

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	8-Bit
Speed	16MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at90can32-15mt1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Block Diagram

⁽¹⁾NC = Do not connect (May be used in future devices)
 ⁽²⁾Timer2 Oscillator

Note: The large center pad underneath the QFN package is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

1.7 Pin Descriptions

1.7.1 VCC

Digital supply voltage.

1.7.2 GND

Ground.

6 AT90CAN32/64/128

purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up.

6.1 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU but allowing SPI, CAN, USART, Analog Comparator, ADC, Two-wire Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep mode basically halts clk_{CPU} and clk_{FLASH} , while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the Analog Comparator interrupt is not required, the Analog Comparator can be powered down by setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered.

6.2 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the External Interrupts, the Two-wire Serial Interface address watch, Timer/Counter2, CAN and the Watchdog to continue operating (if enabled). This sleep mode basically halts $clk_{I/O}$, clk_{CPU} , and clk_{FLASH} , while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface address match interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an External Level Interrupt on INT7:4, or an External Interrupt on INT3:0 can wake up the MCU from ADC Noise Reduction mode.

6.3 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Powerdown mode. In this mode, the External Oscillator is stopped, while the External Interrupts, the Two-wire Serial Interface address watch, and the Watchdog continue operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface address match interrupt, an External Level Interrupt on INT7:4, or an External Interrupt on INT3:0 can wake up the MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level must be held for some time to wake up the MCU. Refer to "External Interrupts" on page 93 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs until the wake-up becomes effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined by the same CKSEL fuses that define the Reset Time-out period, as described in "Clock Sources" on page 38.

6.4 Power-save Mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Powersave mode. This mode is identical to Power-down, with one exception:

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the IVSEL description above. See Code Example below.

```
Assembly Code Example
   Move_interrupts:
     ; Get MCUCR
           r16, MCUCR
     in
           r17, r16
     mov
     ; Enable change of Interrupt Vectors
           r16, (1<<IVCE)
     ori
           MCUCR, r16
     out
     ; Move interrupts to Boot Flash section
     ori
           r17, (1<<IVSEL)
           MCUCR, r17
     out
     ret
C Code Example
   void Move_interrupts(void)
   {
     uchar temp;
   /* Get MCUCR*/
     temp = MCUCR;
   /* Enable change of Interrupt Vectors */
     MCUCR = temp | (1<<IVCE);
   /* Move interrupts to Boot Flash section */
     MCUCR = temp | (1<<IVSEL);
   }
```


AIMEL

9.4.2 Port A Data Direction Register – DDRA

Bit	7	6	5	4	3	2	1	0	
	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA
Read/Write	R/W	-							
Initial Value	0	0	0	0	0	0	0	0	

9.4.3 Port A Input Pins Address – PINA

Bit	7	6	5	4	3	2	1	0	_
	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
Read/Write	R/W	•							
Initial Value	N/A								

9.4.4 Port B Data Register – PORTB

Bit	7	6	5	4	3	2	1	0	
	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

9.4.5 Port B Data Direction Register – DDRB

Bit	7	6	5	4	3	2	1	0	_
	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
Read/Write	R/W	-							
Initial Value	0	0	0	0	0	0	0	0	

9.4.6 Port B Input Pins Address – PINB

Bit	7	6	5	4	3	2	1	0	_
	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
Read/Write	R/W								
Initial Value	N/A								

9.4.7 Port C Data Register – PORTC

Bit	7	6	5	4	3	2	1	0	
	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	PORTC
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

9.4.8 Port C Data Direction Register – DDRC

Bit	7	6	5	4	3	2	1	0	_
	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	DDRC
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

9.4.9 Port C Input Pins Address – PINC

Bit	7	6	5	4	3	2	1	0	
	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	PINC
Read/Write	R/W								
Initial Value	N/A								

12.2.1 Registers

The Timer/Counter (TCNT0) and Output Compare Register (OCR0A) are 8-bit registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer clock (clk_{T0}).

The double buffered Output Compare Register (OCR0A) is compared with the Timer/Counter value at all times. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pin (OC0A). See "Output Compare Unit" on page 101. for details. The compare match event will also set the Compare Flag (OCF0A) which can be used to generate an Output Compare interrupt request.

12.2.2 Definitions

The following definitions are used extensively throughout the section:

BOTTOM	The counter reaches the BOTTOM when it becomes 0x00.
MAX	The counter reaches its MAXimum when it becomes 0xFF (decimal 255).
ТОР	The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR0A Register. The assignment is dependent on the mode of operation.

12.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits located in the Timer/Counter Control Register (TCCR0A). For details on clock sources and prescaler, see "Timer/Counter3/1/0 Prescalers" on page 96.

12.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 12-2 shows a block diagram of the counter and its surroundings.

Figure 12-2. Counter Unit Block Diagram

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the compare match is ignored, but the set or clear is done at TOP. See "Fast PWM Mode" on page 105 for more details.

Table 12-4 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to phase correct PWM mode.

COM0A1	COM0A0	Description
0	0	Normal port operation, OC0A disconnected.
0	1	Reserved
1	0	Clear OC0A on compare match when up-counting. Set OC0A on compare match when downcounting.
1	1	Set OC0A on compare match when up-counting. Clear OC0A on compare match when downcounting.

 Table 12-4.
 Compare Output Mode, Phase Correct PWM Mode⁽¹⁾

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the compare match is ignored, but the set or clear is done at TOP. See "Phase Correct PWM Mode" on page 107 for more details.

Bit 2:0 – CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

CS02	CS01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped)
0	0	1	clk _{I/O} /(No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{I/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T0 pin. Clock on falling edge.
1	1	1	External clock source on T0 pin. Clock on rising edge.

Table 12-5. Clock Select Bit Description

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is configured as an output. This feature allows software control of the counting.

12.9.2 Timer/Counter0 Register – TCNT0

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the compare match on the following timer clock. Modifying the counter (TCNT0) while the counter is running, introduces a risk of missing a compare match between TCNT0 and the OCR0A Register.

priority, the maximum interrupt response time is dependent on the maximum number of clock cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is actively changed during operation, is not recommended.

Measurement of an external signal's duty cycle requires that the trigger edge is changed after each capture. Changing the edge sensing must be done as early as possible after the ICRn Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be cleared by software (writing a logical one to the I/O bit location). For measuring frequency only, the clearing of the ICFn flag is not required (if an interrupt handler is used).

13.7 Output Compare Units

The 16-bit comparator continuously compares TCNTn with the Output Compare Register (OCRnx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Compare Flag generates an Output Compare interrupt. The OCFnx flag is automatically cleared when the interrupt is executed. Alternatively the OCFnx flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the Waveform Generation mode (WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation (See "Modes of Operation" on page 126.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e., counter resolution). In addition to the counter resolution, the TOP value defines the period time for waveforms generated by the Waveform Generator.

Figure 13-4 shows a block diagram of the Output Compare unit. The elements of the block diagram that are not directly a part of the Output Compare unit are gray shaded.

While TWEA is zero, the TWI does not respond to its own slave address. However, the Two-wire Serial Bus is still monitored and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the interface can still acknowledge its own slave address or the general call address by using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep and the TWI will hold the SCL clock will low during the wake up and until the TWINT flag is cleared (by writing it to one). Further data transmission will be carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last byte present on the bus when waking up from these sleep modes.

 Table 18-6.
 Status Codes for Slave Transmitter Mode

Status Code	Status of the Two-wire Serial Bus	Application Software Response					
(TWSR)	and Two-wire Serial Interface Hard-		To TWCR				Next Action Taken by TWI Hardware
are 0	ware	To/from TWDR	STA	STO	TWINT	TWEA	
0xA8	Own SLA+R has been received; ACK has been returned	Load data byte or	х	0	1	0	Last data byte will be transmitted and NOT ACK should be received
		Load data byte	Х	0	1	1	Data byte will be transmitted and ACK should be received
0xB0	Arbitration lost in SLA+R/W as mas- ter; own SLA+R has been	Load data byte or	х	0	1	0	Last data byte will be transmitted and NOT ACK should be received
	received; ACK has been returned	Load data byte	Х	0	1	1	Data byte will be transmitted and ACK should be received
0xB8	Data byte in TWDR has been transmitted; ACK has been	Load data byte or	х	0	1	0	Last data byte will be transmitted and NOT ACK should be received
	received	Load data byte	Х	0	1	1	Data byte will be transmitted and ACK should be received
0xC0	Data byte in TWDR has been transmitted; NOT ACK has been	No TWDR action or	0	0	1	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA
	received	No TWDR action or	0	0	1	1	Switched to the not addressed slave mode; own SLA will be recognized; GCA will be recognized if TWGCE = "1"
		No TWDR action or	1	0	1	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA; a START condition will be transmitted when the bus becomes free
		No TWDR action	1	0	1	1	Switched to the not addressed slave mode; own SLA will be recognized; GCA will be recognized if TWGCE = "1"; a START condition will be transmitted when the bus becomes free
0xC8	Last data byte in TWDR has been transmitted (TWEA = "0"); ACK has	No TWDR action or	0	0	1	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA
	been received	No TWDR action or	0	0	1	1	Switched to the not addressed slave mode; own SLA will be recognized; GCA will be recognized if TWGCE = "1"
		No TWDR action or	1	0	1	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA; a START condition will be transmitted when the bus becomes free
		No TWDR action	1	0	1	1	Switched to the not addressed slave mode; own SLA will be recognized; GCA will be recognized if TWGCE = "1"; a START condition will be transmitted when the bus becomes free

21. Analog to Digital Converter - ADC

21.1 Features

- 10-bit Resolution
- 0.5 LSB Integral Non-linearity
- ± 2 LSB Absolute Accuracy
- 13 260 µs Conversion Time
- Up to 76 kSPS at Maximum Resolution
- Eight Multiplexed Single Ended Input Channels
- · Seven Differential input channels
- Optional Left Adjustment for ADC Result Readout
- 0 V_{CC} ADC Input Voltage Range
- Selectable 2.56 V ADC Reference Voltage
- Free Running or Single Conversion Mode
- · ADC Start Conversion by Auto Triggering on Interrupt Sources
- Interrupt on ADC Conversion Complete
- Sleep Mode Noise Canceler

The AT90CAN32/64/128 features a 10-bit successive approximation ADC. The ADC is connected to an 8-channel Analog Multiplexer which allows eight single-ended voltage inputs constructed from the pins of Port F. The single-ended voltage inputs refer to 0V (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs (ADC1, ADC0 and ADC3, ADC2) are equipped with a programmable gain stage, providing amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the differential input voltage before the A/D conversion. Seven differential analog input channels share a common negative terminal (ADC1), while any other ADC input can be selected as the positive input terminal. If 1x or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 7-bit resolution can be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is held at a constant level during conversion. A block diagram of the ADC is shown in Figure 21-1.

The ADC has a separate analog supply voltage pin, AV_{CC} . AV_{CC} must not differ more than ± 0.3V from V_{CC} . See the paragraph "ADC Noise Canceler" on page 279 on how to connect this pin.

Internal reference voltages of nominally 2.56V or AV_{CC} are provided On-chip. The voltage reference may be externally decoupled at the AREF pin by a capacitor for better noise performance.

Figure 23-8. Analog Comparator

Figure 23-9. General Boundary-scan cell Used for Signals for Comparator and ADC

Table 23-6. Boundary-scan Signals for the Analog Comparator

Signal Name	Direction as Seen from the Comparator	Description	Recommended Input when Not in Use	Output Values when Recommended Inputs are Used
AC_IDLE	input	Turns off Analog Comparator when true	1	Depends upon µC code being executed
ACO	output	Analog Comparator Output	Will become input to µC code being executed	0
ACME	input	Uses output signal from ADC mux when true	0	Depends upon μC code being executed
ACBG	input	Bandgap Reference enable	0	Depends upon µC code being executed

same page in both the page erase and page write operation. Once a programming operation is initiated, the address is latched and the Z-pointer can be used for other operations.

The (E)LPM instruction use the Z-pointer to store the address. Since this instruction addresses the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.

Figure 24-3. Addressing the Flash During SPM⁽¹⁾

Note: 1. The different variables used in Figure 24-3 are listed in Table 24-8 on page 334.

24.7 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with the data stored in the temporary page buffer, the page must be erased. The temporary page buffer is filled one word at a time using SPM and the buffer can be filled either before the Page Erase command or between a Page Erase and a Page Write operation:

Alternative 1: fill the buffer before a Page Erase

- · Fill temporary page buffer
- Perform a Page Erase
- Perform a Page Write

Alternative 2: fill the buffer after Page Erase

- Perform a Page Erase
- · Fill temporary page buffer
- Perform a Page Write

25.6 Parallel Programming

25.6.1 Enter Programming Mode

The following algorithm puts the device in parallel programming mode:

- 1. Apply power between V_{CC} and GND.
- 2. Set RESET to "0" and toggle XTAL1 at least six times.
- 3. Set the Prog_enable pins listed in Table 25-8 on page 339 to "0000" and wait at least 100 ns.
- Apply 11.5 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after +12V has been applied to RESET, will cause the device to fail entering programming mode.
- 5. Wait at least 50 μs before sending a new command.

25.6.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient programming, the following should be considered.

- The command needs only be loaded once when writing or reading multiple memory locations.
- Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the EESAVE Fuse is programmed) and Flash after a Chip Erase.
- Address high byte needs only be loaded before programming or reading a new 256 word window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes reading.

25.6.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM⁽¹⁾ memories plus Lock bits. The Lock bits are not reset until the program memory has been completely erased. The Fuse bits are not changed. A Chip Erase must be performed before the Flash and/or EEPROM are reprogrammed.

Load Command "Chip Erase"

- 1. Set XA1, XA0 to "10". This enables command loading.
- 2. Set BS1 to "0".
- 3. Set DATA to "1000 0000". This is the command for Chip Erase.
- 4. Give XTAL1 a positive pulse. This loads the command.
- 5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
- 6. Wait until RDY/BSY goes high before loading a new command.

Note: 1. The EEPROM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

25.6.4 Programming the Flash

The Flash is organized in pages, see Table 25-11 on page 340. When programming the Flash, the program data is latched into a page buffer. This allows one page of program data to be programmed simultaneously. The following procedure describes how to program the entire Flash memory:

A: Load Command "Write Flash"

grammed without chip erasing the device. In this case, data polling cannot be used for the value 0xFF, and the user will have to wait at least t_{WD_EEPROM} before programming the next byte. See Table 25-14 for t_{WD} EEPROM value.

Symbol	Minimum Wait Delay
t _{WD_FUSE}	4.5 ms
t _{wD_FLASH}	4.5 ms
t _{WD_EEPROM}	9.0 ms
two erase	9.0 ms

Table 25-14. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Figure 25-8. Serial Programming Waveforms

Table 25-15.Serial Programming Instruction Set

Set \mathbf{a} = address high bits, \mathbf{b} = address low bits, \mathbf{H} = 0 - Low byte, 1 - High Byte, \mathbf{o} = data out, \mathbf{i} = data in, x = don't care

Instruction	Instruction Format ⁽¹⁾				\mathbf{O} a substitute \mathbf{U}	
Instruction	Byte 1	Byte 2 ⁽²⁾	Byte 3	Byte4	Operation	
Programming Enable	1010 1100	0101 0011	xxxx xxxx	xxxx xxxx	Enable Serial Programming after RESET goes low.	
Chip Erase	1010 1100	100x xxxx	xxxx xxxx	xxxx xxxx	Chip Erase EEPROM and Flash.	
Read Program Memory	0010 H 000	aaaa aaaa	bbbb bbbb	0000 0000	Read H (high or low) data o from Program memory at word address a : b .	
Load Program Memory Page	0100 H 000	000x xxxx	xbbb bbbb	1111 1111	Write H (high or low) data i to Program Memory page at word address b . Data low byte must be loaded before Data high byte is applied within the same address.	
Write Program Memory Page	0100 1100	aaaa aaaa	bxxx xxxx	xxxx xxxx	Write Program Memory Page at address a : b .	
Read EEPROM Memory	1010 0000	000x aaaa	bbbb bbbb	0000 0000	Read data o from EEPROM memory at address a : b .	
Write EEPROM Memory	1100 0000	000x aaaa	bbbb bbbb	1111 1111	Write data i to EEPROM memory at address a : b .	

Symbol	Parameter	Condition	Min ⁽²⁾	Typ ⁽²⁾	Max ⁽²⁾	Units
	Population	Differential Conversion Gain = 1x or 10x		8		Bits
	Resolution	Differential Conversion Gain = 200x		7		Bits
		Gain = 1x, or 10x V _{REF} = 4V, Vcc = 5V ADC clock = 50 - 200 kHz		1	4	LSB
	Absolute accuracy	Gain = 200x (7 bits) V _{REF} = 4V, Vcc = 5V ADC clock = 50 - 200 kHz			3	
	Integral Non-linearity (INL) (Accuracy after Calibration for Offset and Gain Error)	Gain = 1x, 10x or 200x V _{REF} = 4V, Vcc = 5V ADC clock = 50 - 200 kHz		0.5	3	LSB
	Differential Non-linearity (DNL)			0.4	3	LSB
	Gain Error	Gain = 1x, 10x or 200x	- 4	0	+ 4	LSB
	Offset Error	Gain = 1x, 10x or 200x V _{REF} = 4V, Vcc = 5V ADC clock = 50 - 200 kHz	- 3	0	+ 3	LSB
	Clock Frequency	Free Running Conversion	50		200	kHz
	Conversion Time	Free Running Conversion	65		260	μs
AV _{CC}	Analog Supply Voltage		$V_{\rm CC} - 0.3^{(3)}$		$V_{\rm CC}$ + 0.3 ⁽⁴⁾	V
V _{REF}	External Reference Voltage	Differential Conversion	2.0		AV _{CC - 0.5}	V
V _{IN}	Input voltage	Differential Conversion	0		AV_{CC}	V
V_{DIFF}	Input Differential Voltage		–V _{REF} /Gain		+V _{REF} /Gain	V
	ADC Conversion Output		-511		511	LSB
	Input bandwidth	Differential Conversion		4		kHz
V _{INT}	Internal Voltage Reference		2.4	2.56	2.7	V
R _{REF}	Reference Input Resistance		24	32	40	kΩ
R _{AIN}	Analog Input Resistance			100		MΩ

Table 27-6.
 ADC Characteristics, Differential Channels⁽¹⁾

Notes: 1. All DC Characteristics contained in this datasheet are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are preliminary values representing design targets, and will be updated after characterization of actual silicon.

- 2. Values are guidelines only.
- 3. Minimum for $\mathrm{AV}_{\mathrm{CC}}$ is 2.7 V.
- 4. Maximum for $AV_{CC}\xspace$ is 5.5 V

Figure 29-22. I/O Pin Output Voltage vs. Source Current (Vcc = 2.7V)

VO PIN OUTPUT VOLTAGE vs. SOURCE CURRENT $V_{cc}{=}3.0V$

VO PIN OUTPUT VOLTAGE vs. SINK CURRENT $V_{\rm cc}{=}5.0V$

Figure 29-39. Minimum Reset Pulse Width vs. Operating Voltage

RESET PULSE WIDTH vs. V_{CC}

29.12 Analog To Digital Converter

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then $PC \leftarrow PC + k + 1$	None	1/2
	BIT AN	ID BIT-TEST INSTRUCTIONS	1		
SBI	P,b	Set Bit in I/O Register	$I/O(P,b) \leftarrow 1$	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
RUR	Ra	Arithmetic Shift Bight	$Rd(r) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(1) \leftarrow Rd(1+1), 1=00$	Z,C,N,V	1
BSET	s	Flag Set	$SBEG(s) \leftarrow 1$	SBEG(s)	1
BCLB	s	Flag Clear	$SREG(s) \leftarrow 0$	SBEG(s)	1
BST	Brb	Bit Store from Begister to T	$T \leftarrow Br(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	$C \leftarrow 0$	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	$Z \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	l ← 1	1	1
CLI		Global Interrupt Disable	l ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	T	1
CLT		Clear T in SREG	T ← 0	T	1
SEH		Set Halt Carry Flag in SREG	H ← 1	н	1
GLH	DATA	Clear Hair Carry Flag in SREG	H ← U	н	I
MOV		IRANSFER INSTRUCTIONS	Pd / Pr	Nono	- 1
MOV/W	Ru, Ri Pd. Pr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
	Rd K			None	1
	Rd X	Load Indirect	$Bd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Bd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$. Bd $\leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \gets (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
SI	X+, Hr	Store Indirect and Post-Inc.	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	2
SI	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
51	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
9T	V Pr	Store Indirect and Pro Dec	$(1) \leftarrow ni, 1 \leftarrow 1 + 1$ V (V 1 (V) (Pr	None	2
STD	Y+a Br	Store Indirect with Displacement	$(Y + q) \leftarrow Br$	None	2
ST	Z. Rr	Store Indirect	$(\overline{Z}) \leftarrow \operatorname{Br}$	None	2
ST	Z+ Br	Store Indirect and Post-Inc	$(Z) \leftarrow \operatorname{Br} Z \leftarrow Z + 1$	None	2
ST	-Z. Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1. (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z{+}1$	None	3
ELPM		Extended Load Program Memory	$R0 \leftarrow (RAMPZ:Z)$	None	3
ELPM	Rd, Z	Extended Load Program Memory	$Rd \gets (RAMPZ:Z)$	None	3
ELPM	Rd, Z+	Extended Load Program Memory and Post-Inc	$Rd \gets (RAMPZ:Z), RAMPZ:Z \gets RAMPZ:Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-

	20.1	Overview
	20.2	Analog Comparator Register Description
	20.3	Analog Comparator Multiplexed Input270
21	Analog	g to Digital Converter - ADC272
	21.1	Features
	21.2	Operation
	21.3	Starting a Conversion
	21.4	Prescaling and Conversion Timing275
	21.5	Changing Channel or Reference Selection278
	21.6	ADC Noise Canceler279
	21.7	ADC Conversion Result
	21.8	ADC Register Description
22	JTAG	Interface and On-chip Debug System
	22.1	Features
	22.2	Overview
	22.3	Test Access Port – TAP
	22.4	TAP Controller
	22.5	Using the Boundary-scan Chain296
	22.6	Using the On-chip Debug System296
	22.7	On-chip Debug Specific JTAG Instructions
	22.8	On-chip Debug Related Register in I/O Memory
	22.9	Using the JTAG Programming Capabilities298
	22.10	Bibliography
23	Bound	ary-scan IEEE 1149.1 (JTAG)299
	23.1	Features
	23.2	System Overview
	23.3	Data Registers
	23.4	Boundary-scan Specific JTAG Instructions
	23.5	Boundary-scan Related Register in I/O Memory
	23.6	Boundary-scan Chain
	23.7	AT90CAN32/64/128 Boundary-scan Order
	23.8	Boundary-scan Description Language Files
24	Boot L	oader Support – Read-While-Write Self-Programming
	24.1	Features
	24.2	Application and Boot Loader Flash Sections

	24.3	Read-While-Write and No Read-While-Write Flash Sections	320
	24.4	Boot Loader Lock Bits	
	24.5	Entering the Boot Loader Program	
	24.6	Addressing the Flash During Self-Programming	
	24.7	Self-Programming the Flash	327
25	Memor	y Programming	335
	25.1	Program and Data Memory Lock Bits	
	25.2	Fuse Bits	
	25.3	Signature Bytes	
	25.4	Calibration Byte	
	25.5	Parallel Programming Overview	
	25.6	Parallel Programming	
	25.7	SPI Serial Programming Overview	
	25.8	SPI Serial Programming	
	25.9	JTAG Programming Overview	351
26	Decou	pling Capacitors	364
27	Electri	cal Characteristics ⁽¹⁾	365
	27.1	Absolute Maximum Ratings*	
	27.2	DC Characteristics ⁽¹⁾	
	27.3	External Clock Drive Characteristics	
	27.4	Maximum Speed vs. VCC	
	27.5	Two-wire Serial Interface Characteristics	
	27.6	SPI Timing Characteristics	
	27.7	CAN Physical Layer Characteristics	
	27.8	ADC Characteristics(⁽¹⁾	
	27.9	External Data Memory Characteristics ⁽¹⁾	
	27.10	Parallel Programming Characteristics	
28	Regist	er Summary	384
29	AT90C	AN32/64/128 Typical Characteristics	388
	29.1	Active Supply Current	
	29.1 29.2	Active Supply Current	
	29.1 29.2 29.3	Active Supply Current Idle Supply Current Power-down Supply Current	
	29.1 29.2 29.3 29.4	Active Supply Current Idle Supply Current Power-down Supply Current Power-save Supply Current	

