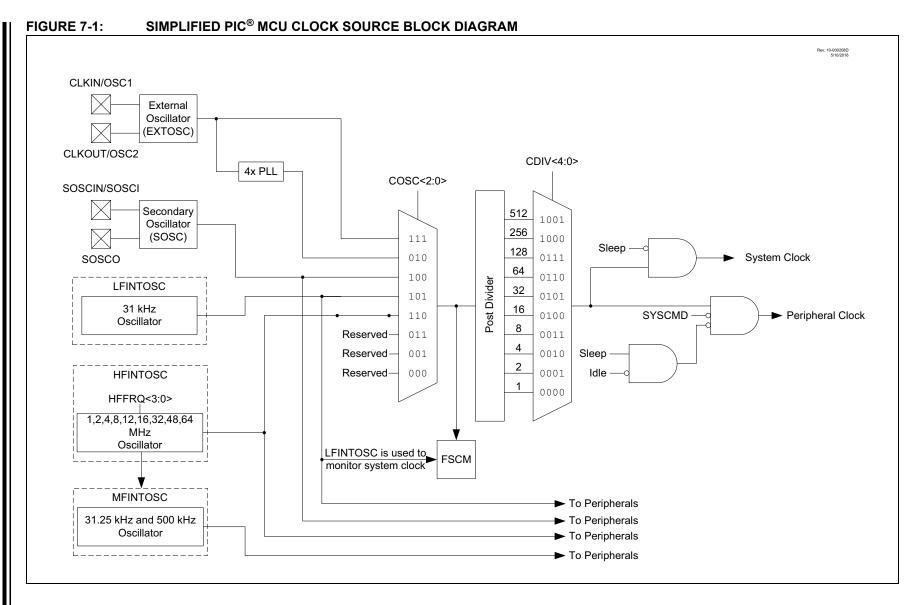


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf57k42-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.3 Interrupt Priority

The final priority level for any pending source of interrupt is determined first by the user-assigned priority of that source in the IPRx register, then by the natural order priority within the IVT. The sections below detail the operation of Interrupt priorities.

9.3.1 USER (SOFTWARE) PRIORITY

User-assigned interrupt priority is enabled by setting the IPEN bit in the INTCON0 register (Register 9-1). Each peripheral interrupt source can be assigned a high or low priority level by the user. The userassignable interrupt priority control bits for each interrupt are located in the IPRx registers (Registers 9-25 through 9-35).

The interrupts are serviced based on predefined interrupt priority scheme defined below.

- Interrupts set by the user as high-priority interrupt have higher precedence of execution. High-priority interrupts will override a low-priority request when:
 - a) A low priority interrupt has been requested or its request is already pending.
 - b) A low- and high-priority interrupt are triggered concurrently, i.e., on the same instruction cycle⁽¹⁾.
 - c) A low-priority interrupt was requested and the corresponding Interrupt Service Routine is currently executing. In this case, the lower priority interrupt routine will complete executing after the high-priority interrupt has been serviced⁽²⁾.
- 2. Interrupts set by the user as a low priority have the lower priority of execution and are preempted by any high-priority interrupt.
- Interrupts defined with the same software priority cannot preempt or interrupt each other. Concurrent pending interrupts with the same user priority are resolved using the natural order priority. (when MVECEN = ON) or in the order the interrupt flag bits are polled in the ISR (when MVECEN = OFF).

- Note 1: When a high priority interrupt preempts a concurrent low priority interrupt, the GIEL bit may be cleared in the high priority Interrupt Service Routine. If the GIEL bit is cleared, the low priority interrupt will NOT be serviced even if it was originally requested. The corresponding interrupt flag needs to be cleared in user code.
 - 2: When a high priority interrupt is requested while a low priority Interrupt Service Routine is executing, the GIEL bit may be cleared in the high priority Interrupt Service Routine. The pending low priority interrupt will resume even if the GIEL bit is cleared.

9.8 Interrupt Setup Procedure

1. When using interrupt priority levels, set the IPEN bit in INTCON0 register and then select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPRx Control register.

Note:	At a device Reset, the IPRx registers are
	initialized, such that all user interrupt
	sources are assigned to high priority.

- 2. Clear the Interrupt Flag Status bit associated with the peripheral in the associated PIRx Status register.
- 3. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate PIEx Control register.
- If the vector table is used (MVECEN = 1), then setup the start address for the Interrupt Vector Table using the IVTBASE register. See Section 9.2.2 "Interrupt Vector Table Contents".
- 5. Once the IVTBASE is written to, set the Interrupt enable bits in INTCON0 register.
- 6. An example of setting up interrupts and ISRs using assembly and C can be found in Examples 9-3 and 9-4.

9.9 External Interrupt Pins

The PIC18(L)F26/27/45/46/47/55/56/57K42 devices have three external interrupt sources which can be assigned to any pin on different ports based on the PPS settings. Refer Section 17.0 "Peripheral Pin Select (PPS) Module" for possible rerouting options. The external interrupt sources are edge-triggered. If the corresponding INTxEDG bit in the INTCON0 register is set (= 1), the interrupt is triggered by a rising edge. If the bit is clear, the trigger is on the falling edge.

When a valid edge appears on the INTx pin, the corresponding flag bit, INTxF in the PIRx registers, is set. This interrupt can be disabled by clearing the corresponding enable bit, INTxE. Flag bit, INTxF, must be cleared by software in the Interrupt Service Routine before re-enabling the interrupt.

All external interrupts (INT0, INT1 and INT2) can wakeup the processor from Idle or Sleep modes if bit INTxE was set prior to going into those modes. If the Global Interrupt Enable bit, GIE/GIEH, is set, the processor will branch to the interrupt vector following wake-up. Interrupt priority is determined by the value contained in the interrupt priority bits, INT0IP, INT1IP and INT2IP of the IPRx registers.

9.10 Wake-up from Sleep

The interrupt controller provides a wake-up request to the CPU whenever an interrupt event occurs, if the interrupt event is enabled. This occurs regardless of whether the part is in Run, Idle/Doze or Sleep modes. The status of the GIEH/GIEL bits has no effect on the wake-up request. The wake-up request will be asynchronous to all clocks.

9.11 Interrupt Compatibility

When the MVECEN bit in Configuration Word 2L is cleared (Register 5-3), the Interrupt Vector Table feature is disabled and interrupts are compatible with previous high performance 8-bit PIC18 microcontroller devices. In this mode, the Interrupt Vector Table priority has no effect.

When the IPEN bit is also cleared, the interrupt priority feature is disabled and interrupts are compatible with PIC[®]16 microcontroller mid-range devices. All interrupts branch to address 0008h since the interrupt priority is disabled.

R-0/0	R-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
I2C2TXIF ⁽	²⁾ I2C2RXIF ⁽²⁾	DMA2AIF	DMA2ORIF	DMA2DCNTIF	DMA2SCNTIF	C2IF	INT1IF ⁽³⁾
bit 7							bit C
Legend:							
R = Reada		W = Writable b			ented bit, read a		
u = Bit is u	-	x = Bit is unkno			POR and BOR/	Value at all ot	her Resets
'1' = Bit is	set	'0' = Bit is clea	red	HS = Bit is set	in hardware		
bit 7	I2C2TXIF : I ²	C2 Transmit Int	errupt Flag bit ⁽²	2)			
		has occurred					
	•	event has not o		,			
bit 6		C2 Receive Inte	errupt Flag bit ⁽²)			
		has occurred	agurrad				
bit 5	•	event has not o MA2 Abort Inte					
DIL O		has occurred (d by software)			
		event has not o		a by continuity			
bit 4	DMA2ORIF:	DMA2 Overrun	Interrupt Flag	bit			
		has occurred (d by software)			
	0 = Interrupt	event has not o	occurred				
bit 3		IF: DMA2 Desti					
		has occurred (event has not o		d by software)			
bit 2	-	IF: DMA2 Source		upt Flag bit			
		has occurred (
	0 = Interrupt	event has not o	occurred				
bit 1		errupt Flag bit					
	 1 = Interrupt has occurred (must be cleared by software) 0 = Interrupt event has not occurred 						
bit 0 INT1IF: External Interrupt 1 Interrupt Flag bit ⁽³⁾							
	 1 = Interrupt has occurred (must be cleared by software) 0 = Interrupt event has not occurred 						
Note 1:	•						
2:	I2CxTXIF and I register must be		ead-only bits. To	clear the interro	upt condition, the	e CLRBF bit ir	12CxSTAT1
3:	The external in	terrupt GPIO pi	n is selected by	the INTxPPS re	egister.		

REGISTER 9-8: PIR5: PERIPHERAL INTERRUPT REGISTER 5⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
I2C2TXIE	I2C2RXIE	DMA2AIE	DMA2ORIE	DMA2DCNTIE	DMA2SCNTIE	C2IE	INT1IE
bit 7							bit (
Legend:							
R = Readab		W = Writable b			ented bit, read as		
u = Bit is un	-	x = Bit is unkno		-n/n = Value at	POR and BOR/	/alue at all ot	her Resets
'1' = Bit is se	et	'0' = Bit is clea	red				
				.,			
bit 7	1 = Enabled	² C2 Transmit Int	errupt Enable b	IT			
	0 = Disable						
bit 6	I2C2RXIE:	² C2 Receive Int	errupt Enable bi	t			
	1 = Enabled		·				
	0 = Disable	d					
bit 5		DMA2 Abort Inte	rrupt Enable bit				
	1 = Enableo						
bit 4		u : DMA2 Overrun	Interrunt Enabl	e hit			
Dit 4	1 = Enabled			ebit			
	0 = Disable	-					
bit 3	DMA2DCN1	TE: DMA2 Dest	ination Count In	terrupt Enable bi	t		
	1 = Enabled	-					
	0 = Disable						
bit 2		TE: DMA2 Sour	ce Count Interru	pt Enable bit			
	1 = Enableo						
bit 1	C2IE: C2 Interrupt Enable bit						
	1 = Enabled						
	0 = Disable	d					
bit 0	INT1IE: Exte	ernal Interrupt 1	Enable bit				
	1 = Enabled						
	0 = Disable	h					

REGISTER 9-19: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

16.2.6 INPUT THRESHOLD CONTROL

The INLVLx register (Register 16-8) controls the input voltage threshold for each of the available PORTx input pins. A selection between the Schmitt Trigger CMOS or the TTL compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTx register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 44-6 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

16.2.7 WEAK PULL-UP CONTROL

The WPUx register (Register 16-5) controls the individual weak pull-ups for each port pin.

16.2.8 EDGE SELECTABLE INTERRUPT-ON-CHANGE

An interrupt can be generated by detecting a signal at the port pin that has either a rising edge or a falling edge. Any individual pin can be configured to generate an interrupt. The interrupt-on-change module is present on all the pins. For further details about the IOC module refer to Section 18.0 "Interrupt-on-Change".

16.2.9 I²C PAD CONTROL

For the PIC18(L)F26/27/45/46/47/55/56/57K42 devices, the I^2C specific pads are available on RB1, RB2, RC3, RC4, RD0⁽¹⁾ and RD1⁽¹⁾ pins. The I^2C characteristics of each of these pins is controlled by the RxyI2C registers (see Register 16-9). These characteristics include enabling I^2C specific slew rate (over standard GPIO slew rate), selecting internal pullups for I^2C pins, and selecting appropriate input threshold as per SMBus specifications.

Note 1: RD0 and RD1 I²C pads are not available in PIC18(L)F26K42 parts.

 Any peripheral using the I²C pins read the I²C ST inputs when enabled via RxyI2C.

16.3 PORTE Registers

Depending on the device, PORTE is implemented in two different ways.

16.3.1 PORTE ON 40/44/48-PIN DEVICES

For PIC18(L)F45/46/47/55/56/57K42 devices, PORTE is a 4-bit wide port. Three pins (RE0, RE1 and RE2) are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers. When selected as an analog input, these pins will read as '0's. The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver).

Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). TRISE controls the direction of the REx pins, even when they are being used as analog pins. The user must make sure to keep the pins configured as inputs when using them as analog inputs. RE<2:0> bits have other registers associated with them (i.e., ANSELE, WPUE, INLVLE, SLRCONE and ODCONE). The functionality is similar to the other ports. The Data Latch register (LATE) is also memory-mapped. Readmodify-write operations on the LATE register read and write the latched output value for PORTE.

Note: On a Power-on Reset, RE<2:0> are configured as analog inputs.

The fourth pin of PORTE (MCLR/VPP/RE3) is an input-only pin. Its operation is controlled by the MCLRE Configuration bit. When selected as a port pin, (MCLRE = 0), it functions as a digital input-only pin; as such, it does not have TRIS or LAT bits associated with its operation. Otherwise, it functions as the device's Master Clear input. In either configuration, RE3 also functions as the programming voltage input during programming. RE3 in PORTE register is a read-only bit and will read '1' when MCLRE = 1 (i.e., Master Clear enabled).

Note: On a Power-on Reset, RE3 is enabled as a digital input only if Master Clear functionality is disabled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PPSLOCK	—		—	—	—	—	—	PPSLOCKED	283
INT0PPS	_	_	_			INT0PPS<4	4:0>		277
INT1PPS	_	_	_			INT1PPS<	4:0>		277
INT2PPS	_	_	_			INT2PPS<4	4:0>		277
TOCKIPPS		_	_			T0CKIPPS<	4:0>		277
T1CKIPPS		_	_			T1CKIPPS<	4:0>		277
T1GPPS	_	_	_			T1GPPS<4	4:0>		277
T3CKIPPS	_	_	_			T3CKIPPS<	:4:0>		277
T3GPPS	_	_	_			T3GPPS<4	4:0>		277
T5CKIPPS	-	_	—			T5CKIPPS<	:4:0>		277
T5GPPS	-	_	—			T5GPPS<4	4:0>		277
T2INPPS	_	_	_			T2INPPS<	4:0>		277
T4INPPS	-	_	—			T4INPPS<	4:0>		277
T6INPPS	_	_	_			T6INPPS<4	4:0>		277
CCP1PPS	_	_	_			CCP1PPS<	4:0>		277
CCP2PPS	_	_	_			CCP2PPS<	4:0>		277
CCP3PPS	_	_	_			CCP3PPS<	4:0>		277
CCP4PPS	_	_	_			CCP4PPS<	4:0>		277
SMT1WINPPS	_	_	_			SMT1WINPP	S<4:0>		277
SMT1SIGPPS	_	_	_			SMT1SIGPPS	S<4:0>		277
CWG1PPS		_	_			CWG1PPS<	:4:0>		277
CWG2PPS		_	_			CWG2PPS<	:4:0>		277
CWG3PPS		_	_			CWG3PPS<	:4:0>		277
MD1CARLPPS	_	_	_			MDCARLPPS	6<4:0>		277
MD1CARHPPS	_	_	_			MDCARHPP	S<4:0>		277
MD1SRCPPS	_	_	_			MDSRCPPS	<4:0>		277
CLCIN0PPS		_	_			CLCIN0PPS	<4:0>		277
CLCIN1PPS	_	_	_			CLCIN1PPS	<4:0>		277
CLCIN2PPS	_	_	_			CLCIN2PPS	<4:0>		277
CLCIN3PPS		_	_			CLCIN3PPS	<4:0>		277
ADACTPPS	_	_	_			ADACTPPS	<4:0>		277
SPI1SCKPPS	_	_	_			SPI1SCKPPS	S<4:0>		277
SPI1SDIPPS	_	_	_			SPI1SDIPPS	<4:0>		277
SPI1SSPPS	_	_	_			SPI1SSPPS	<4:0>		277
I2C1SCLPPS		_	_			I2C1SCLPPS	6<4:0>		277
I2C1SDAPPS	_	_	_			I2C1SDAPPS	6<4:0>		277
I2C2SCLPPS	_	_	—			I2C2SCLPPS	6<4:0>		277
I2C2SDAPPS	_	_	—			I2C2SDAPPS	6<4:0>		277
U1RXPPS	_	_	_			U1RXPPS<	4:0>		277
U1CTSPPS	_	_	_		U1CTSPPS<4:0>				277
U2RXPPS	_	_	_			U2RXPPS<	4:0>		277
U2CTSPPS	_	_	—			U2CTPPS<	4:0>		277
RxyPPS	_	_	_			RxyPPS<4			280

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

REGISTER 27-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—				CLC4OUT	CLC3OUT	CLC2OUT	CLC10UT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	CLC4OUT: Mirror copy of OUT bit of CLC4CON register
bit 2	CLC3OUT: Mirror copy of OUT bit of CLC3CON register
bit 1	CLC2OUT: Mirror copy of OUT bit of CLC2CON register
bit 0	CLC1OUT: Mirror copy of OUT bit of CLC1CON register

TABLE 27-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLCxCON	EN	—	OUT	INTP	INTN		MODE<2:0>		440
CLCxPOL	POL	_	_	—	G4POL	G3POL	G2POL	G1POL	441
CLCxSEL0	_	_			D1S	<5:0>			442
CLCxSEL1	_	—		D2S<5:0>					
CLCxSEL2	_	_		D3S<5:0>					
CLCxSEL3	_	_		D4S<5:0>					442
CLCxGLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	443
CLCxGLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	444
CLCxGLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	445
CLCxGLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	446
CLCDATA	_		_	_	CLC4OUT	CLC3OUT	CLC2OUT	CLC10UT	447

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

TABLE 30-2:	MD1SRC SELECTION MUX
	CONNECTIONS

MS<4:0>	>	Connection
1 1111	31-	Reserved
-	23	
1 0111		
1 0110	22	SPI1 SDO
1 0101	21	Reserved
1 0100	20	UART2 TX
1 0011	19	UART1 TX
1 0010	18	CLC4 OUT
1 0001	17	CLC3 OUT
1 0000	16	CLC2 OUT
0 1111	15	CLC1 OUT
0 1110	14	CMP2 OUT
0 1101	13	CMP1 OUT
0 1100	12	NCO1 OUT
0 1011	11	Reserved
0 1010	10	Reserved
0 1001	9	PWM8 OUT
0 1000	8	PWM7 OUT
0 0111	7	PWM6 OUT
0 0110	6	PWM5 OUT

TABLE 30-2: MD1SRC SELECTION MUX CONNECTIONS

MS<4:0>	>	Connection
0 0101	5	CCP4 OUT
0 0100	4	CCP3 OUT
0 0011	3	CCP2 OUT
0 0010	2	CCP1 OUT
0 0001	1	DSM1 BIT
0 0000	0	Pin selected by MDSRCPPS

TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
MD1CON0	EN	_	OUT	OPOL	—	—	-	BIT	469
MD1CON1	—	_	CHPOL	CHSYNC	_	_	CLPOL	CLSYNC	470
MD1CARH	—	_	_	—	_	CHS<2:0>		471	
MD1CARL	—	_	_	—	_	CLS<2:0>		471	
MDSRC	_	_	—	—	SRCS<3:0>			472	

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

When TXMTIF goes true, indicating the transmit shift register has completed sending the last byte in the frame, the TX output is held in Idle state for the number of half-bit periods selected by the STP bits in the UxCON2 register.

After the last Stop bit, the TX output is held in Idle state for an additional wait time determined by the half-bit period count in the UxP1 register. For example, a 2450 µs delay (~6 half-bit times) requires a value of 6 in UxP1L.

Any writes to the UxTXB register that occur after TXMTIF goes true, but before the UxP1 wait time expires, are held and then transmitted immediately following the wait time. If a backward frame is received during the wait time, any bytes that may have been written to UxTXB will be transmitted after completion of the backward frame reception plus the UxP1 wait time.

The wait timer is reset by the backward frame and starts over immediately following the reception of the Stop bits of the backward frame. Data pending in the transmit shift register will be sent when the wait time elapses.

To replace or delete any pending forward frame data, the TXBE bit needs to be set to flush the shift register and transmit buffer. A new control byte can then be written to the UxTXB register. The control byte will be held in the buffer and sent at the beginning of the next forward frame following the UxP1 wait time.

In Control Device mode, PERIF is set when a forward frame is received. This helps the software to determine whether the received byte is part of a forward frame from a Control Device (either from the Control Device under consideration or from another Control Device on the bus) or a backward frame from a Control Gear.

31.6.2 CONTROL GEAR

The Control Gear mode is configured with the following settings:

- MODE = 0b1001
- TXEN = 1
- RXEN = 1
- UxP1 = Back Frames are held for transmission this number of half-bit periods after the completion of a Forward Frame.

 UxP2 = Forward/Back Frame threshold delimiter. Idle periods more than this number of half-bit periods are detected as Forward Frames.

- UxBRGH:L = Value to achieve 1200 baud rate
- TXPOL = appropriate polarity for interface circuit
- RXPOL = same as TXPOL
- STP = 0b10 for two Stop bits
- RxyPPS = TX pin output code
- TX pin TRIS control = 0
- RXPPS = RX pin selection code
- RX pin TRIS control = 1
- Input pin ANSEL bit = 0
- ON = 1

The UART starts listening for a forward frame when the Control Gear mode is entered. Only the frames that follow an Idle period longer than UxP2 half-bit periods are detected as forward frames. Backward frames from other Control Gear are ignored. Only forward frames will be stored in UxRXB. This is necessary because a backward frame can be sent only as a response to a forward frame.

The forward frame is received one byte at a time in the receive FIFO and retrieved by reading the UxRXB register. The end of the forward frame starts a timer to delay the backward frame response by wait time equal to the number of half-bit periods stored in UxP1.

The data received in the forward frame is processed by the application software. If the application decides to send a backward frame in response to the forward frame, the value of the backward frame is written to UxTXB. This value is held for transmission in the transmit shift register until the wait time expires and is then transmitted.

If the backward frame data is written to UxTXB after the wait time has expired, it is held in the UxTXB register until the end of the wait time following the next forward frame. The TXMTIF bit is false when the backward frame data is held in the transmit shift register. Receiving a UxRXIF interrupt before the TXMTIF goes true indicates that the backward frame write was too late and another forward frame. The pending backward frame has to be flushed by setting the TXBE bit, to prevent it from being sent after the next Forward Frame.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
I2CxBTO	—	_	_	_			BTO<2:0>		582
I2CxCLK		_	—	_	_		CLK<2:0>		581
I2CxPIE	CNTIE	ACKTIE	_	WRIE	ADRIE	PCIE	RSCIE	SCIE	588
I2CxPIR	CNTIF	ACKTIF	—	WRIF	ADRIF	PCIF	RSCIF	SCIF	587
I2CxERR	_	BTOIF	BCLIF	NACKIF	—	BTOIE	BCLIE	NACKIE	585
I2CxSTAT0	BFRE	SMA	MMA	R	D		—	—	583
I2CxSTAT1	TXWE	—	TXBE		RXRE	CLRBF	—	RXBF	584
I2CxCON0	EN	RSEN	S	CSTR	MDR		MODE<2:0>	•	577
I2CxCON1	ACKCNT	ACKDT	ACKSTAT	ACKT		RXOV	TXU	CSD	579
I2CxCON2	ACNT	GCEN	FME ADB SDAHT<3:2> BFRET<1:0>					T<1:0>	580
I2CxADR0	ADR<7:0>						589		
I2CxADR1		ADR<7:1> —						590	
I2CxADR2	ADR<7:0>						591		
I2CxADR3		ADR<7:1> —						592	
I2CxADB0		ADB<7:0>						593	
I2CxADB1				A	DB<7:0>				594
I2CxCNT				CI	NT<7:0>				586
I2CxPIR	CNTIF	ACKTIF		WRIF	ADRIF	PCIF	RSCIF	SCIF	587
I2CxPIE	CNTIE	ACKTIE		WRIE	ADRIE	PCIE	RSCIE	SCIE	588
I2CxADR0	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	589
I2CxADR1	ADR14	ADR13	ADR12	ADR11	ADR10	ADR9	ADR8		590
I2CxADR2	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	591
I2CxADR3	ADR14	ADR13	ADR12	ADR11	ADR10	ADR9	ADR8	—	592
I2CxADB0	ADB7	ADB6	ADB5	ADB4	ADB3	ADB2	ADB1	ADB0	593
I2CxADB1	ADB7	ADB6	ADB5	ADB4	ADB3	ADB2	ADB1	ADB0	594

TABLE 33-18: SUMMARY OF REGISTERS FOR I²C 8-BIT MACRO

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the I^2C module.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			CS<	5:0>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is un	u = Bit is unchanged x = Bit is unknown			-n/n = Value a	t POR and BO	R/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as ')'				
bit 5-0	CS<5:0> : AD	C Conversion	Clock Select b	oits			
	111111 = Fc	osc/128					
	111110 = Fc	osc/126					
	111101 = Fc	osc/124					
	•						
	•						
	•						
	000000 = Fc	osc/2					

REGISTER 36-6: ADCLK: ADC CLOCK SELECTION REGISTER

REGISTER 36-7: ADREF: ADC REFERENCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	NREF	—	—	PREF	<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	NREF: ADC Negative Voltage Reference Selection bit 1 = VREF- is connected to external VREF- 0 = VREF- is connected to Vss
bit 3-2	Unimplemented: Read as '0'
bit 1-0	PREF: ADC Positive Voltage Reference Selection bits 11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module 10 = VREF+ is connected to external VREF+ 01 = Reserved 00 = VREF+ is connected to VDD

INCF	Increment f	INCFSZ	Increment f, skip if 0
Syntax:	INCF f {,d {,a}}	Syntax:	INCFSZ f {,d {,a}}
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow dest	Operation:	(f) + 1 \rightarrow dest,
Status Affected:	C, DC, N, OV, Z		skip if result = 0
Encoding:	0010 10da ffff ff	Status Affected:	None
Description:	The contents of register 'f' are	Encoding:	0011 11da ffff ffff
Words: Cycles: Q Cycle Activity:	incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select GPR bank. If 'a' is '0' and the extended instruct set is enabled, this instruction oper in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See S tion 41.2.3 "Byte-Oriented and B Oriented Instructions in Indexed eral Offset Mode" for details. 1	e 5 -	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '0', the ASR is used to select the GPR bank. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.
Q1 Decode	Q2 Q3 Q4 Read Process Write	Words:	1
Example:	INCF CNT, 1, 0	Cycles:	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.
Before Instru		Q Cycle Activity:	
CNT	= FFh	Q1	Q2 Q3 Q4
Z C	= 0 = ?	Decode	Read Process Write to
DC	= ?		register 'f' Data destination
After Instruct CNT	ion = 00h	If skip:	02 02 04
Z	= 1	Q1 No	Q2 Q3 Q4 No No No
DC	= 1 = 1		operation operation operation
			ed by 2-word instruction:
		Q1	Q2 Q3 Q4
		No	No No No
		operation	operation operation operation
		No operation	NoNoNooperationoperationoperation
		Example:	HERE INCFSZ CNT, 1, 0 NZERO : ZERO :
		Before Instru PC After Instruct CNT If CNT PC If CNT PC	= Address (HERE)

MOVF	Move f					
Syntax:	MOVF f{,	d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]				
Operation:	$f \to \text{dest}$					
Status Affected:	N, Z					
Encoding:	0101	00da fi	fff ffff			
	status of 'd' placed in W placed back Location 'f' 256-byte ba If 'a' is '0', tl If 'a' is '1', tl GPR bank. If 'a' is '0' al set is enabl in Indexed I mode when tion 41.2.3 Oriented In	The contents of register 'f' are moved to a destination dependent upon the status of 'd'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the ASR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write W			
Example:	MOVF RE	EG, 0, 0				
Before Instruction REG = 22h W = FFh						

MO\	/FF	Move f to	f					
Synta	ax:	MOVFF f	s,f _d					
Oper	ands:	0	$\begin{array}{l} 0 \leq f_s \leq 4095 \\ 0 \leq f_d \leq 4095 \end{array}$					
Oper	ation:	$(f_{s}) \to f_{d}$						
Statu	s Affected:	None						
1st w	ding: vord (source) word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d			
Desc	ription:	moved to c Location of in the 4096 FFFh) and can also be FFFh. MOVFF ha source and lower 4 Kb	MOVFF has curtailed the source and destination range to the lower 4 Kbyte space of memory (Banks 1 through 15). For everything else, use					
Word	ls:	2						
Cycle	es:	2 (3)						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read register 'f' (src)	Proce Dat		No operation			
	Decode	No operation No dummy	No opera		Write register 'f' (dest)			

Example:	MOVFF	REG1,	REG2
Before Instruction REG1 REG2	on = =	33h 11h	
After Instruction REG1		33h	
REG2	=	33h	

read

After Instruction REG

W

=

=

22h

22h

TBLWT	Table W	rite				
Syntax:	TBLWT (*	*; *+; *-; +*	r)			
Operands:	None					
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR;					
	(TABLAT)			,		
Status Affected:	None					
Encoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*		
	holding re The holdin the conter (Refer to 3 Memory" gramming The TBLP each byte TBLPTR h The LSb o byte of the access. TBLF TBLF The TBLW value of T • no char • post-inc	gisters the g register the of Prog Section 13 for addition Flash me TR (a 21- in the pro- mas a 2-MB of the TBL e program PTR[0] = 0 PTR[0] = 1 T instruct BLPTR as nge crement crement	 TABLAT s are used gram Mem 3.1 "Prog onal details mory.) bit pointer gram men Byte addre PTR select memory le E Least S Byte of Memori Styte of Memori ion can m) points to nory. ess range. ets which ocation to Significant f Program y Word ignificant f Program y Word		
Words:	1	omont				
Cycles:	2					
Q Cycle Activity:	-					
	Q1	Q2	Q3	Q4		
	Decode	No	No	No		
			operation	operation		
	No operation	No operation (Read TABLAT)	No operation	No operation (Write to Holding Register)		

TBLWT Table Write (Continued)

Example1: TBLWT *+;		
Before Instruction		
TABLAT TBLPTR	=	55h 00A356h
HOLDING REGISTER	-	00A35011
(00A356h)	=	FFh
After Instructions (table write	comp	,
TABLAT TBLPTR	=	55h 00A357h
HOLDING REGISTER	-	00A33711
(00A356h)	=	55h
Example 2: TBLWT +*;		
Before Instruction		
TABLAT	=	34h
TBLPTR HOLDING REGISTER	=	01389Ah
(01389Ah)	=	FFh
HÖLDING REGISTER (01389Bh)	=	FFh
After Instruction (table write c		
TABLAT	=	34h
TBLPTR	=	01389Bh
HOLDING REGISTER (01389Ah)	=	FFh
HOLDING REGISTER (01389Bh)	=	34h

Register)

43.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

43.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

43.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

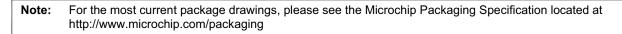
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

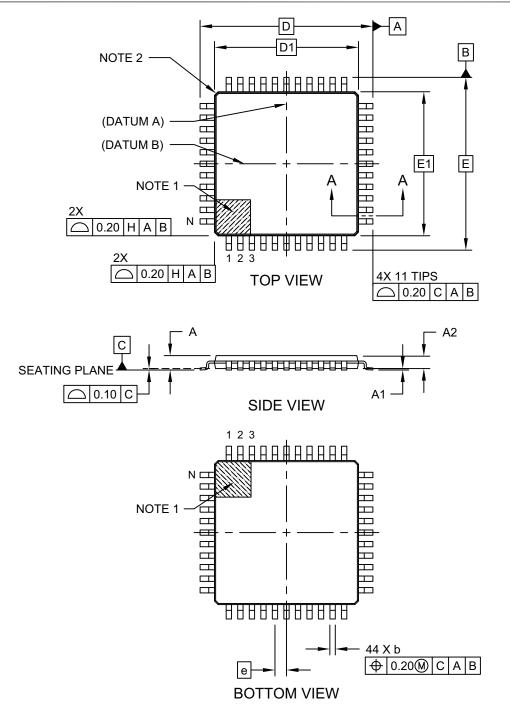
43.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

TABLE 44-9: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS (CONTINUED)

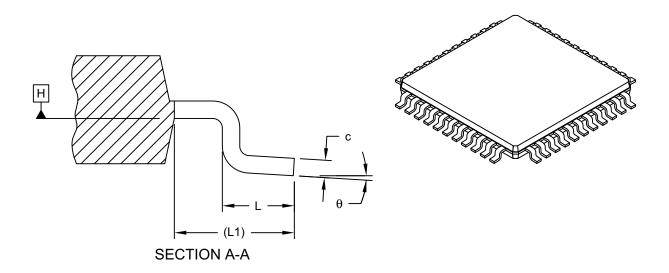

Standard Operating Conditions (unless otherwise stated)											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
OS21	F _{CY}	Instruction Frequency	—	Fosc/4	_	MHz	$\langle \rangle$				
OS22	T _{CY}	Instruction Period	62.5	1/F _{CY}	_	ns					


These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note** 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 10.0 "Power-Saving Operation Modes".
 - 3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 44.2 "Standard Operating Conditions".
 - 4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]



Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

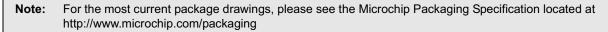
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

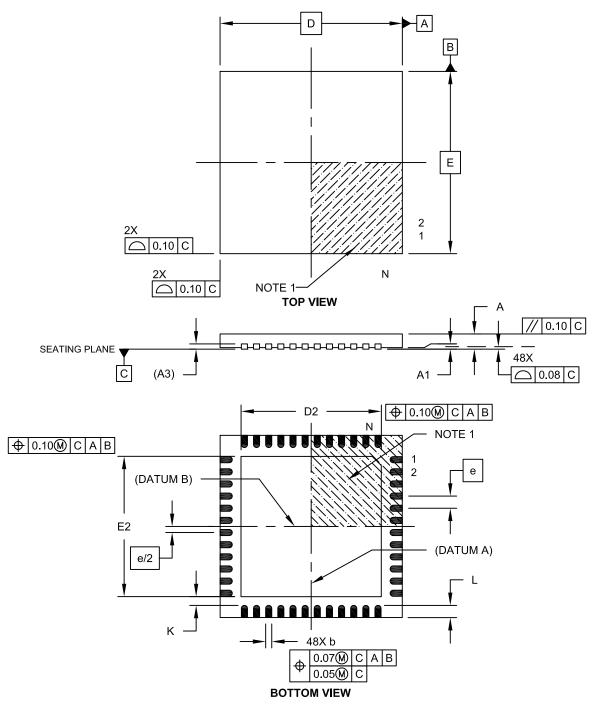
	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Leads	N	44				
Lead Pitch	е	0.80 BSC				
Overall Height	Α	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Overall Width	E	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Width	b	0.30	0.37	0.45		
Lead Thickness	С	0.09	-	0.20		
Lead Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	θ	0°	3.5°	7°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.


3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-153A Sheet 1 of 2