
E. Renesas Electronics America Inc - IDT79RC32T355-180DHG Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS-II
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	180MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 1.1 (1)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/idt79rc32t355-180dhg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Thermal Considerations

The RC32355 consumes less than 2.5 W peak power. It is guaranteed in a ambient temperature range of 0° to +70° C for commercial temperature devices and - 40° to +85° for industrial temperature devices.

Revision History

March 29, 2001: Initial publication.

September 24, 2001: Removed references to DPI interface. Removed references to "edge-triggered interrupt input" for GPIO pins. Changed 208-pin package designation from DP to DH.

October 10, 2001: Revised AC timing characteristics in Tables 5, 6, 7, 8, 10, 12, and 15. Revised values in Table 18, "DC Electrical Characteristics"; Table 20, "RC32355 Power Consumption"; and Figure 23, "Typical Power Usage." Changed data sheet from Preliminary to Final.

October 23, 2001: Revised Figure 23, "Typical Power Usage."

November 1, 2001: Added Input Voltage Undershoot parameter and a footnote to Table 21.

January 30, 2002: In Table 6, changed values from 1.5 to 1.2 for the following signals: MDATA Tdo1, MADDR Tdo2, CASN Tdo3, CKENP Tdo4, BDIRN Tdo5, BOEN Tdo6.

May 20, 2002: Changed values in Table 20, Power Consumption.

September 19, 2002: Added COLDRSTN Trise1 parameter to Table 5, Reset and System AC Timing Characteristics.

December 6, 2002: In Features section, changed UART speed from 115 Kb/s to 1.5 Mb/s.

December 17, 2002: Added V_{OH} parameter to Table 18, DC Electrical Characteristics.

January 27, 2004: Added 180MHz speed grade.

May 25, 2004: In Table 7, signals MIIRXCLK and MIITXCLK, the Min and Max values for 10 Mbps Thigh1/Tlow1 were changed to 140 and 260 respectively and the Min and Max values for 100 Mbps Thigh1/ Tlow1 were changed to 14.0 and 26.0 respectively.

Pin Description Table

The following table lists the functions of the pins provided on the RC32355. Some of the functions listed may be multiplexed onto the same pin.

To define the active polarity of a signal, a suffix will be used. Signals ending with an "N" should be interpreted as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses and select lines) will be interpreted as being active, or asserted when at a logic one (high) level.

Note: The input pads of the RC32355 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs (such as BRN) which, if left floating, could adversely affect the RC32355's operation. Also, any input pin left floating can cause a slight increase in power consumption.

Name	Туре	I/O Type	Description					
System	I							
CLKP	I	Input	System Clock input . This is the system master clock input. The RISCore 32300 pipeline frequency is a multiple (x2, x3, or x4) of this clock frequency. All other logic runs at this frequency or less.					
COLDRSTN	I	STI ¹	Cold Reset. The assertion of this signal low initiates a cold reset. This causes the RC32355 state to be initialized, boot configuration to be loaded, and the internal processor PLL to lock onto the system clock (CLKP).					
RSTN	I/O	Low Drive with STI	Reset. This bidirectional signal is either driven low or tri-stated, an external pull-up is required to supply the high state. The RC32355 drives RSTN low during a reset (to inform the external system that a reset is taking place) and then tri-states it. The external system can drive RSTN low to initiate a warm reset, and then should tri-state it.					
SYSCLKP	0	High Drive	System clock output. This is a buffered and delayed version of the system clock input (CLKP). All SDRAM transacti re synchronous to this clock. This pin should be externally connected to the SDRAMs and to the RC32355 SDCLKINI SDRAM clock input).					
Memory and Perip	heral Bus	5						
MADDR[25:0]	0	[21:0] High Drive	Memory Address Bus. 26-bit address bus for memory and peripheral accesses. MADDR[20:17] are used for the SODIMM data mask enables if SODIMM mode is selected.					
		[25:22] Low Drive with STI	MADDR[22] Primary function: General Purpose I/O, GPIOP[27]. MADDR[23] Primary function: General Purpose I/O, GPIOP[28]. MADDR[24] Primary function: General Purpose I/O, GPIOP[29]. MADDR[25] Primary function: General Purpose I/O, GPIOP[30].					
MDATA[31:0]	I/O	High Drive	Memory Data Bus. 32-bit data bus for memory and peripheral accesses.					
BDIRN	0	High Drive	External Buffer Direction. External transceiver direction control for the memory and peripheral data bus, MDATA[31:0]. It is asserted low during any read transaction, and remains high during write transactions.					
BOEN[1:0]	0	High Drive	External Buffer Output Enable. These signals provide two output enable controls for external data bus transceivers on the memory and peripheral data bus, MDATA. BOEN[0] is asserted low during external device read transactions. BOEN[1] is asserted low during SDRAM read transactions.					
BRN	I	STI	External Bus Request. This signal is asserted low by an external master device to request ownership of the memory and peripheral bus.					
BGN	0	Low Drive	External Bus Grant. This signal is asserted low by RC32355 to indicate that RC32355 has relinquished ownership of the local memory and peripheral bus to an external master.					
WAITACKN	I	STI	Wait or Transfer Acknowledge. When configured as wait, this signal is asserted low during a memory and peripheral device bus transaction to extend the bus cycle. When configured as transfer acknowledge, this signal is asserted low during a memory and peripheral device bus transaction to signal the completion of the transaction.					
CSN[5:0]	0	[3:0] High Drive [5:4] Low Drive	Device Chip Select. These signals are used to select an external device on the memory and peripheral bus during device transactions. Each bit is asserted low during an access to the selected external device. CSN[4] Primary function: General purpose I/O, GPIOP[16]. CSN[5] Primary function: General purpose I/O, GPIOP[17].					

 Table 1
 Pin Descriptions
 (Part 1 of 8)

Name	Туре	l/O Type	Description							
DMAP[2]	0	Low Drive	Active DMA channel code. DMA debug enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. Primary function: General Purpose I/O, GPIOP[9]. 1st Alternate function: U1SINP.							
DMAP[3]	0	Low Drive	ctive DMA channel code. DMA debug enable is selected during reset using the boot configuration and overrides the election of the Primary and Alternate functions. rimary function: General Purpose I/O, GPIOP[8]. st Alternate function: U1SOUTP.							
UART										
U0SOUTP	Ι	STI	UART channel 0 serial transmit. Primary function: General Purpose I/O, GPIOP[0]. At reset, this pin defaults to primary function GPIOP[0].							
U0SINP	Ι	STI	UART channel 0 serial receive. Primary function: General Purpose I/O, GPIOP[1]. At reset, this pin defaults to primary function GPIOP[1].							
UORIN	I	STI	UART channel 0 ring indicator. Primary function: General Purpose I/O, GPIOP[2]. At reset, this pin defaults to primary function GPIOP[2] if JTAG reset enable is not selected during reset using the boot configuration. 2nd Alternate function: JTAG boundary scan reset, JTAG_TRST_N.							
U0DCRN	Ι	STI	UART channel 0 data carrier detect. Primary function: General Purpose I/O, GPIOP[3]. At reset, this pin defaults to primary function GPIOP[3].							
U0DTRN	0	Low Drive	UART channel 0 data terminal ready. Primary function: General Purpose I/O, GPIOP[4]. At reset, this pin defaults to primary function GPIOP[4] if CPU/DMA Status Mode enable is not selected during reset using the boot configuration. 2nd Alternate function: CPU or DMA transaction indicator, CPUP.							
U0DSRN	Ι	STI	UART channel 0 data set ready. Primary function: General Purpose I/O, GPIOP[5]. At reset, this pin defaults to primary function GPIOP[5].							
U0RTSN	0	Low Drive	UART channel 0 request to send. Primary function: General Purpose I/O, GPIOP[6]. At reset, this pin defaults to primary function GPIOP[6].							
U0CTSN	Ι	STI	UART channel 0 clear to send. Primary function: General Purpose I/O, GPIOP[7]. At reset, this pin defaults to primary function GPIOP[7].							
U0SOUTP	0	Low Drive	UART channel 1 serial transmit. Primary function: General Purpose I/O, GPIOP[8]. At reset, this pin defaults to primary function GPIOP[8] if DMA Debug enable is not selected during reset using the boot configuration. 2nd Alternate function: DMA channel, DMAP[3].							
U1SINP	I	STI	UART channel 1 serial receive. Primary function: General Purpose I/O, GPIOP[9]. At reset, this pin defaults to primary function GPIOP[9] if DMA Debug enable is not selected during reset using the boot configuration. 2nd Alternate function: DMA channel, DMAP[2].							
U1DTRN	0	Low Drive	UART channel 1 data terminal ready. Primary function: General Purpose I/O, GPIOP[10]. At reset, this pin defaults to primary function GPIOP[10] if ICE Interface enable is not selected during reset using the boot configuration. Alternate function: PC trace status bit 0, EJTAG_PCST[0].							
U1DSRN	I	STI	UART channel 1 data set ready. Primary function: General Purpose I/O, GPIOP[11]. At reset, this pin defaults to primary function GPIOP[11] if ICE Interface enable is not selected during reset using the boot configuration. 2nd Alternate function: PC trace status bit 1, EJTAG_PCST[1].							
U1RTSN	0	Low Drive	UART channel 1 request to send. Primary function: General Purpose I/O, GPIOP[12]. At reset, this pin defaults to primary function GPIOP[12] if ICE Interface enable is not selected during reset using the boot configuration. 2nd Alternate function: PC trace status bit 2, EJTAG_PCST[2].							

Table 1 Pin Descriptions (Part 7 of 8)

IDT 79RC32355								
Name	Туре	I/O Type	Description					
U1CTSN	I		UART channel 1 clear to send. Primary function: General Purpose I/O, GPIOP[13]. At reset, this pin defaults to primary function GPIOP[13] if ICE Interface enable is not selected during reset using the boot configuration. 2nd Alternate function: PC trace clock, EJTAG_DCLK.					

Table 1 Pin Descriptions (Part 8 of 8)

^{1.} Schmitt Trigger Input.

^{2. 2}I²C - Bus Specification by Philips Semiconductors.

Boot Configuration Vector

The boot configuration vector is read into the RC32355 during cold reset. The vector defines parameters in the RC32355 that are essential to operation when cold reset is complete.

The encoding of boot configuration vector is described in Table 2, and the vector input is illustrated in Figure 6.

Signal	Name/Description
MDATA[2:0]	Clock Multiplier. This field specifies the value by which the system clock (CLKP) is multiplied internally to generate the CPU pipeline clock. 0x0 - multiply by 2 0x1 - multiply by 3 0x2 - multiply by 4 0x3 - reserved 0x4 - reserved 0x5 - reserved 0x6 - reserved 0x7 - reserved
MDATA[3]	Endian. This bit specifies the endianness of RC32355. 0x0 - little endian 0x1 - big endian
MDATA[4]	Reserved. Must be set to 0.
MDATA[5]	Debug Boot Mode. When this bit is set, the RC32355 begins executing from address 0xFF20_0200 rather than 0xBFC0_0000 following a reset. 0x0 - regular mode (processor begins executing at 0xBFC0_0000) 0x1 - debug boot mode (processor begins executing at 0xFF20_0200)
MDATA[7:6]	Boot Device Width. This field specifies the width of the boot device. 0x0 - 8-bit boot device width 0x1 - 16-bit boot device width 0x2 - 32-bit boot device width 0x3 - reserved
MDATA[8]	EJTAG/ICE Interface Enable. When this bit is set, Alternate 2 pin functions EJTAG_PCST[2:0], EJTAG_DCLK, and EJTAG_TRST_N are selected. 0x0 - GPIOP[31, 13:10] pins behaves as GPIOP 0x1 - GPIOP[31] pin behaves as EJTAG_TRST_N, GPIOP[12:10] pins behave as EJTAG_PCST[2:0], and GPIOP[13] pin behaves as EJTAG_DCLK
MDATA[9]	Fast Reset.When this bit is set, RC32355 drives RSTN for 64 clock cycles, used during test only.Clear this bit for normal operation.0x0 - Normal reset:RC32355 drives RSTN for minimum of 4096 clock cycles0x1 - Fast Reset:RC32355 drives RSTN for 64 clock cycles (test only)
MDATA[10]	DMA Debug Enable . When this bit is set, Alternate 2 pin function, DMAP is selected. DMAP provides the DMA channel number during memory and peripheral bus DMA transactions. 0x0 - GPIOP[8, 9, 25, 23] pins behave as GPIOP 0x1 - GPIOP[8, 9, 25, 23] pins behave as DMAP[3:0]

Table 2 Boot Configuration Vector Encoding (Part 1 of 2)

Clock Parameters

(Ta = 0°C to +70°C Commercial, Ta = -40°C to +85°C Industrial, Vcc I/O = +3.3V \pm 5%, V_{cc} Core and V_{cc}P = +2.5V \pm 5%)

Parameter	Symbol	Reference Edge	133MHz		150MHz		180MHz		Units	Timing Diagram
Farameter	Jymbol		Min	Max	Min	Мах	Min	Мах	Units	Reference
Internal CPU pipeline clock ¹	Frequency	none	100	133	100	150	100	180	MHz	Figure 4
CLKP ^{2,3,4}	Frequency	none	25	67	25	75	25	90	MHz	
	Tperiod1		15	40	13.3	40	11.1	40	ns	
	Thigh1		6	_	5.4	_	5.4	—	ns	
	Tlow1	-	6		5.4		5.4	—	ns	
	Trise1	-		3	—	2.5	_	2.5	ns	
	Tfall1	-		3	_	2.5	_	2.5	ns	
	Tjitter		_	±250	—	±200	_	±200	ps	
¹ The CPU pipeline clock speed is ² Ethernet clock (MIIRXCLKP and ³ USB clock (USBCLKP) frequence ⁴ ATM thus is clock (DYCLKP and	MIITXCLKP) frequer y must be less than (icy must be equal to CLKP frequency.	o or less	than 1/2	CLKP fr	equency.	1	I	1	L

⁴ ATM Utopia clock (RXCLKP and TXCLKP) frequency must be equal to or less than 1/2 CLKP frequency.

Table 3 Clock Parameters

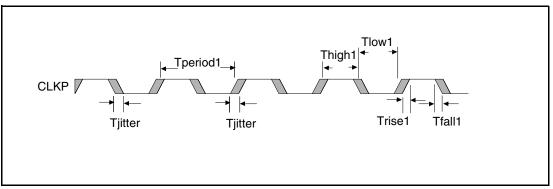
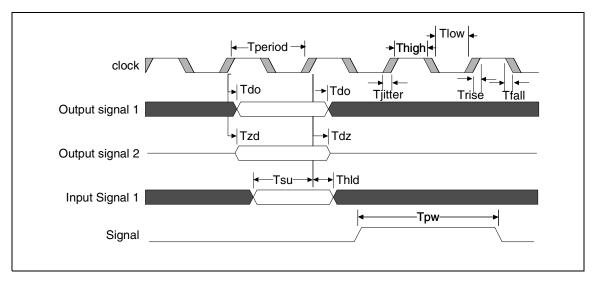



Figure 4 Clock Parameters Waveform

AC Timing Definitions

Below are examples of the AC timing characteristics used throughout this document.

Symbol	Definition
Tperiod	Clock period.
Tlow	Clock low. Amount of time the clock is low in one clock period.
Thigh	Clock high. Amount of time the clock is high in one clock period.
Trise	Rise time. Low to high transition time.
Tfall	Fall time. High to low transition time.
Tjitter	Jitter. Amount of time the reference clock (or signal) edge can vary on either the rising or falling edges.
Tdo	Data out. Amount of time after the reference clock edge that the output will become valid. The minimum time represents the data output hold. The maximum time represents the earliest time the designer can use the data.
Tzd	Z state to data valid. Amount of time after the reference clock edge that the tri-stated output takes to become valid.
Tdz	Data valid to Z state. Amount of time after the reference clock edge that the valid output takes to become tri-stated.
Tsu	Input set-up. Amount of time before the reference clock edge that the input must be valid.
Thld	Input hold. Amount of time after the reference clock edge that the input must remain valid.
Трw	Pulse width. Amount of time the input or output is active.

Table 4 AC Timing Definitions

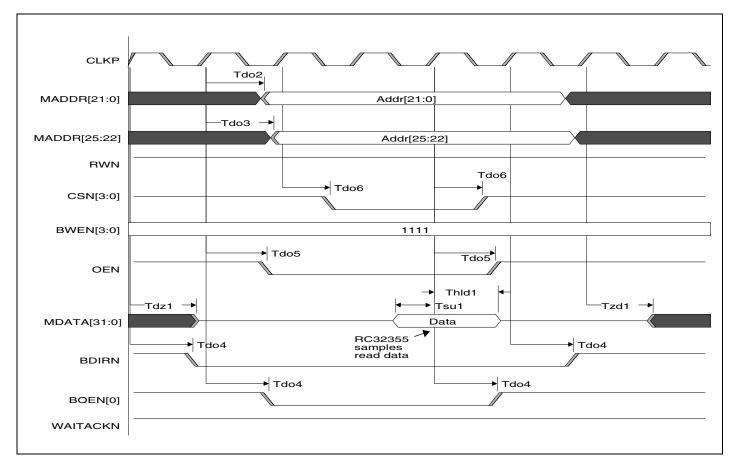


Figure 11 Memory and Peripheral Bus AC Timing Waveform - Device Read Access

Figure 12 Memory AC and Peripheral Bus Timing Waveform - Device Write Access

Simul	Cumb al	Reference	133	MHz	150MHz		180MHz		11	Conditions	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
ATM Interface, Utopia Mod	de ^{1, 2}	· · · · · · · · · · · · · · · · · · ·									·
RXCLKP, TXCLKP ¹	Tperiod1	none	_	40	_	40	—	40	ns	25 MHz Utopia	Figure 14
	Thigh1,Tlow1		16	—	16	—	16	—	ns		
	Trise1,Tfall1		_	4	_	4	_	4	ns		
RXCLKP, TXCLKP ¹	Tperiod1	none	_	30	_	30	_	30	ns	33 MHz Utopia	
	Thigh1,Tlow1		12	—	12	—	12	—	ns		
	Trise1,Tfall1		_	3	_	3	_	3	ns		
RXCLKP, TXCLKP	Tperiod1	none	_	20	_	20	_	20	ns	50 MHz Utopia	
	Thigh,Tlow1		8	—	8	_	8	—	ns		
	Trise1,Tfall1		_	2	-	2	_	2	ns		
TXFULLN	Tsu2	TXCLKP	2	—	2	—	2	—	ns		
	Thld2	rising	2	—	2	—	2	—	ns		
TXDATA[7:0], TXSOC, TXENBN, TXADDR[1:0]	Tdo3	TXCLKP rising	4	8	4	8	4	8	ns		
RXDATA[7:0], RXEMP-	Tsu4	RXCLKP	3	—	3	—	3	—	ns		
TYN, RXSOC	Thld4	rising	2	—	2	—	2	—	ns		
RXADDR[1:0], RXENBN	Tdo5	RXCLKP rising	3	8	3	8	3	8	ns		

Table 8 ATM AC Timing Characteristics

^{1.} ATM Utopia clock (RXCLKP and TXCLKP) frequency must be equal to or less than 1/2 CLKP frequency.

 $^{2\cdot}$ All Utopia Mode pins are multiplexed on the ATM interface pins as described in Table 9.

ATM Pin Name	Utopia Level 1	Utopia Level 2
ATMINP[0]	RXDATA[0]	RXDATA[0]
ATMINP[1]	RXDATA[1]	RXDATA[1]
ATMINP[2]	RXDATA[2]	RXDATA[2]
ATMINP[3]	RXDATA[3]	RXDATA[3]
ATMINP[4]	RXDATA[4]	RXDATA[4]
ATMINP[5]	RXDATA[5]	RXDATA[5]
ATMINP[6]	RXDATA[6]	RXDATA[6]
ATMINP[7]	RXDATA[7]	RXDATA[7]
ATMINP[8]	RXCLKP	RXCLKP
ATMINP[9]	RXEMPTYN	RXEMPTYN
ATMINP[10]	RXSOC	RXSOC
ATMINP[11]	TXFULLN	TXFULLN
ATMIOP[0]	RXENBN	RXENBN
ATMIOP[1]	TXCLKP	TXCLKP
ATMOUTP[0]	TXDATA[0]	TXDATA[0]
ATMOUTP[1]	TXDATA[1]	TXDATA[1]
ATMOUTP[2]	TXDATA[2]	TXDATA[2]
ATMOUTP[3]	TXDATA[3]	TXDATA[3]
ATMOUTP[4]	TXDATA[4]	TXDATA[4]
ATMOUTP[5]	TXDATA[5]	TXDATA[5]
ATMOUTP[6]	TXDATA[6]	TXDATA[6]
ATMOUTP[7]	TXDATA[7]	TXDATA[7]
ATMOUTP[8]	TXSOC	TXSOC
ATMOUTP[9]	TXENBN	TXENBN
GPIOP[22]		TXADDR[0]
GPIOP[23]		TXADDR[1]
GPIOP[24]		RXADDR[0]
GPIOP[25]		RXADDR[1]

Table 9 ATM I/O Pin Multiplexing

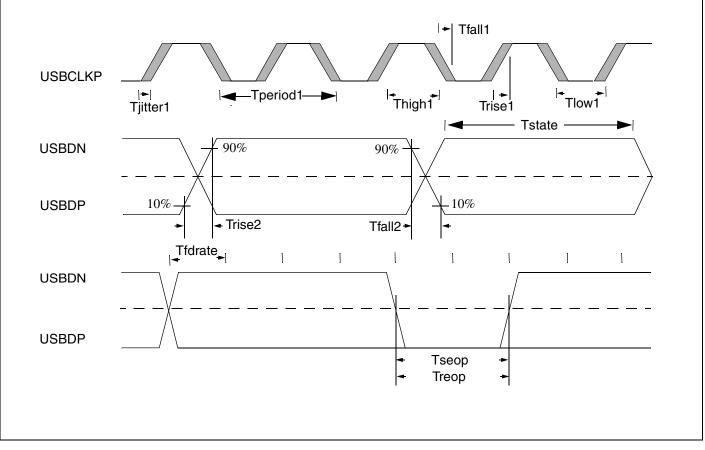


Figure 17 USB AC Timing Waveform

Cinnel	Sumplus I	Reference	133MHz		150MHz		180MHz			0	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
UART	UART										
UOSINP, UORIN, UODCDN,	Tsu ¹	CLKP rising	5	—	5	—	5	—	ns		
U0DSRN, U0CTSN, U1SINP, U1DSRN, U1CTSN	Thld ¹		3		3		3	_	ns		
U0SOUTP, U0DTRN, U0RTSN, U1SOUTP, U1DTRN, U1RTSN	Tdo ¹	CLKP rising	1	12	1	12	1	12	ns		
¹ These are asynchronous signals and the values are provided for ATE (test) only.											

Table 12 UART AC Timing Characteristics

Table 16 shows the pin numbering for the Standard EJTAG connector. All the even numbered pins are connected to ground. Multiplexing of pin functions should be considered when connecting EJTAG_TRST_N and EJTAG_PCST.

PIN	SIGNAL	RC32355 I/O	TERMINATION ¹
1	EJTAG_TRST_N	Input	10 k Ω pull-down resistor. A pull-down resistor will hold the EJTAG controller in reset when not in use if the EJTAG_TRST_N function is selected with the boot configuration vector. Refer to the User Manual.
3	JTAG_TDI	Input	10 kΩ pull-up resistor
5	JTAG_TDO	Output	33 Ω series resistor
7	JTAG_TMS	Input	10 kΩ pull-up resistor
9	JTAG_TCK	Input	10 k Ω pull-up resistor ²
11	System Reset	Input	10 k Ω pull-up resistor is used if it is combined with the system cold reset control, COLDRSTN.
13	EJTAG_PCST[0]	Output	33Ω series resistor
15	EJTAG_PCST[1]	Output	33Ω series resistor
17	EJTAG_PCST[2]	Output	33 Ω series resistor
19	EJTAG_DCLK	Output	33Ω series resistor
21	Debug Boot	Input	This can be connected to the boot configuration vector to control debug boot mode if desired. Refer to Table 2 on page 12 and the RC32355 user reference manual.
23	Vccl/O	Output	Used to sense the circuit board power. Must be connected to the VCC I/O supply of the circuit board.

Table 16 Pin Numbering of the JTAG and EJTAG Target Connector

^{1.} The value of the series resistor may depend on the actual printed circuit board layout situation.

^{2.} JTAG_TCK pull-up resistor is not required according to the JTAG (IEEE1149) standard. It is indicated here to prevent a floating CMOS input when the EJTAG connector is unconnected.

AC Test Conditions

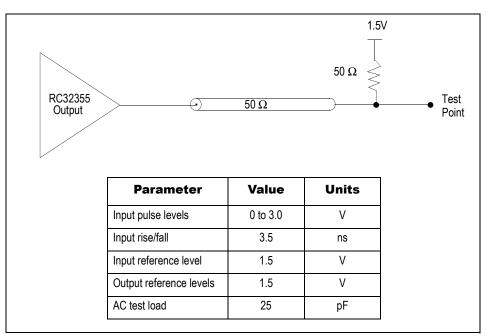


Figure 21 Output Loading for AC Timing

Phase-Locked Loop (PLL)

The processor aligns the pipeline clock, PClock, to the master input clock (CLKP) by using an internal phase-locked loop (PLL) circuit that generates aligned clocks. Inherently, PLL circuits are only capable of generating aligned clocks for master input clock (CLKP) frequencies within a limited range.

PLL Analog Filter

The storage capacitor required for the Phase-Locked Loop circuit is contained in the RC32355. However, it is recommended that the system designer provide a filter network of passive components for the PLL power supply.

VCCP (PLL circuit power) and VSSP (PLL circuit ground) should be isolated from VCC Core (core power) and VSS (common ground) with a filter circuit such as the one shown in Figure 22.

Because the optimum values for the filter components depend upon the application and the system noise environment, these values should be considered as starting points for further experimentation within your specific application.

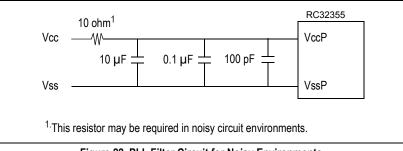


Figure 22 PLL Filter Circuit for Noisy Environments

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	Temperature Vss ¹ VssP ⁵ V		V _{cc} Core ³ V _{cc} P ⁴				
Commercial	0°C to +70°C Ambient	0V	3.3V±5%	2.5V±5%				
Industrial -40°C+ 85°C Ambient 0V 3.3V±5%								
 ¹ Vss supplies a common ground. ² Vccl/O is the I/O power. ³ VccCore is the internal logic power. ⁴ VccP is the phase lock loop power. ⁵VssP is the phase lock loop ground. 								

Table 17 Temperature and Voltage

Capacitive Load Deration

Refer to the <u>RC32355 IBIS Model</u> which can be found at the IDT web site (www.idt.com).

Power-on RampUp

The 2.5V core supply (and 2.5V V_{cc} PLL supply) can be fully powered without the 3.3V I/O supply. However, the 3.3V I/O supply cannot exceed the 2.5V core supply by more than 1 volt during power up. A sustained large power difference could potentially damage the part. Inputs should not be driven until the part is fully powered. Specifically, the input high voltages should not be applied until the 3.3V I/O supply is powered.

There is no special requirement for how fast V_{cc} I/O ramps up to 3.3V. However, all timing references are based on a stable V_{cc} I/O.

DC Electrical Characteristics

 $(T_{ambient} = 0^{\circ}C \text{ to } +70^{\circ}C \text{ Commercial}, T_{ambient} = -40^{\circ}C \text{ to } +85^{\circ}C \text{ Industrial}, Vcc I/O = +3.3V \pm 5\%, V_{cc} \text{ Core and } V_{cc} P = +2.5V \pm 5\%)$

	Para- meter	Min	Max	Unit	Pin Numbers	Conditions
LOW Drive	I _{OL}	7.3	_	mA	1-4,6-8,10-16,18,20-25,27-29,32,33,35-37,	V _{OL} = 0.4V
Output with Schmitt Trigger	I _{он}	-8.0	-	mA	39-42,44,46-48,50,52,53,56,58-60,62-69, 71-77,82-85,87-94,96-99,101-105,167,	V _{OH} = (V _{CC} I/O - 0.4)
Input (STI)	V _{IL}	—	0.8	V	205-208	_
	V _{IH}	2.0	(V _{cc} I/O + 0.5)	V		
	V _{OH}	V _{cc} - 0.4	-	V		_
HIGH Drive	I _{OL}	9.4	-	mA	49,51,54,55,106-108,110,112-117,119,	V _{OL} = 0.4V
Output with Standard Input	I _{он}	-15	_	mA	121,123-128,130,132-137,139,141,143, 150,152,154-159,161,163-166,168-170,	V _{OH} = (V _{CC} I/O - 0.4)
	V _{IL}	—	0.8	V	172,174-179,181,185-190,192,194-200,	_
	V _{IH}	2.0	(V _{cc} I/O + 0.5)	V	202,204	_
	V _{OH}	V _{cc} - 0.4	-	V		_
Clock Drive	I _{OL}	39	-	mA	183	V _{OL} = 0.4V
Output	І _{он}	-24	-	mA		V _{OH} = (V _{CC} I/O - 0.4)
Capacitance	C _{IN}	—	10	pF	All pins	_
Leakage	I/O _{LEAK}	—	20	μΑ	All pins	_

 Table 18 DC Electrical Characteristics

Power Curve

The following graph contains a power curve that shows power consumption at various bus frequencies.

Note: The system clock (CLKP) can be multiplied by 2, 3, or 4 to obtain the CPU pipeline clock (PClock) speed.

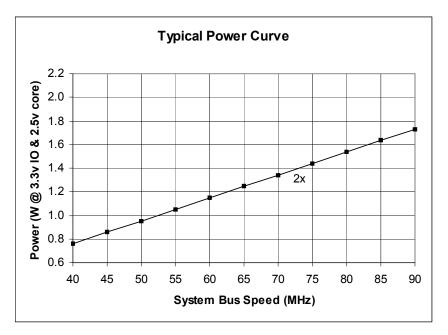


Figure 23 Typical Power Usage

Symbol	Parameter	Min ¹	Max ¹	Unit	
V _{cc} I/O	I/O Supply Voltage	-0.3	3.465	V	
V _{cc} Core	Core Supply Voltage	-0.3	3.0	V	
V _{CC} P	PLL Supply Voltage	-0.3	3.0	V	
Vimin	Input Voltage - undershoot	-0.6	-	V	
Vi	I/O Input Voltage	Gnd	V _{cc} I/O+0.6	V	
Ta, Industrial	Ambient Operating Temperature	-40	85	degrees C	
Tstg	Storage Temperature	-40	125	degrees C	

Absolute Maximum Ratings

Table 21 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 17. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

Package Pin-out — 208-Pin PQFP

The following table lists the pin numbers and signal names for the RC32355.

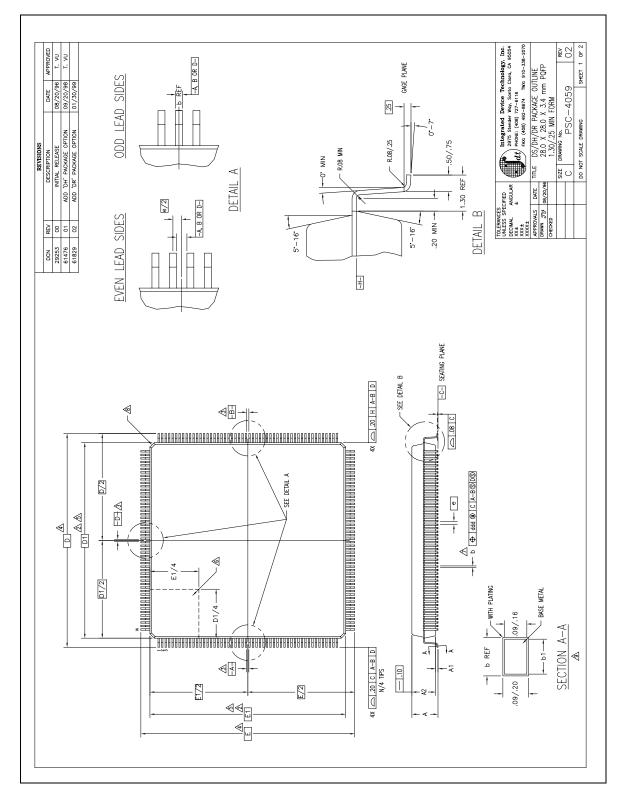

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
1	ATMOUTP[0]		53	JTAG_TDO		105	BGN		157	MDATA[28]	
2	ATMOUTP[1]		54	GPIOP[16]	1	106	CSN[0]		158	MDATA[13]	
3	ATMINP[02]		55	GPIOP[17]	1	107	CSN[1]		159	MDATA[29]	
4	ATMOUTP[2]		56	GPIOP[18]	1	108	CSN[2]		160	Vcc I/O	
5	Vss		57	Vss		109	Vcc I/O		161	MDATA[14]	
6	ATMOUTP[3]		58	JTAG_TCK		110	CSN[3]		162	Vss	
7	ATMINP[03]		59	GPIOP[19]	1	111	Vss		163	MDATA[30]	
8	ATMOUTP[4]		60	GPIOP[20]	1	112	OEN		164	MDATA[15]	
9	Vcc I/O		61	Vcc I/O		113	RWN		165	MDATA[31]	
10	ATMOUTP[5]		62	GPIOP[21]	1	114	BDIRN		166	CLKP	
11	ATMINP[04]		63	JTAG_TDI		115	BOEN[0]		167	WAITACKN	
12	ATMOUTP[6]		64	GPIOP[22]	1	116	BOEN[1]		168	MADDR[00]	
13	ATMOUTP[7]		65	GPIOP[23]	2	117	BWEN[0]		169	MADDR[11]	
14	ATMINP[05]		66	GPIOP[24]	1	118	Vcc I/O		170	MADDR[01]	
15	ATMOUTP[8]		67	JTAG_TMS		119	BWEN[1]		171	Vcc I/O	
16	ATMOUTP[9]		68	GPIOP[25]	2	120	Vss		172	MADDR[12]	
17	Vss		69	GPIOP[26]	1	121	BWEN[2]		173	Vss	
18	ATMINP[06]		70	Vss		122	Vcc Core		174	MADDR[02]	
19	Vcc Core		71	GPIOP[27]	1	123	BWEN[3]		175	MADDR[13]	
20	GPIOP[00]	1	72	COLDRSTN		124	MDATA[00]		176	MADDR[03]	
21	GPIOP[01]	1	73	GPIOP[28]	1	125	MDATA[16]		177	MADDR[14]	
22	ATMINP[07]		74	GPIOP[29]	1	126	MDATA[01]		178	MADDR[04]	
23	GPIOP[02]	2	75	GPIOP[30]	1	127	MDATA[17]		179	MADDR[15]	
24	GPIOP[03]	1	76	GPIOP[31]	2	128	MDATA[02]		180	Vcc I/O	
25	ATMINP[08]		77	USBCLKP		129	Vcc I/O		181	MADDR[05]	
26	Vcc I/O		78	Vcc I/O		130	MDATA[18]		182	Vcc Core	
27	GPIOP[04]	2	79	USBDN		131	Vss		183	SYSCLKP	
28	GPIOP[05]	1	80	USBDP		132	MDATA[03]		184	Vss	
29	ATMINP[09]		81	Vss		133	MDATA[19]		185	MADDR[16]	
30	VccP ¹		82	MIICRSP		134	MDATA[04]		186	MADDR[06]	
31	VssP ¹		83	MIICOLP		135	MDATA[20]		187	MADDR[17]	
32	ATMINP[10]		84	MIITXDP[0]		136	MDATA[05]		188	MADDR[07]	
33	GPIOP[06]	1	85	MIITXDP[1]		137	MDATA[21]	1	189	MADDR[18]	
34	Vss		86	Vcc Core		138	Vcc Core		190	MADDR[08]	

 Table 22:
 208-pin QFP Package Pin-Out (Part 1 of 2)

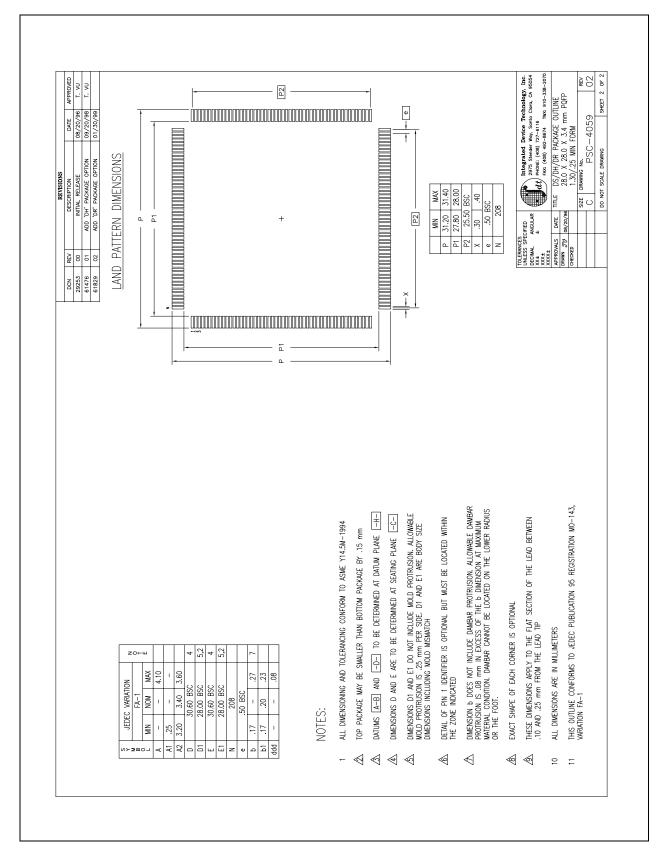
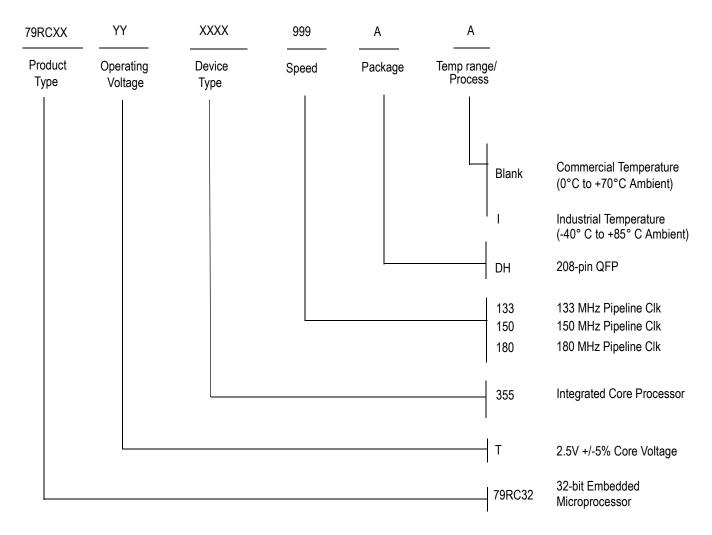

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
35	GPIOP[07]	1	87	MIITXDP[2]		139	MDATA[06]		191	Vcc I/O	
36	ATMINP [11]		88	MIITXDP[3]		140	Vcc I/O		192	MADDR[19]	
37	GPIOP[08]	2	89	MIITXENP		141	MDATA[22]		193	Vss	
38	Vcc Core		90	MIITXCLKP		142	Vss		194	MADDR[09]	
39	GPIOP[09]	2	91	MIITXERP		143	MDATA[07]		195	MADDR[20]	
40	GPIOP[10]	2	92	MIIRXERP		144	MDATA[23]		196	MADDR[10]	
41	GPIOP[11]	2	93	MIIRXCLKP		145	SDCLKINP		197	MADDR[21]	
42	GPIOP[12]	2	94	MIIRXDVP		146	MDATA[08]		198	CASN	
43	Vcc I/O		95	Vcc I/O		147	MDATA[24]		199	RASN	
44	GPIOP[13]	2	96	MIIRXDP[0]		148	MDATA[09]		200	SDWEN	
45	Vss		97	MIIRXDP[1]		149	MDATA[25]		201	Vcc I/O	
46	GPIOP[14]	1	98	MIIRXDP[2]		150	MDATA[10]		202	SDCSN[0]	
47	GPIOP[15]	1	99	MIIRXDP[3]		151	Vcc I/O		203	Vss	
48	GPIOP[35]	1	100	Vss		152	MDATA[26]		204	SDCSN[1]	
49	GPIOP[34]	1	101	MIIDCP		153	Vss		205	ATMINP[00]	
50	GPIOP[33]	1	102	MIIDIOP		154	MDATA[11]		206	ATMIOP[0]	
51	GPIOP[32]	1	103	RSTN		155	MDATA[27]		207	ATMIOP[1]	
52	INSTP		104	BRN		156	MDATA[12]		208	ATMINP[01]	

Table 22: 208-pin QFP Package Pin-Out (Part 2 of 2)


Package Drawing - 208-pin QFP

Package Drawing - page two

Ordering Information

Valid Combinations

79RC32T355 -133DH, 150DH, 180DH	208-pin QFP package, Commercial Temperature
79RC32T355 -133DHI, 150DHI	208-pin QFP package, Industrial Temperature

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: email: rischelp@idt.com phone: 408-284-8208