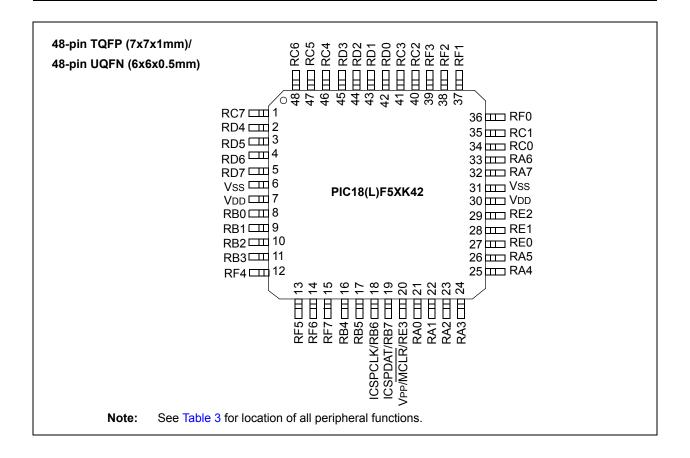


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP Exposed Pad
Supplier Device Package	48-TQFP-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf57k42t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 13-2: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	NVMCON2<7:0>								
bit 7							bit 0		
Legend:									
R = Readable b	bit	W = Writable bit	t	U = Unimplen	nented bit, read	1 as '0'			
x = Bit is unkno	own	'0' = Bit is cleare	ed	'1' = Bit is set					
-n = Value at P	OR								

bit 7-0 NVMCON2<7:0>:

Refer to Section 13.1.4 "NVM Unlock Sequence".

Note 1: This register always reads zeros, regardless of data written.

Register 13-3: NVMADRL: Data EEPROM Memory Address Low

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ADR<7:0>							
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set	
-n = Value at POR			

bit 7-0 ADR<7:0>: EEPROM Read Address bits

REGISTER 13-4: NVMADRH: DATA EEPROM MEMORY ADDRESS HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	_	_	ADR	<9:8>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set	
-n = Value at POR			

bit 7-2 Unimplemented: Read as '0'

bit 1-0 ADR<9:8>: EEPROM Read Address bits

Note 1: The NVMADRH register is not implemented on PIC18(L)F45/55K42.

FIGURE 15-3: DMA COUNTERS BLOCK DIAGRAM

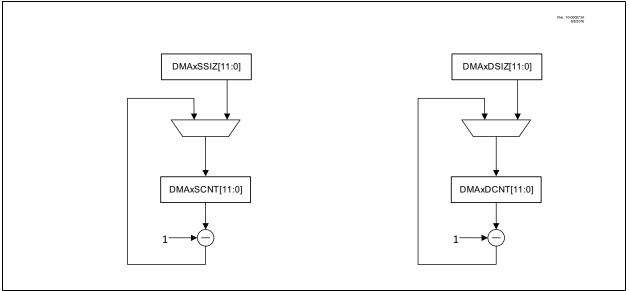


Table 15-2 has a few examples of configuring DMAMessage sizes.

TABLE 15-2:	EXAMPLE	E MESSAGE SIZE	TABLE	
Operat	ion	Example	SCNT	DONT

Operation	Example	SCNT	DCNT	Comments
Read from single SFR location to RAM	U1RXB	1	Ν	N equals the number of bytes desired in the destination buffer. N >= 1.
Write to single SFR location from RAM	U1TXB	N	1 N equals the number of bytes desired source buffer. N >= 1.	
	ADRES[H:L]	2	2*N	N equals the number of ADC results to be stored in memory. N>= 1
Read from multiple SFR location	TMR1[H:L]	2	2*N	N equals the number of TMR1 Acquisition results to be stored in memory. N>= 1
	SMT1CPR[U:H:L]	3	3*N	N equals the number of Capture Pulse Width measurements to be stored in memory. N>= 1
Write to Multiple SFR regis-	PWMDC[H:L]	2*N	2	N equals the number of PWM duty cycle val- ues to be loaded from a memory table. N>= 1
ters	All ADC registers	N*31	31	Using the DMA to transfer a complete ADC context from RAM to the ADC registers.N>= 1

REGISTER 15-21: DMAxDCNTH: DMAx DESTINATION COUNT HIGH REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—		DCNT<	11:8>	
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR and BOR/Value at all other	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged
Resets			C C

bit 7-4 Unimplemented: Read as '0'

bit 3-0 DCNT<11:8>: Current Destination Byte Count

REGISTER 15-22: DMAxSIRQ: DMAx START INTERRUPT REQUEST SOURCE SELECTION REGISTER

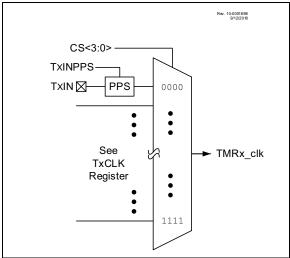
U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_				SIRQ<6:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7 Unimplemented: Read as '0'

bit 6-0 **SIRQ<6:0>:** DMAx Start Interrupt Request Source Selection bits Please refer to Table 15-2 for more information.

REGISTER 15-23: DMAxAIRQ: DMAx ABORT INTERRUPT REQUEST SOURCE SELECTION REGISTER


U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_				AIRQ<6:0>			
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged			

bit 7 Unimplemented: Read as '0'

bit 6-0 **AIRQ<6:0>:** DMAx Interrupt Request Source Selection bits Please refer to Table 15-2 for more information.

FIGURE 22-2: TIMER2 CLOCK SOURCE BLOCK DIAGRAM

22.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-Shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 22-1 lists the options.

In all modes the T2TMR count register is incremented on the rising edge of the clock signal from the programmable prescaler. When T2TMR equals T2PR then a high level is output to the postscaler counter. T2TMR is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a T2TMR count Reset. In gate modes, the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the T2TMR count is reset on either the level or edge from the external source.

The T2TMR and T2PR registers are both directly readable and writable. The T2TMR register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the T2TMR register
- · a write to the TxCON register
- any device Reset
- · External Reset Source event that resets the timer.

Note: T2TMR is not cleared when TxCON is written.

22.1.1 FREE RUNNING PERIOD MODE

The value of T2TMR is compared to that of the Period register, T2PR, on each clock cycle. When the two values match, the comparator resets the value of T2TMR to 00h on the next cycle and increments the

output postscaler counter. When the postscaler count equals the value in the OUTPS bits of the TxCON register, then a one clock period wide pulse occurs on the T2TMR_postscaled output, and the postscaler count is cleared.

22.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when T2TMR matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

22.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

22.2 Timer2 Output

The Timer2 module's primary output is T2TMR_postscaled, which pulses for a single T2TMR_clk period when the postscaler counter matches the value in the OUTPS bits of the TxCON register. The T2PR postscaler is incremented each time the T2TMR value matches the T2PR value. This signal can be selected as an input to several other input modules.

Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual T2TMR value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See Section 23.0 "Capture/Compare/PWM Module" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in Section 22.5 "Operation Examples" for examples of how the varying Timer2 modes affect CCP PWM output.

22.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2, Timer4, and Timer6 with the T2RST, T4RST, and T6RST registers, respectively. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE bits of the T2HLT register. Edge Triggered modes require six Timer clock periods between external triggers. Level Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

23.3.1 CCPx PIN CONFIGURATION

The software must configure the CCPx pin as an output by clearing the associated TRIS bit and defining the appropriate output pin through the RxyPPS registers. See **Section 17.0 "Peripheral Pin Select (PPS) Module"** for more details.

Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch.

23.3.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 21.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

23.3.3 AUTO-CONVERSION TRIGGER

All CCPx modes set the CCP interrupt flag (CCPxIF). When this flag is set and a match occurs, an autoconversion trigger can take place if the CCP module is selected as the conversion trigger source.

Refer to **Section 36.2.5 "Auto-Conversion Trigger"** for more information.

Note: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Autoconversion Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring

23.3.4 COMPARE DURING SLEEP

Since FOSC is shut down during Sleep mode, the Compare mode will not function properly during Sleep, unless the timer is running. The device will wake on interrupt (if enabled).

23.4 PWM Overview

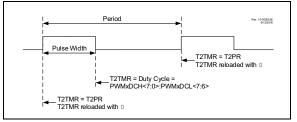
Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully ON and fully OFF states. The PWM signal resembles a square wave where the high portion of the signal is considered the ON state and the low portion of the signal is considered the OFF state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulsewidth time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 23-3 shows a typical waveform of the PWM signal.

23.4.1 STANDARD PWM OPERATION


The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- T2PR registers
- T2CON registers
- CCPRxL and CCPRxH registers
- CCPxCON registers

It is required to have Fosc/4 as the clock input to TMR2/4/6 for correct PWM operation. Figure 23-4 shows a simplified block diagram of PWM operation.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.

FIGURE 23-3: CCP PWM OUTPUT SIGNAL

REGISTER 25-7: SMT1TMRL: SMT TIMER REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			SMT1T	MR<7:0>				
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 SMT1TMR<7:0>: Significant bits of the SMT Counter – Low Byte

REGISTER 25-8: SMT1TMRH: SMT TIMER REGISTER – HIGH BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SMT1TM | R<15:8> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1TMR<15:8>: Significant bits of the SMT Counter – High Byte

REGISTER 25-9: SMT1TMRU: SMT TIMER REGISTER – UPPER BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			SMT1TM	R<23:16>					
bit 7							bit 0		
Legend:									
R = Readable	= Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets		

bit 7-0 SMT1TMR<23:16>: Significant bits of the SMT Counter – Upper Byte

'0' = Bit is cleared

© 2017 Microchip Technology Inc.

'1' = Bit is set

31.2.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error flag bit. A framing error indicates that the Stop bit was not seen at the expected time. The framing error flag is accessed via the FERIF bit in the UxERRIR register. The FERIF bit represents the frame status of the top unread character of the receive FIFO. Therefore, the FERIF bit must be read before reading UxRXB.

The FERIF bit is read-only and only applies to the top unread character of the receive FIFO. A framing error (FERIF = 1) does not preclude reception of additional characters. It is neither necessary nor possible to clear the FERIF bit directly. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERIF bit is cleared when the character at the top of the FIFO does not have a framing error or when all bytes in the receive FIFO have been read. Clearing the ON bit resets the receive FIFO, thereby also clearing the FERIF bit.

A framing error will generate a summary UxERR interrupt when the FERIE bit in the UxERRIE register is set. The summary error is reset when the FERIF bit of the top of the FIFO is '0' or when all FIFO characters have been retrieved.

When FERIE is set, UxRXIF interrupts are suppressed when FERIF is '1'.

31.2.2.5 Receiver Parity Modes

Even and odd parity is automatically detected when the MODE<3:0> bits are set to '0011' and '0010', respectively. Parity modes receive eight data bits and one parity bit for a total of nine bits for each character. The PERIF bit in the UXERRIR register represents the parity error of the top unread character of the receive FIFO rather than the parity bit itself. The parity error must be read before reading the UXRXB register advances the FIFO.

A parity error will generate a summary UxERR interrupt when the PERIE bit in the UxERRIE register is set. The summary error is reset when the PERIF bit of the top of the FIFO is '0' or when all FIFO characters have been retrieved.

When PERIE is set, UxRXIF interrupts are suppressed when PERIF is '1'.

31.2.2.6 Receive FIFO Overflow

When more characters are received than the receive FIFO can hold, the RXFOIF bit in the UxERRIR register is set. The character causing the overflow condition is discarded. The RUNOVF bit in the UxCON2 register determines how the receive circuit responds to characters while the overflow condition persists. When RUNOVF is set, the receive shifter stays synchronized to the incoming data stream by responding to Start, data, and Stop bits. However, all received bytes not already in the FIFO are discarded. When RUNOVF is cleared, the receive shifter ceases operation and Start. data, and Stop bits are ignored. The receive overflow condition is cleared by reading the UxRXB register and clearing the RXFOIF bit. If the UxRXB register is not read to open a space in the FIFO, the next character received will be discarded and cause another overflow condition.

A receive overflow error will generate a summary UxEIF interrupt when the RXFOIE bit in the UxERRIE register is set.

31.2.2.7 Asynchronous Reception Setup

- Initialize the UxBRGH, UxBRGL register pair and the BRGS bit to achieve the desired baud rate (see Section 31.17 "UART Baud Rate Generator (BRG)").
- 2. Configure the RXPPS register for the desired RX pin
- 3. Clear the ANSEL bit for the RX pin (if applicable).
- 4. Set the MODE<3:0> bits to the desired asynchronous mode.
- 5. Set the RXPOL bit if the data stream is inverted.
- 6. Enable the serial port by setting the ON bit.
- 7. If interrupts are desired, set the UxRXIE bit in the PIEx register and the GIE bits in the INTCON0 register.
- 8. Enable reception by setting the RXEN bit.
- 9. The UxRXIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the UxRXIE interrupt enable bit is also set.
- 10. Read the UxERRIR register to get the error flags.
- 11. Read the UxRXB register to get the received byte.
- 12. If an overrun occurred, clear the RXFOIF bit.

32.3.3 TRANSMIT AND RECEIVE FIFOS

The transmission and reception of data from the SPI module is handled by two FIFOs, one for reception and one for transmission (addressed by the SFRs SPIxRXB and SPIxTXB, respectively.). The TXFIFO is written by software and is read by the SPI module to shift the data onto the SDO pin. The RXFIFO is written by the SPI module as it shifts in the data from the SDI pin and is read by software. Setting the CLRBF bit of SPIxSTATUS resets the occupancy for both FIFOs, emptying both buffers. The FIFOs are also reset by disabling the SPI module.

Note: TXFIFO occupancy and RXFIFO occupancy simply refer to the number of bytes that are currently being stored in each FIFO. These values are used in this chapter to illustrate the function of these FIFOs and are not directly accessible through software.

The SPIxRXB register addresses the receive FIFO and is read-only. Reading from this register will read from the first FIFO location that was written to by hardware and decrease the RXFIFO occupancy. If the FIFO is empty, reading from this register will instead return a value of zero and set the RXRE (Receive Buffer Read Error) bit of the SPIxSTATUS register. The RXRE bit must then be cleared in software in order to properly reflect the status of the read error. When RXFIFO is full, the RXBF bit of the SPIxSTATUS register will be set. When the device receives data on the SDI pin, the receive FIFO may be written to by hardware and the occupancy increased, depending on the mode and receiver settings, as summarized in Table 32-1.

The SPIxTXB register addresses the transmit FIFO and is write-only. Writing to the register will write to the first empty FIFO location and increase the occupancy. If the FIFO is full, writing to this register will not affect the data and will set the TXWE bit of the SPIxSTATUS register. When the TXFIFO is empty, the TXBE bit of SPIxSTATUS will be set. When a data transfer occurs, data may be read from the first FIFO location written to and the occupancy decreases, depending on mode and transmitter settings, as summarized in Table 32-1 and Section 32.6.1 "Slave Mode Transmit options".

32.3.4 LSB VS. MSB-FIRST OPERATION

Typically, SPI communication is output Most-Significant bit first, but some devices/buses may not conform to this standard. In this case, the LSBF bit may be used to alter the order in which bits are shifted out during the data exchange. In both Master and Slave mode, the LSBF bit of SPIxCON0 controls if data is shifted MSb or LSb first. Clearing the bit (default) configures the data to transfer MSb first, which is traditional SPI operation, while setting the bit configures the data to transfer LSb first.

32.3.5 INPUT AND OUTPUT POLARITY BITS

SPIxCON1 has three bits that control the polarity of the SPI inputs and outputs. The SDIP bit controls the polarity of the SDI input, the SDOP bit controls the polarity of the SDO output, and the SSP bit controls the polarity of both the slave SS input and the master SS output. For all three bits, when the bit is clear, the input or output is active-high, and when the bit is set, the input or output is active-low. When the EN bit of SPIxCON0 is cleared, SS(out) and SCK(out) both revert to the inactive state dictated by their polarity bits. The SDO output state when the EN bit of SPIxCON0 is cleared is determined by several factors.

- When the associated TRIS bit for the SDO pin is cleared, and the SPI goes idle after a transmission, the SDO output will remain at the last bit level. The SDO pin will revert to the Idle state if EN is cleared.
- When the associated TRIS bit for the SDO pin is set, behavior varies in Slave and Master mode.
- In Slave mode, the SDO pin tri-states when:
- Slave Select is inactive,
- the EN bit of SPIxCON0 is cleared, or when
- the TXR bit of SPIxCON2 is cleared.
- In Master mode, the SDO pin tri-states when TXR = 0. When TXR = 1 and the SPI goes idle after a transmission, the SDO output will remain at the last bit level. The SDO pin will revert to the Idle state if EN is cleared.

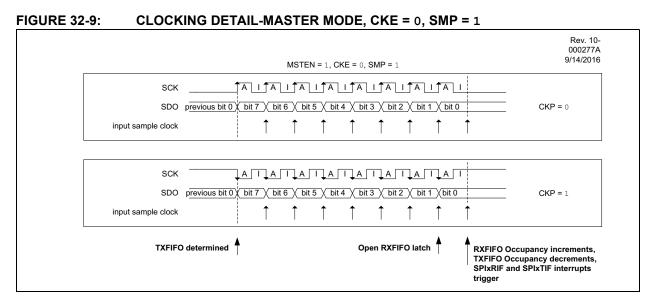
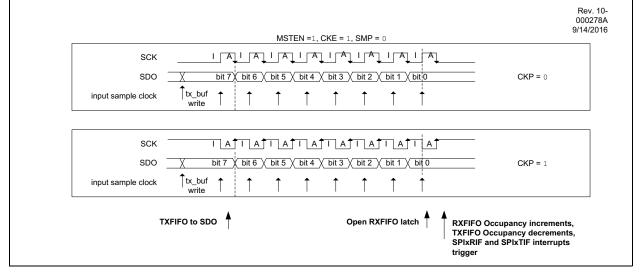
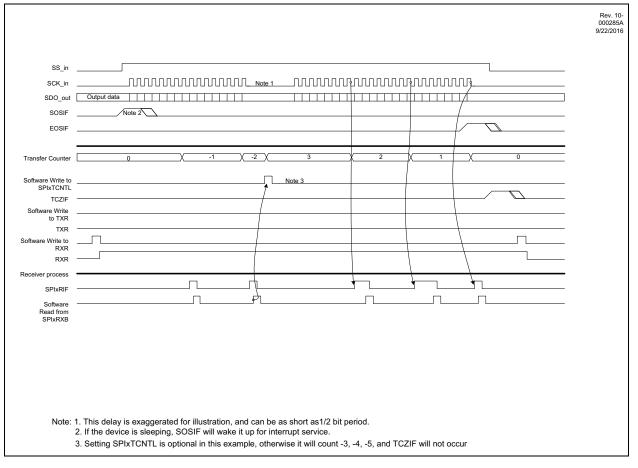



FIGURE 32-10: CLOCKING DETAIL-MASTER MODE, CKE = 1, SMP = 0

32.5.6.3 SCK Start-Up Delay

When starting an SPI data exchange, the master device sets the SS output (either through hardware or software) and then triggers the module to send data. These data triggers are synchronized to the clock selected by the SPIxCLK register before the first SCK pulse appears, usually requiring one or two clocks of the selected clock.

The SPI module includes synchronization delays on SCK generation specifically designed to ensure that the Slave Select output timing is correct, without requiring precision software timing loops.


When the value of the SPIxBAUD register is a small number (indicating higher SCK frequencies), the synchronization delay can be relatively long between setting SS and the first SCK. With larger values of SPIxBAUD (indicating lower SCK frequencies), this delay is much smaller and the first SCK can appear relatively quickly after SS is set.

By default, the SPI module inserts a ½ baud delay (half of the period of the clock selected by the SPIxCLK register) before the first SCK pulse. This allows for systems with a high SPIxBAUD value to have extra setup time before the first clock. Setting the FST bit in SPIxCON1 removes this additional delay, allowing systems with low SPIxBAUD values (and thus, long synchronization delays) to forego this unnecessary extra delay.

32.6.2 SLAVE MODE RECEIVE OPTIONS

The RXR bit controls the nature of receptions in slave mode. When RXR is set, the SDI input data will be stored in the RXFIFO if it is not full. If the RXFIFO is full, the RXOIF bit will be set to indicate an RXFIFO overflow error and the data is discarded. When RXR is cleared, all received data will be ignored and not stored in the RXFIFO (although it may still be used for transmission if TXFIFO is empty). Figure 32-11 shows a typical slave mode communication, showing a case where the master writes two then three bytes, showing interrupts as well as the behavior of the transfer counter in slave mode (see Section 32.4.3 "Transfer Counter in Slave mode" for more details on tSection 32.8 "SPI Interrupts" he transfer counter in slave mode as well as Section X.8 for more information on interrupts).

FIGURE 32-11: SPI SLAVE MODE OPERATION – INTERRUPT-DRIVEN, MASTER WRITES 2+3 BYTES

33.5.11 MASTER TRANSMISSION IN 10-BIT ADDRESSING MODE

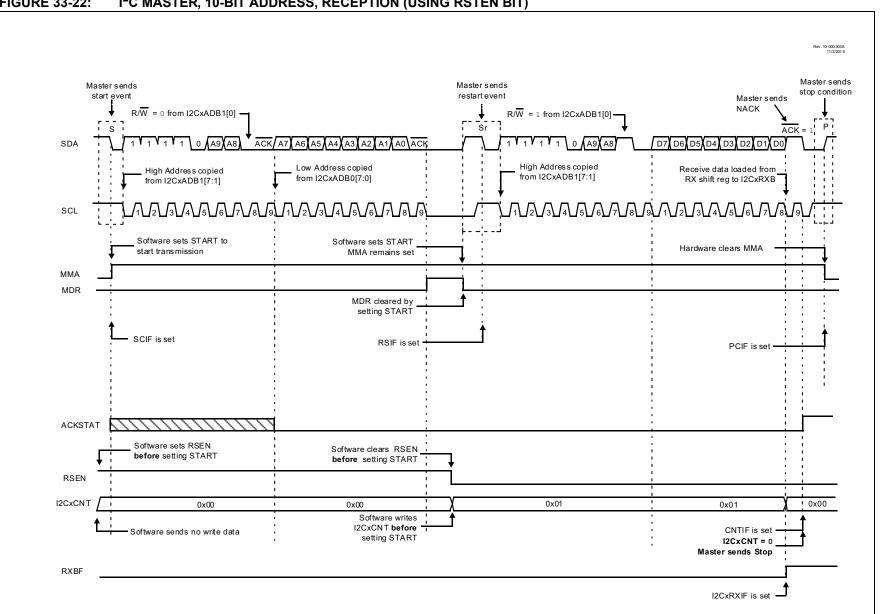
This section describes the sequence of events for the I^2C module configured as an I^2C master in 10-bit Addressing mode and is transmitting data. Figure 33-21 is used as a visual reference for this description

1. If ABD = 0; i.e., Address buffers are enabled

Master software loads number of bytes to be transmitted in one sequence in I2CxCNT, high address byte of slave address in I2CxADB1 with R/W = 0, low address byte in I2CxADB0 and the first byte of data in I2CxTXB. Master software has to set the Start (S) bit to initiate communication.

If ABD = 1; i.e., Address buffers are disabled

Master software loads the number of bytes to be transmitted in one sequence in I2CxCNT and the high address byte of the slave address with R/W = 0 into the I2CxTXB register. Writing to the I2CxTXB will assert the start condition on the bus and sets the S bit. Software writes to the S bit are ignored in this case.


- 2. Master hardware waits for BFRE bit to be set; then shifts out the start and high address and waits for acknowledge.
- 3. If NACK, master hardware sends Stop.
- 4. If ABD = 0; i.e., Address buffer are enabled

If ACK, master hardware sends the low address byte from I2CxADB0.

If ABD = 1; i.e., Address buffer are disabled

If ACK, master hardware sets TXIF and MDR bits and the software has to write the low address byte into I2CxTXB. Writing to I2CxTXB sends the low address on the bus.

- If TXBE = 1 and I2CxCNT! = 0, I2CxTXIF and MDR bits are set. Clock is stretched on 8th falling SCL edge until master software writes next data byte to I2CxTXB.
- Master hardware sends ninth SCL pulse for ACK from slave and loads the shift register from I2CxTXB. I2CxCNT is decremented.
- 7. If slave sends a NACK, master hardware sends Stop and ends transmission.
- If slave sends an ACK, master hardware outputs data in the shift register on SDA. I2CxCNT value is checked on the 8th falling SCL edge. If I2CxCNT = 0; master hardware sends 9th SCL pulse for ACK and CNTIF is set.
- 9. If I2CxCNT! = 0; go to step 5.

FIGURE 33-22: I²C MASTER, 10-BIT ADDRESS, RECEPTION (USING RSTEN BIT)

© 2016-2017 Microchip Technology Inc

RLNCF	Rotate Le	eft f (No Car	ry)							
Syntax:	RLNCF	f {,d {,a}}								
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$									
Operation:		$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$								
Status Affected:	N, Z	N, Z								
Encoding:	0100	0100 01da ffff ffff								
Description:	one bit to the stored back of the store ba	and the extend led, this instruc- Literal Offset λ never f \leq 95 (5 " Byte-Orien	'0', the result , the result is (default). nk is selected. d to select the led instruction ction operates Addressing (Fh). See Sec- ted and Bit- n Indexed Lit- etails.							
Words:	1									
Cycles:	1									
Q Cycle Activity:										
Q1	Q2	Q3	Q4							
Decode	Read register 'f'	Process Data	Write to destination							
Example: Before Instruct		REG, 1,	0							
REG After Instructio REG	= 1010 1 n = 0101 0									

<u> </u>	Rotate Ri	-	0	,
Syntax:	RRCF f{,	d {,a}}		
Operands:	$0 \le f \le 255$			
	d ∈ [0,1]			
.	a ∈ [0,1]			
Operation:	$(f < n >) \rightarrow de$		>,	
	$(f<0>) \rightarrow C$ $(C) \rightarrow dest$			
o		~1~		
Status Affected:	C, N, Z			
Encoding:	0011	00da	ffff	fffi
Description:	The conten			
	one bit to th			
	flag. If 'd' is			
	lf 'd' is '1', t register 'f' (is placed	а раск іп
	If 'a' is '0', t		s Bank is	s selecte
	lf 'a' is '1', t			
	GPR bank.			
	lf 'a' is ' 0' a			
	set is enabl	-		•
	in Indexed			
	mode when tion 41.2.3			
	Oriented Ir			
	eral Offset			
	-► C	► re	gister f	→
			5	
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read	Proce		Write to
	register 'f'	Dat		
Decode		Data	a de	estinatio
Decode	regioter i	Dat	a de	estinatio
	RRCF		a de	estinatio
Example:	RRCF			estinatio
	RRCF	REG,		estinatio
Example: Before Instruc REG C	RRCF tion = 1110 (= 0	REG,		estinatio
Example: Before Instruct REG C After Instruction	RRCF tion = 1110 C = 0	REG,		<u>estinatio</u>
Example: Before Instruc REG C After Instructio REG	RRCF tion = 1110 (= 0 on = 1110 (REG,		estinatio
Example: Before Instruct REG C After Instructio REG W	RRCF tion = 1110 (= 0 on = 1110 (= 0111 (REG,		estinatio
Example: Before Instruc REG C After Instructio REG	RRCF tion = 1110 (= 0 on = 1110 (= 0111 (REG,		estinatio
Example: Before Instruct REG C After Instructio REG W	RRCF tion = 1110 (= 0 on = 1110 (= 0111 (REG,		estinatio
Example: Before Instruct REG C After Instructio REG W	RRCF tion = 1110 (= 0 on = 1110 (= 0111 (REG,		estinatio
Example: Before Instruct REG C After Instructio REG W	RRCF tion = 1110 (= 0 on = 1110 (= 0111 (REG,		estinatio
Example: Before Instruct REG C After Instructio REG W	RRCF tion = 1110 (= 0 on = 1110 (= 0111 (REG,		estinatio

MO	/SS	Move Ind	exed to	Indexe	d						
Synta	ax:	MOVSS [z _s], [z _d]								
Oper	ands:	0 ≤ z _s ≤ 12	7								
		$0 \le z_d \le 12$	7								
Oper	ation:	((FSR2) + 2	$z_s) \rightarrow ((Fs))$	SR2) + z _o	j)						
Statu	s Affected:	None									
Enco	ding:										
	vord (source)	1110	1011	1 z z z	ZZZZS						
2nd ۱	word (dest.)	1111	XXXX	XZZZ	zzzzd						
Word	Ic.	addresses registers a 7-bit literal respectivel registers a the 4096-b (000h to FI The MOVSS PCL, TOSI destination If the result an indirect value retur resultant du an indirect instruction 2	re determ offsets 'z, y, to the v an be loca yte data r Fh). instruction J, TOSH register. tant source addressir ned will b estination addressir	ined by a s' or 'zd', alue of F ated anyw memory s on canno or TOSL e addres ng registe e 00h. If address ng registe	dding the SR2. Both where in pace t use the as the s points to or, the the points to or, the						
		_									
Cycle		2									
QC	ycle Activity:										
	Q1	Q2	Q3		Q4						
	Decode	Determine	Determ		Read						
		source addr	source		burce reg						
	Decode	Determine	Determ		Write						
		dest addr	dest a	aar to	dest reg						

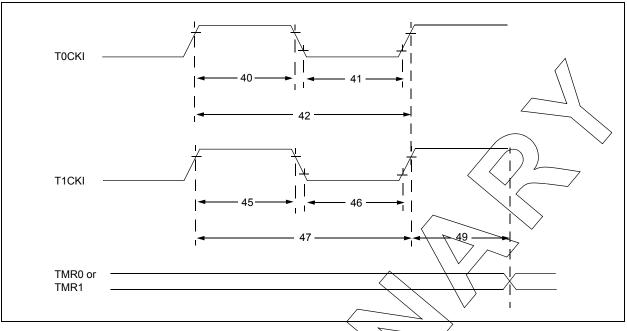
OVSS	[05h],	[06h]
=	80h	
=	33h	
=	11h	
=	80h	
=	33h	
=	33h	
	= = =	= 33h = 11h = 80h = 33h

PUSHL	Store Lite	ral at FS	R2, Decr	ement FSR2
Syntax:	PUSHL k			
Operands:	$0 \le k \le 255$			
Operation:	$k \rightarrow (FSR2 - 1 - FSR2 - 1 - 1)$			
Status Affected:	None			
Encoding:	1111	1010	kkkk	kkkk
	is decreme	nted by 1 tion allow	after the s users to	FSR2. FSR2 operation. o push values
Words:	1			
Words: Cycles:	1 1			
	1			
Cycles:	1		Q3	Q4
Cycles: Q Cycle Activity	1 y: Q2		Q3 ocess data	Q4 Write to destination
Cycles: Q Cycle Activity Q1	1 y: Q2		ocess	Write to
Cycles: Q Cycle Activity Q1 Decode Example: Before Inst FSR2	1 y: • Read 6		ocess	Write to destination

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Regist on pag
3EE8h	ADACCL				AC	CC				631
3EE7h	ADFLTRH				FL	TR				627 627
3EE6h	ADFLTRL		FLTR							
3EE5h	ADSTPTH		STPT							
3EE4h	ADSTPTL				ST	PT				632
3EE3h	ADERRH		ERR							
3EE2h	ADERRL				EF	RR				633
3EE1h	ADUTHH				U	ГН				634
3EE0h	ADUTHL				U	ГН				634
3EDFh	ADLTHH				LT	Ή				633
3EDEh	ADLTHL				LT	Н				634
3EDDh - 3ED8h	—				Unimple	emented				
3ED7h	ADCP	ON	_	_	_	_	_	_	CPRDY	636
3ED6h - 3ECBh	-				Unimple	emented		1		
3ECAh	HLVDCON1	_	_	—	_		5	SEL		658
3EC9h	HLVDCON0	EN	_	OUT	RDY	—	_	INTH	INTL	657
3EC8h - 3EC4h	-			1	Unimple	emented			•	
3EC3h	ZCDCON	SEN	—	OUT	POL	_	_	INTP	INTN	462
3EC2h	_				Unimple	emented				
3EC1h	FVRCON	EN	RDY	TSEN	TSRNG	CDA	AFVR	A	DFVR	597
3EC0h	CMOUT	_	_	_	_	_	_	C2OUT	C10UT	650
3EBFh	CM1PCH	_			_			PCH		650
3EBEh	CM1NCH	_			_	_		NCH		649
3EBDh	CM1CON1	_		_	_	_	_	INTP	INTN	649
3EBCh	CM1CON0	EN	OUT	_	POL	_	_	HYS	SYNC	648
3EBBh	CM2PCH	_	_		_			PCH		650
3EBAh	CM2NCH			_				NCH		649
3EB9h	CM2CON1							INTP	INTN	649
3EB8h	CM2CON0	EN	OUT		POL			HYS	SYNC	648
3EB7h - 3E9Fh	-	LN	001			emented		1113	51110	040
3E9Eh	DAC1CON0	EN		OE1	OE2	P	SS	_	NSS	640
3E9Dh	_					emented				
3E9Ch	DAC1CON1	_					DATA			641
3E9Bh - 3DFBh	-				Unimple	emented				
3DFAh	U1ERRIE	TXMTIE	PERIE	ABDOVE	CERIE	FERIE	RXBKIE	RXFOIE	TXCIE	502
3DF9h	U1ERRIR	TXMTIF	PERIF	ABDOVF	CERIF	FERIF	RXBKIF	RXFOIF	TXCIF	501
3DF8h	U1UIR	WUIF	ABDIF	_	_	_	ABDIE	_	_	503
3DF7h	U1FIFO	TXWRE	STPMD	TXBE	TXBF	RXIDL	XON	RXBE	RXBF	504
3DF6h	U1BRGH	1				GH				505
3DF5h	U1BRGL				BR					505
3DF4h	U1CON2	RUNOVF	RXPOL	ST		COEN	TXPOL	F	-LO	500
3DF3h	U1CON1	ON		_	WUE	RXBIMD	-	BRKOVR	SENDB	499
3DF2h	U1CON0	BRGS	 ABDEN	TXEN	RXEN			ODE	OLINDO	498
	010010	51,00	ABDEN		IVALIN				P3H	509

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

x = unknown, u = unchanged, — = unimplemented, q = value depends on condition Legend: Note


1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

Unimplemented in PIC18(L)F45/55K42. 4:

FIGURE 44-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 44-21: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym.		Characteris	tic	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High I	Pulse Width	No Prescaler	0.5 Tcy + 20	—	_	ns	
			<	With Prescaler	~ 10	_		ns	
41*	T⊤0L	T0CKI Low F	Pulse Width	No Prescaler/	0.5 Tcy + 20	_	_	ns	
				With Prescaler	10	—	_	ns	
42*	T⊤0P	T0CKI Period	۲ ۲	\sim	Greater of:	_	_	ns	N = prescale value
			$\langle \rangle$	\land	20 or <u>Tcy + 40</u> N				
45*	T⊤1H	T1CKI High	Synchronous,	No Prescaler	0.5 Tcy + 20	—	_	ns	
		Time	Synchronous,	with Prescaler	15	—		ns	
			Asynchronous	3	30	_	_	ns	
46*	TT1L	T1CKI LOW/	Synchronous,	No Prescaler	0.5 Tcy + 20	—		ns	
		Time	Synchronous,	with Prescaler	15	—		ns	
		()	Asynchronous	3	30	—		ns	
47*	TT1P/	71CKI Input	Šynchronous		Greater of:	—		ns	N = prescale value
		Period			30 or <u>Tcy + 40</u> N				
	\square	$\langle \rangle$	Asynchronous	3	60	_	_	ns	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock E	Edge to Timer	2 Tosc	_	7 Tosc	—	Timers in Sync mode

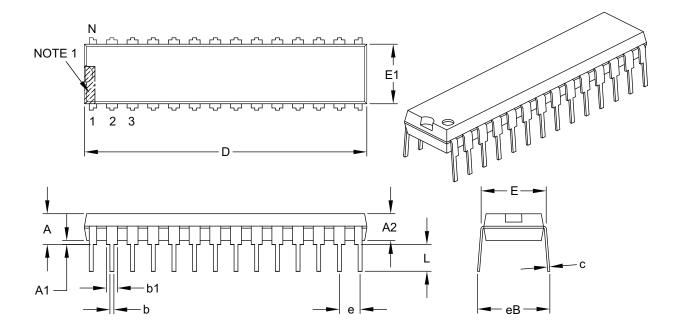
These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 44-27: TEMPERATURE INDICATOR REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
TS01*	TACQMIN	Minimum ADC Acquisition Time Delay			25	_	μs	
TS02*	Mv	Voltage Sensitivity	High Range	_	-3.684	_	mV/°C	TSRNG = 1
			Low Range	_	-2.456	_	mV/°C	TSRNG = 0

* These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

46.1 Package Details

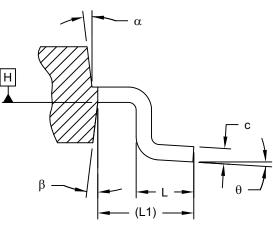
The following sections give the technical details of the packages.

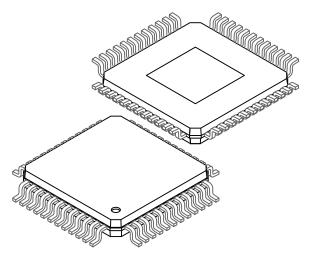
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES				
Dir	Dimension Limits			MAX	
Number of Pins	N	28			
Pitch	e	.100 BSC			
Top to Seating Plane	А	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	_	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §		-	-	.430	

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] With Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Leads	Ν	48				
Lead Pitch	е	0.50 BSC				
Overall Height	Α	1.2				
Standoff	A1	0.05 -		0.15		
Molded Package Thickness	A2	0.95	0.95 1.00			
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	E	9.00 BSC				
Overall Length	D	9.00 BSC				
Molded Package Width	E1	7.00 BSC				
Molded Package Length	D1	7.00 BSC				
Exposed Pad Width	E2	3.50 BSC				
Exposed Pad Length	D2	3.50 BSC				
Lead Thickness	С	0.09	-	0.16		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-183A Sheet 2 of 2