI to operate over 4 MHz.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		40		
Pitch	е		.100 BSC		
Top to Seating Plane	Α	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	с	.008	-	.015	
Upper Lead Width	b1	.030	_	.070	
Lower Lead Width	b	.014	-	.023	
Overall Row Spacing §	eB	-	-	.700	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B