# E. Renesas Electronics America Inc - IDT79RC32T355-150DHG Datasheet



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                                              |
|---------------------------------|---------------------------------------------------------------------------------------|
| Core Processor                  | MIPS-II                                                                               |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                                        |
| Speed                           | 150MHz                                                                                |
| Co-Processors/DSP               | -                                                                                     |
| RAM Controllers                 | SDRAM                                                                                 |
| Graphics Acceleration           | No                                                                                    |
| Display & Interface Controllers | -                                                                                     |
| Ethernet                        | 10/100Mbps (1)                                                                        |
| SATA                            | -                                                                                     |
| USB                             | USB 1.1 (1)                                                                           |
| Voltage - I/O                   | 2.5V, 3.3V                                                                            |
| Operating Temperature           | 0°C ~ 70°C (TA)                                                                       |
| Security Features               | -                                                                                     |
| Package / Case                  | 208-BFQFP                                                                             |
| Supplier Device Package         | 208-PQFP (28x28)                                                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/renesas-electronics-america/idt79rc32t355-150dhg |
|                                 |                                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **Device Overview**

The RC32355 is a "System on a Chip" which contains a high performance 32-bit microprocessor. The microprocessor core is used extensively at the heart of the device to implement the most needed functionalities in software with minimal hardware support. The high performance microprocessor handles diverse general computing tasks and specific application tasks that would have required dedicated hardware. Specific application tasks implemented in software can include routing functions, fire wall functions, modem emulation, ATM SAR emulation, and others.

The RC32355 meets the requirements of various embedded communications and digital consumer applications. It is a single chip solution that incorporates most of the generic system functionalities and application specific interfaces that enable rapid time to market, very low cost systems, simplified designs, and reduced board real estate.

## **CPU Execution Core**

The RC32355 is built around the RC32300 32-bit high performance microprocessor core. The RC32300 implements the enhanced MIPS-II ISA and helps meet the real-time goals and maximize throughput of communications and consumer systems by providing capabilities such as a prefetch instruction, multiple DSP instructions, and cache locking. The DSP instructions enable the RC32300 to implement 33.6 and 56kbps modem functionality in software, removing the need for external dedicated hardware. Cache locking guarantees real-time performance by holding critical DSP code and parameters in the cache for immediate availability. The microprocessor also implements an on-chip MMU with a TLB, making the it fully compliant with the requirements of real time operating systems.

#### **Memory and I/O Controller**

The RC32355 incorporates a flexible memory and peripheral device controller providing support for SDRAM, Flash ROM, SRAM, dual-port memory, and other I/O devices. It can interface directly to 8-bit boot ROM for a very low cost system implementation. It enables access to very high bandwidth external memory (380 MB/sec peak) at very low system costs. It also offers various trade-offs in cost / performance for the main memory architecture. The timers implemented on the RC32355 satisfy the requirements of most RTOS.

#### **DMA Controller**

The DMA controller off-loads the CPU core from moving data among the on-chip interfaces, external peripherals, and memory. The DMA controller supports scatter / gather DMA with no alignment restrictions, appropriate for communications and graphics systems.

## **TDM Bus Interface**

The RC32355 incorporates an industry standard TDM bus interface to directly access external devices such as telephone CODECs and quality audio A/Ds and D/As. This feature is critical for applications, such as cable modems and xDSL modems, that need to carry voice along with data to support Voice Over IP capability.

#### **Ethernet Interface**

The RC32355 contains an on-chip Ethernet MAC capable of 10 and 100 Mbps line interface with an MII interface. It supports up to 4 MAC addresses. In a SOHO router, the high performance RC32300 CPU core routes the data between the Ethernet and the ATM interface. In other applications, such as high speed modems, the Ethernet interface can be used to connect to the PC.

## **USB Device Interface**

The RC32355 includes the industry standard USB device interface to enable consumer appliances to directly connect to the PC.

## ATM SAR

The RC32355 includes a configurable ATM SAR that supports a UTOPIA level 1 or a UTOPIA level 2 interface. The ATM SAR is implemented as a hybrid between software and hardware. A hardware block provides the necessary low level blocks (like CRC generation and checking and cell buffering) while the software is used for higher level SARing functions. In xDSL modem applications, the UTOPIA port interfaces directly to an xDSL chip set. In SOHO routers or in a line card for a Layer 3 switch, it provides access to an ATM network.

## **Enhanced JTAG Interface for ICE**

For low-cost In-Circuit Emulation (ICE), the RC32300 CPU core includes an Enhanced JTAG (EJTAG) interface. This interface consists of two operation modes: Run-Time Mode and Real-Time Mode.

The Run-Time Mode provides a standard JTAG interface for on-chip debugging, and the Real-Time Mode provides additional status pins— PCST[2:0]—which are used in conjunction with the JTAG pins for realtime trace information at the processor internal clock or any division of the pipeline clock.

## **Thermal Considerations**

The RC32355 consumes less than 2.5 W peak power. It is guaranteed in a ambient temperature range of  $0^{\circ}$  to +70° C for commercial temperature devices and - 40° to +85° for industrial temperature devices.

# **Revision History**

March 29, 2001: Initial publication.

**September 24, 2001**: Removed references to DPI interface. Removed references to "edge-triggered interrupt input" for GPIO pins. Changed 208-pin package designation from DP to DH.

**October 10, 2001**: Revised AC timing characteristics in Tables 5, 6, 7, 8, 10, 12, and 15. Revised values in Table 18, "DC Electrical Characteristics"; Table 20, "RC32355 Power Consumption"; and Figure 23, "Typical Power Usage." Changed data sheet from Preliminary to Final.

October 23, 2001: Revised Figure 23, "Typical Power Usage."

**November 1, 2001**: Added Input Voltage Undershoot parameter and a footnote to Table 21.

January 30, 2002: In Table 6, changed values from 1.5 to 1.2 for the following signals: MDATA Tdo1, MADDR Tdo2, CASN Tdo3, CKENP Tdo4, BDIRN Tdo5, BOEN Tdo6.

May 20, 2002: Changed values in Table 20, Power Consumption.

**September 19, 2002**: Added COLDRSTN Trise1 parameter to Table 5, Reset and System AC Timing Characteristics.

**December 6, 2002**: In Features section, changed UART speed from 115 Kb/s to 1.5 Mb/s.

**December 17, 2002**: Added  $V_{OH}$  parameter to Table 18, DC Electrical Characteristics.

January 27, 2004: Added 180MHz speed grade.

**May 25, 2004**: In Table 7, signals MIIRXCLK and MIITXCLK, the Min and Max values for 10 Mbps Thigh1/Tlow1 were changed to 140 and 260 respectively and the Min and Max values for 100 Mbps Thigh1/ Tlow1 were changed to 14.0 and 26.0 respectively.

| Name               | Туре    | I/O Type  | Description                                                                                                                                                                                                                                                  |
|--------------------|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TDMTEN             | 0       | Low Drive | <b>TDM External Buffer Enable.</b> This signal controls an external tri-state buffer output enable connected to the TDM output data, TDMDOP. It is asserted low when the RC32355 is driving data on TDMDOP. Primary function: General Purpose I/O, GPIOP[26] |
| General Purpose In | put/Out | out       |                                                                                                                                                                                                                                                              |

| GPIOP[0]  | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: UART channel 0 serial output, U0SOUTP.                                                                                     |
|-----------|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPIOP[1]  | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: UART channel 0 serial input, U0SINP.                                                                                       |
| GPIOP[2]  | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: UART channel 0 ring indicator, U0RIN.<br>2nd Alternate function: JTAG boundary scan tap controller reset, JTAG_TRST_N. |
| GPIOP[3]  | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: UART channel 0 data carrier detect, U0DCRN.                                                                                |
| GPIOP[4]  | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: UART channel 0 data terminal ready, U0DTRN.<br>2nd Alternate function: CPU or DMA transaction indicator, CPUP.         |
| GPIOP[5]  | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: UART channel 0 data set ready, U0DSRN.                                                                                     |
| GPIOP[6]  | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: UART channel 0 request to send, U0RTSN.                                                                                    |
| GPIOP[7]  | I/O | Low Drive<br>with STI | General Purpose I/O.<br>This pin can be configured as a general purpose I/O pin.<br>Alternate function: UART channel 0 clear to send, U0CTSN.                                                                                          |
| GPIOP[8]  | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: UART channel 1 serial output, U1SOUTP.<br>2nd Alternate function: Active DMA channel code, DMAP[3].                    |
| GPIOP[9]  | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: UART channel 1 serial input, U1SINP.<br>2nd Alternate function: Active DMA channel code, DMAP[2].                      |
| GPIOP[10] | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: UART channel 1 data terminal ready, U1DTRN.<br>2nd Alternate function: ICE PC trace status, EJTAG_PCST[0].             |
| GPIOP[11] | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: UART channel 1 data set ready, U1DSRN.<br>2nd Alternate function: ICE PC trace status, EJTAG_PCST[1].                  |
| GPIOP[12] | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: UART channel 1 request to send, U1RTSN.<br>2nd Alternate function: ICE PC trace status, EJTAG_PCST[2].                 |
| GPIOP[13] | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: UART channel 1 clear to send, U1CTSN.<br>2nd Alternate function: ICE PC trace clock, EJTAG_DCLK.                       |
| GPIOP[14] | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: I <sup>2</sup> C interface data, SDAP.                                                                                     |
| GPIOP[15] | I/O | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: I <sup>2</sup> C interface clock, SCLP.                                                                                    |
| GPIOP[16] | I/O | High Drive            | General Purpose I/O. This pin can be configured as a general purpose I/O pin.<br>Alternate function: Memory and peripheral bus chip select, CSN[4].                                                                                    |

Table 1 Pin Descriptions (Part 3 of 8)

| Name      | Туре | I/O Type              | Description                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|-----------|------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| GPIOP[17] | I/O  | High Drive            | General Purpose I/O. This pin can be configured as a general purpose I/O pin.<br>Alternate function: Memory and peripheral bus chip select, CSN[5].                                                                                                                                                                                             |  |  |  |  |  |  |  |
| GPIOP[18] | I/O  | Low Drive<br>with STI | ernate function: External DMA device request, DMAREQN.                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| GPIOP[19] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: External DMA device done, DMADONEN.                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| GPIOP[20] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: USB start of frame, USBSOF.                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| GPIOP[21] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: SDRAM clock enable CKENP.                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| GPIOP[22] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: ATM transmit PHY address, TXADDR[0].                                                                                                                                                                                                |  |  |  |  |  |  |  |
| GPIOP[23] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: ATM transmit PHY address, TXADDR[1].<br>2nd Alternate function: Active DMA channel code, DMAP[0].                                                                                                                               |  |  |  |  |  |  |  |
| GPIOP[24] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: ATM receive PHY address, RXADDR[0].                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| GPIOP[25] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1st Alternate function: ATM receive PHY address, RXADDR[1].<br>2nd Alternate function: Active DMA channel code, DMAP[1].                                                                                                                                |  |  |  |  |  |  |  |
| GPIOP[26] | I/O  | Low Drive<br>with STI | General Purpose I/O. This pin can be configured as a general purpose I/O pin.<br>Alternate function: TDM external buffer enable, TDMTEN.                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| GPIOP[27] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: Memory and peripheral bus address, MADDR[22].                                                                                                                                                                                       |  |  |  |  |  |  |  |
| GPIOP[28] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: Memory and peripheral bus address, MADDR[23].                                                                                                                                                                                       |  |  |  |  |  |  |  |
| GPIOP[29] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: Memory and peripheral bus address, MADDR[24].                                                                                                                                                                                       |  |  |  |  |  |  |  |
| GPIOP[30] | I/O  | Low Drive<br>with STI | General Purpose I/O. This pin can be configured as a general purpose I/O pin.<br>Alternate function: Memory and peripheral bus address, MADDR[25].                                                                                                                                                                                              |  |  |  |  |  |  |  |
| GPIOP[31] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>1ST Alternate function: DMA finished, DMAFIN.<br>2nd Alternate function: EJTAG/ICE reset, EJTAG_TRST_N.                                                                                                                                                 |  |  |  |  |  |  |  |
| GPIOP[32] | I/O  | High Drive            | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: TDM interface data output, TDMDOP. At reset, this pin defaults to the primary function, GPIOP[32].                                                                                                                                  |  |  |  |  |  |  |  |
| GPIOP[33] | I/O  | Low Drive<br>with STI | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: TDM interface data input, TDMDIP. At reset, this pin defaults to the primary function, GPIOP[33].                                                                                                                                   |  |  |  |  |  |  |  |
| GPIOP[34] | I/O  | High Drive            | <b>General Purpose I/O.</b> This pin can be configured as a general purpose I/O pin.<br>Alternate function: TDM interface frame signal, TDMFP. At reset, this pin defaults to the primary function, GPIOP[34].                                                                                                                                  |  |  |  |  |  |  |  |
| GPIOP[35] | I/O  | Low Drive<br>with STI | General Purpose I/O. This pin can be configured as a general purpose I/O pin.<br>Alternate function: TDM interface clock, TDMCLKP. At reset, this pin defaults to the primary function, GPIOP[35].                                                                                                                                              |  |  |  |  |  |  |  |
| DMA       | •    |                       |                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| DMAFIN    | 0    | Low                   | <b>External DMA finished.</b> This signal is asserted low by the RC32355 when the number of bytes specified in the DMA descriptor have been transferred to or from an external device.<br>Primary function: General Purpose I/O, GPIOP[31]. At reset, this pin defaults to primary function GPIOP[31].<br>2nd Alternate function: EJTAG_TRST_N. |  |  |  |  |  |  |  |

Table 1 Pin Descriptions (Part 4 of 8)

| Name          | Туре | I/O Type  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JTAG_TMS      | Ι    | STI       | JTAG Mode Select. This input signal is decoded by the tap controller to control test operation. This signal requires an external resistor, listed in Table 16.                                                                                                                                                                                                                                                                                                                                                                                    |
| EJTAG_PCST[0] | 0    | Low Drive | <b>PC trace status.</b> This bus gives the PC trace status information during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 16.<br>Primary function: General Purpose I/O, GPIOP[10].<br>1st Alternate function: UART channel 1 data terminal ready, U1DTRN.                                                                                                               |
| EJTAG_PCST[1] | 0    | Low Drive | <b>PC trace status.</b> This bus gives the PC trace status information during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 16.<br>Primary function: General Purpose I/O, GPIOP[11]. At reset, this pin defaults to primary function GPIOP[11].<br>1st Alternate function: UART channel 1 data set ready, U1DSRN.                                                         |
| EJTAG_PCST[2] | 0    | Low Drive | <b>PC trace status.</b> This bus gives the PC trace status information during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 16.<br>Primary function: General Purpose I/O, GPIOP[12].<br>1st Alternate function: UART channel 1 request to send, U1RTSN.                                                                                                                   |
| EJTAG_DCLK    | 0    | Low Drive | <b>PC trace clock.</b> This is used to capture address and data during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 16.<br>Primary function: General Purpose I/O, GPIOP[13].<br>1st Alternate function: UART channel 1 clear to send, U1CTSN.                                                                                                                            |
| EJTAG_TRST_N  | I    | STI       | <b>EJTAG Test Reset.</b> EJTAG_TRST_N is an active-low signal for asynchronous reset of only the EJTAG/ICE controller.<br>EJTAG_TRST_N requires an external pull-up on the board. EJTAG/ICE enable is selected during reset using the boot con-<br>figuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed<br>in Table 16.<br>Primary: General Purpose I/O, GPIOP[31]<br>1st Alternate function: DMA finished output, DMAFIN.                                            |
| JTAG_TRST_N   | I    | STI       | JTAG Test Reset. JTAG_TRST_N is an active-low signal for asynchronous reset of only the JTAG boundary scan control-<br>ler. JTAG_TRST_N requires an external pull-down on the board that will hold the JTAG boundary scan controller in reset<br>when not in use if selected. JTAG reset enable is selected during reset using the boot configuration and overrides the<br>selection of the Primary and Alternate functions.<br>Primary function: General Purpose I/O, GPIOP[2].<br>1st Alternate function: UART channel 0 ring indicator, U0RIN. |
| Debug         | 1    | I         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| INSTP         | 0    | Low Drive | Instruction or Data Indicator. This signal is driven high during CPU instruction fetches and low during CPU data transac-<br>tions on the memory and peripheral bus.                                                                                                                                                                                                                                                                                                                                                                              |
| CPUP          | 0    | Low Drive | <b>CPU or DMA Transaction Indicator</b> . This signal is driven high during CPU transactions and low during DMA transactions on the memory and peripheral bus if CPU/DMA Transaction Indicator Enable is enabled. CPU/DMA Status mode enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. Primary function: General Purpose I/O, GPIOP[4].<br>1st Alternate function: UART channel 0 data terminal ready U0DTRN.                                                     |
| DMAP[0]       | 0    | Low Drive | Active DMA channel code. DMA debug enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions.<br>Primary function: General Purpose I/O, GPIOP[23].<br>1st Alternate function: TXADDR[1].                                                                                                                                                                                                                                                                                    |
| DMAP[1]       | 0    | Low Drive | Active DMA channel code. DMA debug enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions.<br>Primary function: General Purpose I/O, GPIOP[25].<br>1st Alternate function: RXADDR[1].                                                                                                                                                                                                                                                                                    |

Table 1 Pin Descriptions (Part 6 of 8)

| IDT 79RC32355 |      |          |                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|---------------|------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Name          | Туре | l/O Type | Description                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| U1CTSN        | I    | STI      | UART channel 1 clear to send.<br>Primary function: General Purpose I/O, GPIOP[13]. At reset, this pin defaults to primary function GPIOP[13] if ICE Interface<br>enable is not selected during reset using the boot configuration.<br>2nd Alternate function: PC trace clock, EJTAG_DCLK. |  |  |  |  |  |  |  |

Table 1 Pin Descriptions (Part 8 of 8)

<sup>1.</sup> Schmitt Trigger Input.

<sup>2. 2</sup>I<sup>2</sup>C - Bus Specification by Philips Semiconductors.

# **Boot Configuration Vector**

The boot configuration vector is read into the RC32355 during cold reset. The vector defines parameters in the RC32355 that are essential to operation when cold reset is complete.

The encoding of boot configuration vector is described in Table 2, and the vector input is illustrated in Figure 6.

| Signal     | Name/Description                                                                                                                                                                                                                                                                                                                   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDATA[2:0] | Clock Multiplier. This field specifies the value by which the system clock (CLKP) is multiplied internally to generate the CPU pipeline clock.<br>0x0 - multiply by 2<br>0x1 - multiply by 3<br>0x2 - multiply by 4<br>0x3 - reserved<br>0x4 - reserved<br>0x5 - reserved<br>0x6 - reserved<br>0x7 - reserved                      |
| MDATA[3]   | <b>Endian.</b> This bit specifies the endianness of RC32355.<br>0x0 - little endian<br>0x1 - big endian                                                                                                                                                                                                                            |
| MDATA[4]   | Reserved. Must be set to 0.                                                                                                                                                                                                                                                                                                        |
| MDATA[5]   | <b>Debug Boot Mode</b> . When this bit is set, the RC32355 begins executing from address 0xFF20_0200 rather than 0xBFC0_0000 following a reset.<br>0x0 - regular mode (processor begins executing at 0xBFC0_0000)<br>0x1 - debug boot mode (processor begins executing at 0xFF20_0200)                                             |
| MDATA[7:6] | Boot Device Width. This field specifies the width of the boot device.<br>0x0 - 8-bit boot device width<br>0x1 - 16-bit boot device width<br>0x2 - 32-bit boot device width<br>0x3 - reserved                                                                                                                                       |
| MDATA[8]   | EJTAG/ICE Interface Enable. When this bit is set, Alternate 2 pin functions EJTAG_PCST[2:0], EJTAG_DCLK, and EJTAG_TRST_N are selected.<br>0x0 - GPIOP[31, 13:10] pins behaves as GPIOP<br>0x1 - GPIOP[31] pin behaves as EJTAG_TRST_N,<br>GPIOP[12:10] pins behave as EJTAG_PCST[2:0], and<br>GPIOP[13] pin behaves as EJTAG_DCLK |
| MDATA[9]   | <b>Fast Reset</b> . When this bit is set, RC32355 drives RSTN for 64 clock cycles, used during test only. Clear this bit for normal operation.<br>0x0 - Normal reset: RC32355 drives RSTN for minimum of 4096 clock cycles<br>0x1 - Fast Reset: RC32355 drives RSTN for 64 clock cycles (test only)                                |
| MDATA[10]  | <b>DMA Debug Enable</b> . When this bit is set, Alternate 2 pin function, DMAP is selected. DMAP provides the DMA channel number during memory and peripheral bus DMA transactions.<br>0x0 - GPIOP[8, 9, 25, 23] pins behave as GPIOP<br>0x1 - GPIOP[8, 9, 25, 23] pins behave as DMAP[3:0]                                        |

Table 2 Boot Configuration Vector Encoding (Part 1 of 2)

# **AC Timing Definitions**

Below are examples of the AC timing characteristics used throughout this document.





| Symbol  | Definition                                                                                                                                                                                                                |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tperiod | Clock period.                                                                                                                                                                                                             |
| Tlow    | Clock low. Amount of time the clock is low in one clock period.                                                                                                                                                           |
| Thigh   | Clock high. Amount of time the clock is high in one clock period.                                                                                                                                                         |
| Trise   | Rise time. Low to high transition time.                                                                                                                                                                                   |
| Tfall   | Fall time. High to low transition time.                                                                                                                                                                                   |
| Tjitter | Jitter. Amount of time the reference clock (or signal) edge can vary on either the rising or falling edges.                                                                                                               |
| Tdo     | Data out. Amount of time after the reference clock edge that the output will become valid. The minimum time represents the data output hold. The maximum time represents the earliest time the designer can use the data. |
| Tzd     | Z state to data valid. Amount of time after the reference clock edge that the tri-stated output takes to become valid.                                                                                                    |
| Tdz     | Data valid to Z state. Amount of time after the reference clock edge that the valid output takes to become tri-stated.                                                                                                    |
| Tsu     | Input set-up. Amount of time before the reference clock edge that the input must be valid.                                                                                                                                |
| Thld    | Input hold. Amount of time after the reference clock edge that the input must remain valid.                                                                                                                               |
| Трw     | Pulse width. Amount of time the input or output is active.                                                                                                                                                                |

Table 4 AC Timing Definitions

| Simol                                    | Symbol        | Reference         | 133MHz 150MHz |     | 180MHz |     | Unit | Conditions | Timing |            |                       |
|------------------------------------------|---------------|-------------------|---------------|-----|--------|-----|------|------------|--------|------------|-----------------------|
| Signai                                   | Зутвої        | Edge              | Min           | Max | Min    | Max | Min  | Мах        | Unit   | Conditions | Reference             |
| Memory and Peripheral Bus - SDRAM Access |               |                   |               |     |        |     |      |            |        |            |                       |
| MDATA[31:0]                              | Tsu1          | SDCLKINP          | 2.5           |     | 2.5    |     | 2.5  | —          | ns     |            | Figure 8              |
|                                          | Thld1         | rising            | 1.5           |     | 1.5    | —   | 1.5  | —          | ns     |            | Figure 9<br>Figure 10 |
|                                          | Tdo1          | SYSCLKP           | 1.2           | 5.8 | 1.2    | 5.8 | 1.2  | 5.8        | ns     |            |                       |
|                                          | Tdz1          | rising            | _             | 5.0 | —      | 5.0 | —    | 5.0        | ns     |            |                       |
|                                          | Tzd1          |                   | 1.0           |     | 1.0    | —   | 1.0  | —          | ns     |            |                       |
| MADDR[20:2],<br>BWEN[3:0]                | Tdo2          | SYSCLKP<br>rising | 1.2           | 5.3 | 1.2    | 5.3 | 1.2  | 5.3        | ns     |            |                       |
| CASN, RASN,<br>SDCSN[1:0], SDWEN         | Tdo3          | SYSCLKP<br>rising | 1.2           | 5.3 | 1.2    | 5.3 | 1.2  | 5.3        | ns     |            |                       |
| CKENP                                    | Tdo4          | SYSCLKP<br>rising | 1.2           | 5.3 | 1.2    | 5.3 | 1.2  | 5.3        | ns     |            |                       |
| BDIRN                                    | Tdo5          | SYSCLKP<br>rising | 1.2           | 5.3 | 1.2    | 5.3 | 1.2  | 5.3        | ns     |            |                       |
| BOEN[1:0]                                | Tdo6          | SYSCLKP<br>rising | 1.2           | 5.3 | 1.2    | 5.3 | 1.2  | 5.3        | ns     |            |                       |
| SYSCLKP rising                           | Tdo7          | CLKP rising       | 0.5           | 5.0 | 0.5    | 5.0 | 0.5  | 5.0        | ns     |            |                       |
| SDCLKINP                                 | Tperiod8      | none              | 15            | 50  | 13.3   | 50  | 13.3 | 50         | ns     |            |                       |
|                                          | Thigh8,Tlow8  |                   | 6.0           | _   | 5.4    | _   | 5.4  | -          | ns     |            |                       |
|                                          | Trise8,Tfall8 |                   | —             | 3.0 | _      | 2.5 | _    | 2.5        | ns     |            |                       |
|                                          | Tdelay8       | SYSCLKP<br>rising | 0             | 4.8 | 0      | 4.8 | 0    | 4.8        | ns     |            |                       |

Table 6 Memory and Peripheral Bus AC Timing Characteristics (Part 1 of 2)

|                         | Symbol           | Reference   | 133MHz |     | 150MHz |     | 180MHz |     |      |            | Timing               |
|-------------------------|------------------|-------------|--------|-----|--------|-----|--------|-----|------|------------|----------------------|
| Signal                  |                  | Edge        | Min    | Max | Min    | Мах | Min    | Max | Unit | Conditions | Diagram<br>Reference |
| Memory and Peripheral E | Bus - Device Acc | cess        |        |     |        |     |        | L   |      |            |                      |
| MDATA[31:0]             | Tsu1             | CLKP rising | 2.5    | —   | 2.5    | —   | 2.5    | _   | ns   |            | Figure 11            |
|                         | Thld1            |             | 1.5    | —   | 1.5    | —   | 1.5    | _   | ns   |            | Figure 12            |
|                         | Tdo1             | -           | 2.0    | 6.5 | 2.0    | 6.5 | 2.0    | 6.5 | ns   |            |                      |
|                         | Tdz1             |             | _      | 9.0 | _      | 9.0 | _      | 9.0 | ns   |            |                      |
|                         | Tzd1             |             | 2.0    | —   | 2.0    | _   | 2.0    | _   | ns   |            |                      |
| WAITACKN, BRN           | Tsu              | CLKP rising | 2.5    | —   | 2.5    | —   | 2.5    |     | ns   |            |                      |
|                         | Thld             | -           | 1.5    | —   | 1.5    | —   | 1.5    | —   | ns   |            |                      |
| MADDR[21:0]             | Tdo2             | CLKP rising | 2.0    | 6.0 | 2.0    | 6.0 | 2.0    | 6.0 | ns   |            |                      |
|                         | Tdz2             | -           | _      | 9.0 | _      | 9.0 | _      | 9.0 | ns   |            |                      |
|                         | Tzd2             |             | 2.0    | _   | 2.0    | _   | 2.0    | —   | ns   |            |                      |
| MADDR[25:22]            | Tdo3             | CLKP rising | 2.5    | 6.5 | 2.5    | 6.5 | 2.5    | 6.5 | ns   |            |                      |
|                         | Tdz3             |             | _      | 9.0 | _      | 9.0 | _      | 9.0 | ns   |            |                      |
|                         | Tzd3             |             | 2.0    | _   | 2.0    | _   | 2.0    | —   | ns   |            |                      |
| BDIRN, BOEN[0]          | Tdo4             | CLKP rising | 2.0    | 6.0 | 2.0    | 6.0 | 2.0    | 6.0 | ns   |            |                      |
|                         | Tdz4             |             | _      | 9.0 | _      | 9.0 | _      | 9.0 | ns   |            |                      |
|                         | Tzd4             |             | 2.0    | _   | 2.0    | _   | 2.0    | —   | ns   |            |                      |
| BGN, BWEN[3:0], OEN,    | Tdo5             | CLKP rising | 2.0    | 6.0 | 2.0    | 6.0 | 2.0    | 6.0 | ns   |            |                      |
| RWN                     | Tdz5             |             | _      | 9.0 | _      | 9.0 | _      | 9.0 | ns   |            |                      |
|                         | Tzd5             | -           | 2.0    | —   | 2.0    | —   | 2.0    | —   | ns   |            |                      |
| CSN[3:0]                | Tdo6             | CLKP rising | 1.7    | 5.0 | 1.7    | 5.0 | 1.7    | 5.0 | ns   |            |                      |
|                         | Tdz6             | -           | _      | 9.0 | _      | 9.0 | _      | 9.0 | ns   |            |                      |
|                         | Tzd6             |             | 2.0    | _   | 2.0    | _   | 2.0    | —   | ns   |            |                      |
| CSN[5:4]                | Tdo7             | CLKP rising | 2.5    | 6.0 | 2.5    | 6.0 | 2.5    | 6.0 | ns   |            |                      |
|                         | Tdz7             |             | _      | 9.0 | _      | 9.0 | —      | 9.0 | ns   |            |                      |
|                         | Tzd7             |             | 2.0    | —   | 2.0    | —   | 2.0    | —   | ns   |            |                      |

 Table 6 Memory and Peripheral Bus AC Timing Characteristics (Part 2 of 2)

**Note:** The RC32355 provides bus turnaround cycles to prevent bus contention when going from a read to write, write to read, and during external bus ownership. For example, there are no cycles where an external device and the RC32355 are both driving. See the chapters "Device Controller," "Synchronous DRAM Controller," and "Bus Arbitration" in the RC32355 User Reference Manual.



Figure 12 Memory AC and Peripheral Bus Timing Waveform - Device Write Access

| ATM Pin Name | Utopia Level 1 | Utopia Level 2 |
|--------------|----------------|----------------|
| ATMINP[0]    | RXDATA[0]      | RXDATA[0]      |
| ATMINP[1]    | RXDATA[1]      | RXDATA[1]      |
| ATMINP[2]    | RXDATA[2]      | RXDATA[2]      |
| ATMINP[3]    | RXDATA[3]      | RXDATA[3]      |
| ATMINP[4]    | RXDATA[4]      | RXDATA[4]      |
| ATMINP[5]    | RXDATA[5]      | RXDATA[5]      |
| ATMINP[6]    | RXDATA[6]      | RXDATA[6]      |
| ATMINP[7]    | RXDATA[7]      | RXDATA[7]      |
| ATMINP[8]    | RXCLKP         | RXCLKP         |
| ATMINP[9]    | RXEMPTYN       | RXEMPTYN       |
| ATMINP[10]   | RXSOC          | RXSOC          |
| ATMINP[11]   | TXFULLN        | TXFULLN        |
| ATMIOP[0]    | RXENBN         | RXENBN         |
| ATMIOP[1]    | TXCLKP         | TXCLKP         |
| ATMOUTP[0]   | TXDATA[0]      | TXDATA[0]      |
| ATMOUTP[1]   | TXDATA[1]      | TXDATA[1]      |
| ATMOUTP[2]   | TXDATA[2]      | TXDATA[2]      |
| ATMOUTP[3]   | TXDATA[3]      | TXDATA[3]      |
| ATMOUTP[4]   | TXDATA[4]      | TXDATA[4]      |
| ATMOUTP[5]   | TXDATA[5]      | TXDATA[5]      |
| ATMOUTP[6]   | TXDATA[6]      | TXDATA[6]      |
| ATMOUTP[7]   | TXDATA[7]      | TXDATA[7]      |
| ATMOUTP[8]   | TXSOC          | TXSOC          |
| ATMOUTP[9]   | TXENBN         | TXENBN         |
| GPIOP[22]    |                | TXADDR[0]      |
| GPIOP[23]    |                | TXADDR[1]      |
| GPIOP[24]    |                | RXADDR[0]      |
| GPIOP[25]    |                | RXADDR[1]      |

Table 9 ATM I/O Pin Multiplexing

| 0:                                           | Symbol            | Reference                    | 133MHz    |            | 150MHz    |          | 180MHz  |          |             | 0               | Timing               |
|----------------------------------------------|-------------------|------------------------------|-----------|------------|-----------|----------|---------|----------|-------------|-----------------|----------------------|
| Signai                                       |                   | Edge                         | Min       | Max        | Min       | Max      | Min     | Max      | Unit        | Conditions      | Diagram<br>Reference |
| TDM                                          |                   | ·                            |           |            |           |          |         |          |             |                 |                      |
| TDMCLKP <sup>1</sup>                         | Tperiod1          | none                         | _         | 125        | -         | 62.5     | —       | 62.5     | ns          |                 | Figure 15            |
|                                              | Thigh1            |                              | 62.5      | _          | 31.2      | _        | 31.2    | _        | ns          |                 | Figure 16            |
|                                              | Tlow1             |                              | 62.5      | _          | 31.2      | _        | 31.2    | _        | ns          |                 |                      |
|                                              | Trise1            |                              | _         | 3          | -         | 3        | -       | 3        | ns          |                 |                      |
|                                              | Tfall1            |                              | _         | 3          | _         | 3        | -       | 3        | ns          |                 |                      |
| TDMFP                                        | Tsu2              | TDMCLKP<br>rising or falling | 4         | _          | 4         | _        | 4       | _        | ns          |                 |                      |
|                                              | Thld2             |                              | 1         | _          | 1         | -        | 1       | _        | ns          |                 |                      |
|                                              | Tdo2              |                              | 2         | 9          | 2         | 9        | 2       | 9        | ns          |                 |                      |
| TDMDIP                                       | Tsu3              | TDMCLKP<br>rising or falling | 4         | _          | 4         | _        | 4       | _        | ns          |                 |                      |
|                                              | Thld3             |                              | 1         | -          | 1         | -        | 1       | _        | ns          |                 |                      |
| TDMDOP                                       | Tdo4              | TDMCLKP                      | 2         | 9          | 2         | 9        | 2       | 9        | ns          |                 |                      |
|                                              | Tdz4              | rising or falling            | _         | 12         | _         | 12       |         | 12       | ns          |                 |                      |
|                                              | Tzd4              |                              | 3         | _          | 3         | -        | 3       | _        | ns          |                 |                      |
| TDMTEN                                       | Tdo5              | TDMCLKP<br>rising or falling | 2         | 9          | 2         | 9        | 2       | 9        | ns          |                 |                      |
| <sup>1</sup> The rising or falling edge of T | TDMCLKP is used a | as the reference cloc        | ck edge f | or the tim | ning depe | nding on | the TDN | l bus mo | de and prot | ocol selection. | 1                    |

Table 10 TDM AC Timing Characteristics



Figure 15 TDM AC Timing Waveform, Master Mode



Figure 16 TDM AC Timing Waveform, Slave Mode

|                                                                              |               | Reference<br>Edge | 133MHz |        | 150MHz |        | 180MHz |        | •••• |                                                                                          | Timing    |
|------------------------------------------------------------------------------|---------------|-------------------|--------|--------|--------|--------|--------|--------|------|------------------------------------------------------------------------------------------|-----------|
| Signal                                                                       | Symbol        |                   | Min    | Max    | Min    | Max    | Min    | Max    | Unit | Conditions                                                                               | Reference |
| USB                                                                          | USB           |                   |        |        |        |        |        |        |      |                                                                                          |           |
| USBCLKP <sup>1</sup>                                                         | Tperiod1      | none              | 19.79  | 21.87  | 19.79  | 21.87  | 19.79  | 21.87  | ns   |                                                                                          | Figure 17 |
|                                                                              | Thigh1,Tlow1  |                   | 8.3    | -      | 8.3    | —      | 8.3    | —      | ns   |                                                                                          |           |
|                                                                              | Trise1,Tfall1 |                   | _      | 3      | -      | 3      | —      | 3      | ns   |                                                                                          |           |
|                                                                              | Tjitter1      |                   | _      | 0.8    | _      | 0.8    | _      | 0.8    | ns   | 1/4th of the mini-<br>mum Source data<br>jitter                                          |           |
| USBDN, USBDP                                                                 | Trise2        |                   | 4      | 20     | 4      | 20     | 4      | 20     | ns   | Universal Serial Bus<br>Specification<br>(USBS) Revision<br>1.1: Figures 7.6 and<br>7.7. |           |
|                                                                              | Tfall2        |                   | 4      | 20     | 4      | 20     | 4      | 20     | ns   | USBS Revision 1.1:<br>Figures 7.6 and 7.7.                                               |           |
| USBDN and USBDP<br>Rise and Fall Time<br>Matching                            |               |                   | 90     | 111.11 | 90     | 111.11 | 90     | 111.11 | %    | USBS Revision 1.1:<br>Note 10, Section<br>7.1.2.                                         |           |
| Data valid period                                                            | Tstate        |                   | 60     |        | 60     | —      | 60     | —      | ns   |                                                                                          |           |
| Skew between USBDN and USBDP                                                 |               |                   | -      | 0.4    | -      | 0.4    | -      | 0.4    | ns   | USBS Revision 1.1:<br>Section 7.1.3                                                      |           |
| Source data jitter                                                           |               |                   | _      | 3.5    | _      | 3.5    | _      | 3.5    | ns   | USBS Revision 1.1:                                                                       |           |
| Receive data jitter                                                          |               |                   | _      | 12     | _      | 12     | _      | 12     | ns   | Table 7-6                                                                                |           |
| Source EOP length                                                            | Tseop         |                   | 160    | 175    | 160    | 175    | 160    | 175    | ns   |                                                                                          |           |
| Receive EOP length                                                           | Treop         |                   | 82     | -      | 82     | _      | 82     | —      | ns   |                                                                                          |           |
| EOP jitter                                                                   |               |                   | -2     | 5      | -2     | 5      | -2     | 5      | ns   |                                                                                          |           |
| Full-speed Data Rate                                                         | Tfdrate       |                   | 11.97  | 12.03  | 11.97  | 12.03  | 11.97  | 12.03  | MHz  | Average bit rate,<br>USBS Section<br>7.1.11.                                             |           |
| Frame Interval                                                               |               |                   | 0.9995 | 1.0005 | 0.9995 | 1.0005 | 0.9995 | 1.0005 | ms   | USBS Section<br>7.1.12.                                                                  |           |
| Consecutive Frame<br>Interval Jitter                                         |               |                   | _      | 42     | _      | 42     | _      | 42     | ns   | Without frame adjustment.                                                                |           |
|                                                                              |               |                   | _      | 126    | _      | 126    | _      | 126    | ns   | With frame adjust-<br>ment.                                                              |           |
| <sup>1</sup> USB clock (USBCLKP) frequency must be less than CLKP frequency. |               |                   |        |        |        |        |        |        |      |                                                                                          |           |

Table 11 USB AC Timing Characteristics



Figure 17 USB AC Timing Waveform

| Signal                                                                                       | Symbol            | Reference<br>Edge | 133MHz |     | 150MHz |     | 180MHz |     | Unit | Conditions | Timing    |
|----------------------------------------------------------------------------------------------|-------------------|-------------------|--------|-----|--------|-----|--------|-----|------|------------|-----------|
| Signai                                                                                       |                   |                   | Min    | Max | Min    | Max | Min    | Max | Unit | Conditions | Reference |
| UART                                                                                         | •                 |                   |        |     |        |     |        |     |      | •          | •         |
| UOSINP, UORIN, UODCDN,                                                                       | Tsu <sup>1</sup>  | CLKP rising       | 5      | —   | 5      | —   | 5      | —   | ns   |            |           |
| U0DSRN, U0CTSN, U1SINP,<br>U1DSRN, U1CTSN                                                    | Thld <sup>1</sup> |                   | 3      | _   | 3      | _   | 3      | _   | ns   |            |           |
| U0SOUTP, U0DTRN, U0RTSN,<br>U1SOUTP, U1DTRN, U1RTSN                                          | Tdo <sup>1</sup>  | CLKP rising       | 1      | 12  | 1      | 12  | 1      | 12  | ns   |            |           |
| <sup>1</sup> These are asynchronous signals and the values are provided for ATE (test) only. |                   |                   |        |     |        |     |        |     |      |            |           |

Table 12 UART AC Timing Characteristics

## **Power-on RampUp**

The 2.5V core supply (and 2.5V  $V_{cc}$ PLL supply) can be fully powered without the 3.3V I/O supply. However, the 3.3V I/O supply cannot exceed the 2.5V core supply by more than 1 volt during power up. A sustained large power difference could potentially damage the part. Inputs should not be driven until the part is fully powered. Specifically, the input high voltages should not be applied until the 3.3V I/O supply is powered.

There is no special requirement for how fast V<sub>cc</sub> I/O ramps up to 3.3V. However, all timing references are based on a stable V<sub>cc</sub> I/O.

# **DC Electrical Characteristics**

 $(T_{ambient} = 0^{\circ}C \text{ to } +70^{\circ}C \text{ Commercial}, T_{ambient} = -40^{\circ}C \text{ to } +85^{\circ}C \text{ Industrial}, Vcc I/O = +3.3V \pm 5\%, V_{cc} \text{ Core and } V_{cc} P = +2.5V \pm 5\%)$ 

|                                             | Para-<br>meter      | Min                   | Max                            | Unit | Pin Numbers                                                                     | Conditions                                    |
|---------------------------------------------|---------------------|-----------------------|--------------------------------|------|---------------------------------------------------------------------------------|-----------------------------------------------|
| LOW Drive<br>Output with<br>Schmitt Trigger | I <sub>OL</sub>     | 7.3                   |                                | mA   | 1-4,6-8,10-16,18,20-25,27-29,32,33,35-37,                                       | V <sub>OL</sub> = 0.4V                        |
|                                             | I <sub>OH</sub>     | -8.0                  | _                              | mA   | 39-42,44,46-48,50,52,53,56,58-60,62-69,<br>71-77,82-85,87-94,96-99,101-105,167, | V <sub>OH</sub> = (V <sub>CC</sub> I/O - 0.4) |
| Input (STI)                                 | V <sub>IL</sub>     | —                     | 0.8                            | V    | 205-208                                                                         | _                                             |
|                                             | V <sub>IH</sub>     | 2.0                   | (V <sub>cc</sub> I/O<br>+ 0.5) | V    |                                                                                 | _                                             |
|                                             | V <sub>OH</sub>     | V <sub>cc</sub> - 0.4 | _                              | V    |                                                                                 | _                                             |
| HIGH Drive<br>Output with<br>Standard Input | I <sub>OL</sub>     | 9.4                   | _                              | mA   | 49,51,54,55,106-108,110,112-117,119,                                            | V <sub>OL</sub> = 0.4V                        |
|                                             | I <sub>OH</sub>     | -15                   | _                              | mA   | 121,123-128,130,132-137,139,141,143,<br>150,152,154-159,161,163-166,168-170,    | V <sub>OH</sub> = (V <sub>CC</sub> I/O - 0.4) |
|                                             | V <sub>IL</sub>     | —                     | 0.8                            | V    | 172,174-179,181,185-190,192,194-200,                                            | _                                             |
|                                             | V <sub>IH</sub>     | 2.0                   | (V <sub>cc</sub> I/O<br>+ 0.5) | V    | - 202,204                                                                       | _                                             |
|                                             | V <sub>OH</sub>     | V <sub>cc</sub> - 0.4 |                                | V    |                                                                                 | _                                             |
| Clock Drive                                 | I <sub>OL</sub>     | 39                    | _                              | mA   | 183                                                                             | V <sub>OL</sub> = 0.4V                        |
| Output                                      | I <sub>OH</sub>     | -24                   | _                              | mA   |                                                                                 | V <sub>OH</sub> = (V <sub>CC</sub> I/O - 0.4) |
| Capacitance                                 | C <sub>IN</sub>     | —                     | 10                             | pF   | All pins                                                                        | _                                             |
| Leakage                                     | I/O <sub>LEAK</sub> | —                     | 20                             | μΑ   | All pins                                                                        | _                                             |

 Table 18 DC Electrical Characteristics

# Package Pin-out — 208-Pin PQFP

The following table lists the pin numbers and signal names for the RC32355.

| Pin | Function          | Alt | Pin | Function   | Alt | Pin | Function  | Alt | Pin | Function  | Alt |
|-----|-------------------|-----|-----|------------|-----|-----|-----------|-----|-----|-----------|-----|
| 1   | ATMOUTP[0]        | 1   | 53  | JTAG_TDO   |     | 105 | BGN       |     | 157 | MDATA[28] |     |
| 2   | ATMOUTP[1]        |     | 54  | GPIOP[16]  | 1   | 106 | CSN[0]    |     | 158 | MDATA[13] |     |
| 3   | ATMINP[02]        |     | 55  | GPIOP[17]  | 1   | 107 | CSN[1]    |     | 159 | MDATA[29] |     |
| 4   | ATMOUTP[2]        |     | 56  | GPIOP[18]  | 1   | 108 | CSN[2]    |     | 160 | Vcc I/O   |     |
| 5   | Vss               |     | 57  | Vss        |     | 109 | Vcc I/O   |     | 161 | MDATA[14] |     |
| 6   | ATMOUTP[3]        |     | 58  | JTAG_TCK   |     | 110 | CSN[3]    |     | 162 | Vss       |     |
| 7   | ATMINP[03]        |     | 59  | GPIOP[19]  | 1   | 111 | Vss       |     | 163 | MDATA[30] |     |
| 8   | ATMOUTP[4]        |     | 60  | GPIOP[20]  | 1   | 112 | OEN       |     | 164 | MDATA[15] |     |
| 9   | Vcc I/O           |     | 61  | Vcc I/O    |     | 113 | RWN       |     | 165 | MDATA[31] |     |
| 10  | ATMOUTP[5]        |     | 62  | GPIOP[21]  | 1   | 114 | BDIRN     |     | 166 | CLKP      |     |
| 11  | ATMINP[04]        |     | 63  | JTAG_TDI   |     | 115 | BOEN[0]   |     | 167 | WAITACKN  |     |
| 12  | ATMOUTP[6]        |     | 64  | GPIOP[22]  | 1   | 116 | BOEN[1]   |     | 168 | MADDR[00] |     |
| 13  | ATMOUTP[7]        |     | 65  | GPIOP[23]  | 2   | 117 | BWEN[0]   |     | 169 | MADDR[11] |     |
| 14  | ATMINP[05]        |     | 66  | GPIOP[24]  | 1   | 118 | Vcc I/O   |     | 170 | MADDR[01] |     |
| 15  | ATMOUTP[8]        |     | 67  | JTAG_TMS   |     | 119 | BWEN[1]   |     | 171 | Vcc I/O   |     |
| 16  | ATMOUTP[9]        |     | 68  | GPIOP[25]  | 2   | 120 | Vss       |     | 172 | MADDR[12] |     |
| 17  | Vss               |     | 69  | GPIOP[26]  | 1   | 121 | BWEN[2]   |     | 173 | Vss       |     |
| 18  | ATMINP[06]        |     | 70  | Vss        |     | 122 | Vcc Core  |     | 174 | MADDR[02] |     |
| 19  | Vcc Core          |     | 71  | GPIOP[27]  | 1   | 123 | BWEN[3]   |     | 175 | MADDR[13] |     |
| 20  | GPIOP[00]         | 1   | 72  | COLDRSTN   |     | 124 | MDATA[00] |     | 176 | MADDR[03] |     |
| 21  | GPIOP[01]         | 1   | 73  | GPIOP[28]  | 1   | 125 | MDATA[16] |     | 177 | MADDR[14] |     |
| 22  | ATMINP[07]        |     | 74  | GPIOP[29]  | 1   | 126 | MDATA[01] |     | 178 | MADDR[04] |     |
| 23  | GPIOP[02]         | 2   | 75  | GPIOP[30]  | 1   | 127 | MDATA[17] |     | 179 | MADDR[15] |     |
| 24  | GPIOP[03]         | 1   | 76  | GPIOP[31]  | 2   | 128 | MDATA[02] |     | 180 | Vcc I/O   |     |
| 25  | ATMINP[08]        |     | 77  | USBCLKP    |     | 129 | Vcc I/O   |     | 181 | MADDR[05] |     |
| 26  | Vcc I/O           |     | 78  | Vcc I/O    |     | 130 | MDATA[18] |     | 182 | Vcc Core  |     |
| 27  | GPIOP[04]         | 2   | 79  | USBDN      |     | 131 | Vss       |     | 183 | SYSCLKP   |     |
| 28  | GPIOP[05]         | 1   | 80  | USBDP      |     | 132 | MDATA[03] |     | 184 | Vss       |     |
| 29  | ATMINP[09]        |     | 81  | Vss        |     | 133 | MDATA[19] |     | 185 | MADDR[16] |     |
| 30  | VccP <sup>1</sup> |     | 82  | MIICRSP    |     | 134 | MDATA[04] |     | 186 | MADDR[06] |     |
| 31  | VssP <sup>1</sup> |     | 83  | MIICOLP    |     | 135 | MDATA[20] |     | 187 | MADDR[17] |     |
| 32  | ATMINP[10]        |     | 84  | MIITXDP[0] |     | 136 | MDATA[05] |     | 188 | MADDR[07] |     |
| 33  | GPIOP[06]         | 1   | 85  | MIITXDP[1] |     | 137 | MDATA[21] |     | 189 | MADDR[18] |     |
| 34  | Vss               |     | 86  | Vcc Core   |     | 138 | Vcc Core  |     | 190 | MADDR[08] |     |

 Table 22:
 208-pin QFP Package Pin-Out (Part 1 of 2)

# **Alternate Pin Functions**

| Pin | Primary   | Alt #1  | Alt #2        | Pin | Primary   | Alt #1    | Alt #2       |
|-----|-----------|---------|---------------|-----|-----------|-----------|--------------|
| 20  | GPIOP[00] | U0SOUTP |               | 51  | GPIOP[32] | TDMDOP    |              |
| 21  | GPIOP[01] | U0SINP  |               | 54  | GPIOP[16] | CSN[4]    |              |
| 23  | GPIOP[02] | UORIN   | JTAG_TRST_N   | 55  | GPIOP[17] | CSN[5]    |              |
| 24  | GPIOP[03] | U0DCRN  |               | 56  | GPIOP[18] | DMAREQN   |              |
| 27  | GPIOP[04] | U0DTRN  | CPUP          | 59  | GPIOP[19] | DMADONEN  |              |
| 28  | GPIOP[05] | U0DSRN  |               | 60  | GPIOP[20] | USBSOF    |              |
| 33  | GPIOP[06] | UORTSN  |               | 62  | GPIOP[21] | CKENP     |              |
| 35  | GPIOP[07] | U0CTSN  |               | 64  | GPIOP[22] | TXADDR[0] |              |
| 37  | GPIOP[08] | U1SOUTP | DMAP[3]       | 65  | GPIOP[23] | TXADDR[1] | DMAP[0]      |
| 39  | GPIOP[09] | U1SINP  | DMAP[2]       | 66  | GPIOP[24] | RXADDR[0] |              |
| 40  | GPIOP[10] | U1DTRN  | EJTAG_PCST[0] | 68  | GPIOP[25] | RXADDR[1] | DMAP[1]      |
| 41  | GPIOP[11] | U1DSRN  | EJTAG_PCST[1] | 69  | GPIOP[26] | TDMTEN    |              |
| 42  | GPIOP[12] | U1RTSN  | EJTAG_PCST[2] | 71  | GPIOP[27] | MADDR[22] |              |
| 44  | GPIOP[13] | U1CTSN  | EJTAG_DCLK    | 73  | GPIOP[28] | MADDR[23] |              |
| 46  | GPIOP[14] | SDAP    |               | 74  | GPIOP[29] | MADDR[24] |              |
| 47  | GPIOP[15] | SCLP    |               | 75  | GPIOP[30] | MADDR[25] |              |
| 48  | GPIOP[35] | TDMCLKP |               | 76  | GPIOP[31] | DMAFIN    | EJTAG_TRST_N |
| 49  | GPIOP[34] | TDMFP   |               |     |           |           |              |
| 50  | GPIOP[33] | TDMDIP  |               |     |           |           |              |

Table 23 Alternate Pin Functions

# Package Drawing - 208-pin QFP



# **Ordering Information**



## Valid Combinations

| 79RC32T355 -133DH, 150DH, 180DH | 208-pin QFP package, Commercial Temperature |
|---------------------------------|---------------------------------------------|
| 79RC32T355 -133DHI, 150DHI      | 208-pin QFP package, Industrial Temperature |



**CORPORATE HEADQUARTERS** 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: email: rischelp@idt.com phone: 408-284-8208