
Microchip Technology - AT90CAN64-15AZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 53

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at90can64-15az

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at90can64-15az-4433608
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

• Bits 7..5 – Reserved Bits

These bits are reserved bits for future use.

• Bit 4 – WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not

be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the

description of the WDE bit for a Watchdog disable procedure. This bit must also be set when

changing the prescaler bits. See “Timed Sequences for Changing the Configuration of the

Watchdog Timer” on page 59.

• Bit 3 – WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written

to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit

has logic level one. To disable an enabled Watchdog Timer, the following procedure must be

followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be writ-
ten to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.

In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm

described above. See “Timed Sequences for Changing the Configuration of the Watchdog

Timer” on page 59.

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the Watch-

dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods

are shown in Table 7-6.

– – – WDCE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-6. Watchdog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT

Oscillator Cycles

Typical Time-out at

VCC = 3.0V

Typical Time-out at

VCC = 5.0V

0 0 0 16K cycles 17.1 ms 16.3 ms

0 0 1 32K cycles 34.3 ms 32.5 ms

0 1 0 64K cycles 68.5 ms 65 ms

0 1 1 32/64K cycles 0.14 s 0.13 s

1 0 0 256K cycles 0.27 s 0.26 s

1 0 1 512K cycles 0.55 s 0.52 s

1 1 0 1,024K cycles 1.1 s 1.0 s

1 1 1 2,048K cycles 2.2 s 2.1 s
 58

7682C–AUTO–04/08

AT90CAN32/64/128

0x0012 jmp TIM2_COMP ; Timer2 Compare Handler

0x0014 jmp TIM2_OVF ; Timer2 Overflow Handler

0x0016 jmp TIM1_CAPT ; Timer1 Capture Handler

0x0018 jmp TIM1_COMPA; Timer1 CompareA Handler

0x001A jmp TIM1_COMPB; Timer1 CompareB Handler

0x001C jmp TIM1_OVF ; Timer1 CompareC Handler

0x001E jmp TIM1_OVF ; Timer1 Overflow Handler

0x0020 jmp TIM0_COMP ; Timer0 Compare Handler

0x0022 jmp TIM0_OVF ; Timer0 Overflow Handler

0x0024 jmp CAN_IT ; CAN Handler

0x0026 jmp CTIM_OVF ; CAN Timer Overflow Handler

0x0028 jmp SPI_STC ; SPI Transfer Complete Handler

0x002A jmp USART0_RXC; USART0 RX Complete Handler

0x002C jmp USART0_DRE; USART0,UDR Empty Handler

0x002E jmp USART0_TXC; USART0 TX Complete Handler

0x0030 jmp ANA_COMP ; Analog Comparator Handler

0x0032 jmp ADC ; ADC Conversion Complete Handler

0x0034 jmp EE_RDY ; EEPROM Ready Handler

0x0036 jmp TIM3_CAPT ; Timer3 Capture Handler

0x0038 jmp TIM3_COMPA; Timer3 CompareA Handler

0x003A jmp TIM3_COMPB; Timer3 CompareB Handler

0x003C jmp TIM3_COMPC; Timer3 CompareC Handler

0x003E jmp TIM3_OVF ; Timer3 Overflow Handler

0x0040 jmp USART1_RXC; USART1 RX Complete Handler

0x0042 jmp USART1_DRE; USART1,UDR Empty Handler

0x0044 jmp USART1_TXC; USART1 TX Complete Handler

0x0046 jmp TWI ; TWI Interrupt Handler

0x0048 jmp SPM_RDY ; SPM Ready Handler

;

0x004A RESET: ldi r16, high(RAMEND) ; Main program start

0x004B out SPH,r16 ;Set Stack Pointer to top of RAM

0x004C ldi r16, low(RAMEND)

0x004D out SPL,r16

0x004E sei ; Enable interrupts

0x004F <instr> xxx

...

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and the

IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and

general program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND) ; Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
 62

7682C–AUTO–04/08

AT90CAN32/64/128

8.2 Moving Interrupts Between Application and Boot Space

The General Interrupt Control Register controls the placement of the Interrupt Vector table.

8.2.1 MCU Control Register – MCUCR

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash

memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot

Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-

mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support – Read-While-Write

Self-Programming” on page 320 for details. To avoid unintentional changes of Interrupt Vector

tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled

in the cycle IVCE is set, and they remain disabled until after the instruction following the write to

IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status

Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is pro-

grammed, interrupts are disabled while executing from the Application section. If Interrupt Vectors

are placed in the Application section and Boot Lock bit BLB12 is programed, interrupts are dis-
abled while executing from the Boot Loader section. Refer to the section “Boot Loader Support –

Read-While-Write Self-Programming” on page 320 for details on Boot Lock bits.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 64

7682C–AUTO–04/08

AT90CAN32/64/128

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define

the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin

values are read back again, but as previously discussed, a nop instruction is included to be able

to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3

as low and redefining bits 0 and 1 as strong high drivers.

9.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 9-2, the digital input signal can be clamped to ground at the input of the

schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in

Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if

some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt

request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various

other alternate functions as described in “Alternate Port Functions” on page 71.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as

“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt

is not enabled, the corresponding External Interrupt Flag will be set when resuming from the

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16, (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17, (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB, r16

out DDRB, r17

; Insert nop for synchronization

nop

; Read port pins

in r16, PINB

...

C Code Example(1)

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

_NOP();

/* Read port pins */

i = PINB;

...
 70

7682C–AUTO–04/08

AT90CAN32/64/128

Figure 9-5. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

Table 9-2 summarizes the function of the overriding signals. The pin and port indexes from

Figure 9-5 are not shown in the succeeding tables. The overriding signals are generated

internally in the modules having the alternate function.

clk

RPx

RRx

WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx

RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clk
I/O
: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE

PUOVxn: Pxn PULL-UP OVERRIDE VALUE

DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE

DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE

PVOExn: Pxn PORT VALUE OVERRIDE ENABLE

PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx

AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
A
T
A

B
U
S

0

1

DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE

DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE

SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

WPx

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx
 72

7682C–AUTO–04/08

AT90CAN32/64/128

 AT90CAN32/64/128
MOSI, SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a

slave, this pin is configured as an input regardless of the setting of DDB2. When the SPI is

enabled as a master, the data direction of this pin is controlled by DDB2. When the pin is forced

to be an input, the pull-up can still be controlled by the PORTB2 bit.

• SCK – Port B, Bit 1

SCK, Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a

slave, this pin is configured as an input regardless of the setting of DDB1. When the SPI is

enabled as a master, the data direction of this pin is controlled by DDB1. When the pin is forced

to be an input, the pull-up can still be controlled by the PORTB1 bit.

• SS – Port B, Bit 0

SS, Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an

input regardless of the setting of DDB0. As a slave, the SPI is activated when this pin is driven

low. When the SPI is enabled as a master, the data direction of this pin is controlled by DDB0.

When the pin is forced to be an input, the pull-up can still be controlled by the PORTB0 bit.

Table 9-7 and Table 9-8 relate the alternate functions of Port B to the overriding signals shown

in Figure 9-5 on page 72. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO sig-

nal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 9-7 and Table 9-8 relates the alternate functions of Port B to the overriding signals shown

in Figure 9-5 on page 72.

Note: 1. See “Output Compare Modulator - OCM” on page 164 for details.

Table 9-7. Overriding Signals for Alternate Functions in PB7..PB4

Signal Name PB7/OC0A/OC1C PB6/OC1B PB5/OC1A PB4/OC2A

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE
OC0A/OC1C

ENABLE(1) OC1B ENABLE OC1A ENABLE OC2A ENABLE

PVOV OC0A/OC1C(1) OC1B OC1A OC2A

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO – – – –
 77

7682C–AUTO–04/08

 AT90CAN32/64/128
• A14 – Port C, Bit 6

A14, External memory interface address 14.

• A13 – Port C, Bit 5

A13, External memory interface address 13.

• A12 – Port C, Bit 4

A12, External memory interface address 12.

• A11 – Port C, Bit 3

A11, External memory interface address 11.

• A10 – Port C, Bit 2

A10, External memory interface address 10.

• A9 – Port C, Bit 1

A9, External memory interface address 9.

• A8 – Port C, Bit 0

A8, External memory interface address 8.

Table 9-10 and Table 9-11 relate the alternate functions of Port C to the overriding signals

shown in Figure 9-5 on page 72.

Note: 1. CKOUT is one if the CKOUT Fuse is programmed

Table 9-10. Overriding Signals for Alternate Functions in PC7..PC4

Signal Name PC7/A15 PC6/A14 PC5/A13 PC4/A12

PUOE SRE • (XMM<1) SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

PUOV 0 0 0 0

DDOE
CKOUT(1) +

(SRE • (XMM<1))
SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

DDOV 1 1 1 1

PVOE
CKOUT(1) +

(SRE • (XMM<1))
SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

PVOV
(A15 • CKOUT(1)) +

(CLKO • CKOUT(1))
A14 A13 A12

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO – – – –
 79

7682C–AUTO–04/08

 AT90CAN32/64/128
13. 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)
The 16-bit Timer/Counter unit allows accurate program execution timing (event management),

wave generation, and signal timing measurement. The main features are:

13.1 Features
• True 16-bit Design (i.e., Allows 16-bit PWM)

• Three independent Output Compare Units

• Double Buffered Output Compare Registers

• One Input Capture Unit

• Input Capture Noise Canceler

• Clear Timer on Compare Match (Auto Reload)

• Glitch-free, Phase Correct Pulse Width Modulator (PWM)

• Variable PWM Period

• Frequency Generator

• External Event Counter

• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1 for Timer/Counter1 - TOV3,

OCF3A, OCF3B, and ICF3 for Timer/Counter3)

13.2 Overview

Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 1 or 3. However, when

using the register or bit defines in a program, the precise form must be used, i.e., TCNT1 for

accessing Timer/Counter1 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A, B or C. However,

when using the register or bit defines in a program, the precise form must be used, i.e.,

OCRnA for accessing Timer/Countern output compare channel A value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 13-1. For the actual

placement of I/O pins, refer to “Pinout AT90CAN32/64/128 - TQFP” on page 5. CPU accessible

I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register

and bit locations are listed in the “16-bit Timer/Counter Register Description” on page 135.
 113

7682C–AUTO–04/08

 AT90CAN32/64/128
For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 154.

14.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-

tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same

timer clock cycle as the TCNT2 becomes zero. The TOV2 flag in this case behaves like a ninth

bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt

that automatically clears the TOV2 flag, the timer resolution can be increased by software. There

are no special cases to consider in the Normal mode, a new counter value can be written

anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-

put Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

14.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2A Register is used to

manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter

value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence

also its resolution. This mode allows greater control of the compare match output frequency. It

also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-6. The counter value (TCNT2)

increases until a compare match occurs between TCNT2 and OCR2A, and then counter

(TCNT2) is cleared.

Figure 14-6. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the

OCF2A flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the

TOP value. However, changing the TOP to a value close to BOTTOM when the counter is run-

ning with none or a low prescaler value must be done with care since the CTC mode does not

have the double buffering feature. If the new value written to OCR2A is lower than the current

value of TCNT2, the counter will miss the compare match. The counter will then have to count to

its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can

occur.

TCNTn

OCnx

(Toggle)

OCnx Interrupt Flag S

1 4Period 2 3

(COMnx1:0 = 1)
 151

7682C–AUTO–04/08

 AT90CAN32/64/128
units use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the

UMSELn, U2Xn and DDR_XCKn bits.

Table 17-1 contains equations for calculating the baud rate (in bits per second) and for calculat-

ing the UBRRn value for each mode of operation using an internally generated clock source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps).

fclkio System I/O Clock frequency.

UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095).

Some examples of UBRRn values for some system clock frequencies are found in Table 17-9

(see page 199).

17.4.2 Double Speed Operation (U2X)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has

effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling

the transfer rate for asynchronous communication. Note however that the Receiver will in this

case only use half the number of samples (reduced from 16 to 8) for data sampling and clock

recovery, and therefore a more accurate baud rate setting and system clock are required when

this mode is used. For the Transmitter, there are no downsides.

17.4.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this

section refers to Figure 17-2 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the

chance of meta-stability. The output from the synchronization register must then pass through

an edge detector before it can be used by the Transmitter and Receiver. This process intro-

duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency

is limited by the following equation:

Table 17-1. Equations for Calculating Baud Rate Register Setting

Operating Mode

Equation for Calculating Baud

Rate (1)
Equation for Calculating

UBRRn Value

Asynchronous Normal mode

(U2Xn = 0)

Asynchronous Double Speed

mode (U2Xn = 1)

Synchronous Master mode

BAUD
fCLKio

16 UBRRn 1+()
--= UBRRn

fCLKio

16BAUD
------------------------ 1–=

BAUD
fCLKio

8 UBRRn 1+()
---------------------------------------= UBRRn

fCLKio

8BAUD
-------------------- 1–=

BAUD
fCLKio

2 UBRRn 1+()
---------------------------------------= UBRRn

fCLKio

2BAUD
-------------------- 1–=

fXCKn

fCLKio

4
----------------<
 179

7682C–AUTO–04/08

17.11.6 USART1 Control and Status Register B – UCSR1B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn flag. A USARTn Receive Complete inter-

rupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG

is written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn flag. A USARTn Transmit Complete inter-

rupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG

is written to one and the TXCn bit in UCSRnA is set.

• Bit 5 – UDRIEn: USARTn Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREn flag. A Data Register Empty interrupt will

be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written

to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable

Writing this bit to one enables the USARTn Receiver. The Receiver will override normal port

operation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer

invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable

Writing this bit to one enables the USARTn Transmitter. The Transmitter will override normal

port operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn

to zero) will not become effective until ongoing and pending transmissions are completed, i.e.,

when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-

mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2 – UCSZn2: Character Size

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits

(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 1 – RXB8n: Receive Data Bit 8

RXB8n is the ninth data bit of the received character when operating with serial frames with nine

data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8

TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames

with nine data bits. Must be written before writing the low bits to UDRn.

17.11.7 USART0 Control and Status Register C – UCSR0C

Bit 7 6 5 4 3 2 1 0

RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 UCSR1B

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 UCSR0C

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0
 196

7682C–AUTO–04/08

AT90CAN32/64/128

• Bit 2:1 – UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits

(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is

used. The UCPOLn bit sets the relationship between data output change and data input sample,

and the synchronous clock (XCKn).

17.11.9 USART0 Baud Rate Registers – UBRR0L and UBRR0H

17.11.10 USART1 Baud Rate Registers – UBRR1L and UBRR1H

Table 17-7. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 17-8. UCPOLn Bit Settings

UCPOLn
Transmitted Data Changed

(Output of TxDn Pin)

Received Data Sampled

(Input on RxDn Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRR0[11:8] UBRR0H

UBRR0[7:0] UBRR0L

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

– – – – UBRR1[11:8] UBRR1H

UBRR1[7:0] UBRR1L

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
 198

7682C–AUTO–04/08

AT90CAN32/64/128

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The

different settings are shown in Table 20-1.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by

clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the

bits are changed.

20.3 Analog Comparator Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-

parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be

switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in

ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX

select the input pin to replace the negative input to the Analog Comparator, as shown in Table

20-2. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog

Comparator.

Table 20-1. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Table 20-2. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7
 270

7682C–AUTO–04/08

AT90CAN32/64/128

 AT90CAN32/64/128
Figure 21-2. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon

as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-

stantly sampling and updating the ADC Data Register. The first conversion must be started by

writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive

conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to

one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be

read as one during a conversion, independently of how the conversion was started.

21.4 Prescaling and Conversion Timing

Figure 21-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between 50

kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the

input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency

from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.

The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit

in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously

reset when ADEN is low.

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION

LOGIC

PRESCALER

START CLK
ADC

.

.

.

. EDGE

DETECTOR

ADATE

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0

ADPS1

ADPS2

C
K
/
1
2
8

C
K
/
2

C
K
/
4

C
K
/
8

C
K
/
1
6

C
K
/
3
2

C
K
/
6
4

Reset
ADEN

START
 275

7682C–AUTO–04/08

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion

starts at the following rising edge of the ADC clock cycle. See “Differential Channels” on page

277 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched

on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-

sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is

complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion

mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new

conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures

a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold

takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-

tional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conversion com-

pletes, while ADSC remains high. For a summary of conversion times, see Table 21-1.

Figure 21-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 21-5. ADC Timing Diagram, Single Conversion

Sign and MSB of Resul

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17�� 18 19 20 21 22 23 24 25 1 2

��������������First Conversion
Next

Conversion

3

MUX and REFS

Update

MUX

and REFS

Update

Conversion

Complete

1 2 3 4 5 6 7 8 9 10 11 12 13���������������������� Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2
���������� One Conversion Next Conversion

3

Sample & Hold

MUX and REFS

Update

Conversion

Complete
MUX and REFS

Update
 276

7682C–AUTO–04/08

AT90CAN32/64/128

 AT90CAN32/64/128
Figure 21-12. Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval

between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 21-13. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes,

a range of input voltages (1 LSB wide) will code to the same value. Always ± 0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to

an ideal transition for any code. This is the compound effect of offset, gain error, differential

error, non-linearity, and quantization error. Ideal value: ± 0.5 LSB.

21.7 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC

Result Registers (ADCL, ADCH).

Output Code

VREF Input Voltage

Ideal ADC

Actual AD

I
N
L

Output Code

0x3FF

0x000

0 VREF Input Volta

DNL

1 LSB
 283

7682C–AUTO–04/08

 AT90CAN32/64/128
21.8.5 Digital Input Disable Register 0 – DIDR0

• Bit 7:0 – ADC7D..ADC0D: ADC7:0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-

abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an

analog signal is applied to the ADC7..0 pin and the digital input from this pin is not needed, this

bit should be written logic one to reduce power consumption in the digital input buffer.

Bit 7 6 5 4 3 2 1 0

ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
 291

7682C–AUTO–04/08

Figure 23-5. Additional Scan Signal for the Two-wire Interface

23.6.3 Scanning the RESET Pin

The RESET pin accepts 3V or 5V active low logic for standard reset operation, and 12V active

high logic for High Voltage Parallel programming. An observe-only cell as shown in Figure 23-6

is inserted both for the 3V or 5V reset signal - RSTT, and the 12V reset signal - RSTHV.

Figure 23-6. Observe-only Cell for RESET pin

23.6.4 Scanning the Clock Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscilla-

tor, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal Oscillator, and

Ceramic Resonator.

Figure 23-7 shows how each oscillator with external connection is supported in the scan chain.

The Enable signal is supported with a general Boundary-scan cell, while the Oscillator/clock out-

put is attached to an observe-only cell. In addition to the main clock, the Timer2 Oscillator is

scanned in the same way. The output from the internal RC Oscillator is not scanned, as this

oscillator does not have external connections.

Pxn

PUExn

ODxn

IDxn

TWIEN

OCxn

Slew-rate limited
SRC

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
Next
Cell

From System Pin To System Logic

FF1
 306

7682C–AUTO–04/08

AT90CAN32/64/128

 AT90CAN32/64/128
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also

divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-

Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 24-

7 on page 333 and Figure 24-2 on page 323. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be

read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during

the entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-

ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which

section that is being programmed (erased or written), not which section that actually is being

read during a Boot Loader software update.

24.3.1 RWW – Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible

to read code from the Flash, but only code that is located in the NRWW section. During an on-

going programming, the software must ensure that the RWW section never is being read. If the

user software is trying to read code that is located inside the RWW section (i.e., by a

call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown

state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-

tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy

bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read

as logical one as long as the RWW section is blocked for reading. After a programming is com-

pleted, the RWWSB must be cleared by software before reading code located in the RWW

section. See “Store Program Memory Control and Status Register – SPMCSR” on page 325. for

details on how to clear RWWSB.

24.3.2 NRWW – No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating

a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU

is halted during the entire Page Erase or Page Write operation.

Table 24-1. Read-While-Write Features

Which Section does the Z-pointer

Address During the Programming?

Which Section Can

be Read During

Programming?

Is the CPU

Halted?

Read-While-Write

Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No
 321

7682C–AUTO–04/08

27.4 Maximum Speed vs. VCC

Maximum frequency is depending on VCC. As shown in Figure 27-2., the Maximum Frequency

vs. VCC curve is linear between 1.8V < VCC < 4.5V. To calculate the maximum frequency at a

given voltage in this interval, use this equation:

To calculate required voltage for a given frequency, use this equation:

At 3 Volt, this gives:

Thus, when VCC = 3V, maximum frequency will be 9.33 MHz.

At 8 MHz this gives:

Thus, a maximum frequency of 8 MHz requires VCC = 2.7V.

Table 27-1. External Clock Drive

Symbol Parameter
VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V

Units
Min. Max. Min. Max.

1/tCLCL Oscillator Frequency 0 8 0 16 MHz

tCLCL Clock Period 125 62.5 ns

tCHCX High Time 50 25 ns

tCLCX Low Time 50 25 ns

tCLCH Rise Time 1.6 0.5 µs

tCHCL Fall Time 1.6 0.5 µs

∆tCLCL

Change in period from one clock cycle
to the next

2 2 %

Table 27-2. Constants used to calculate maximum speed vs. VCC

Voltage and Frequency range a b Vx Fy

2.7 < VCC < 4.5 or 8 < Frequency < 16 8/1.8 1.8/8 2.7 8

Frequency a V Vx–() Fy+•=

Voltage b F Fy–() Vx+•=

Frequency
8

1.8
-------- 3 2.7–() 8+• 9.33= =

Voltage
1.8

8
-------- 8 8–() 2.7+• 2.7= =
 368

7682C–AUTO–04/08

AT90CAN32/64/128

