
Freescale Semiconductor - MK22FX512VMD12 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity CANbus, EBI/EMI, I²C, IrDA, SPI, UART/USART, USB, USB OTG

Peripherals DMA, I²S, LVD, POR, PWM, WDT

Number of I/O 100

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 3.6V

Data Converters A/D 42x16b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 144-LBGA

Supplier Device Package 144-MAPBGA (13x13)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mk22fx512vmd12

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mk22fx512vmd12-4397644
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


 
 

KINETIS_2N03G 
Rev. 26 AUG 2013 

© 2013 Freescale Semiconductor, Inc. 

 

 
 
 
 
 
 
Mask Set Errata for Mask 2N03G 
 
 
This document contains errata information for Kinetis Mask Set 
2N03G but excludes any information on selected security-related 
modules. 
 
A nondisclosure agreement (NDA) is required for any security-related 
module information. 
 
For more information on obtaining an NDA, please contact your local 
Freescale sales representative. 
 



Introduction
This report applies to mask 2N03G for these products:

• KINETIS

Errata ID Errata Title

6804 CJTAG: Performing a mode change from Standard Protocol to Advanced Protocol may reset the CJTAG.

6939 Core: Interrupted loads to SP can cause erroneous behavior

6940 Core: VDIV or VSQRT instructions might not complete correctly when very short ISRs are used

5706 FTFx: MCU security is inadvertently enabled (secured) if a mass erase is executed when the flash blocks/
halves are swapped. This issue only affects applications that use the flash swap feature.

4710 FTM: FTMx_PWMLOAD register does not support 8-/16-bit accesses

6573 JTAG: JTAG TDO function on the PTA2 disables the pull resistor

7214 Low Leakage Stop (LLS) mode non-functional

6665 Operating requirements: Limitation of the device operating range

5130 SAI: Under certain conditions, the CPU cannot reenter STOP mode via an asynchronous interrupt
wakeup event

3981 SDHC: ADMA fails when data length in the last descriptor is less or equal to 4 bytes

3982 SDHC: ADMA transfer error when the block size is not a multiple of four

4624 SDHC: AutoCMD12 and R1b polling problem

3977 SDHC: Does not support Infinite Block Transfer Mode

4627 SDHC: Erroneous CMD CRC error and CMD Index error may occur on sending new CMD during data
transfer

3980 SDHC: Glitch is generated on card clock with software reset or clock divider change

3983 SDHC: Problem when ADMA2 last descriptor is LINK or NOP

3978 SDHC: Software can not clear DMA interrupt status bit after read operation

3984 SDHC: eSDHC misses SDIO interrupt when CINT is disabled

4218 SIM/FLEXBUS: SIM_SCGC7[FLEXBUS] bit should be cleared when the FlexBus is not being used.

4935 UART: CEA709.1 features not supported

Table continues on the next page...

Freescale Semiconductor KINETIS_2N03G

Mask Set Errata Rev 26 AUG 2013

Mask Set Errata for Mask 2N03G

© 2013 Freescale Semiconductor, Inc.



Errata ID Errata Title

7027 UART: During ISO-7816 T=0 initial character detection invalid initial characters are stored in the RxFIFO

7028 UART: During ISO-7816 initial character detection the parity, framing, and noise error flags can set

6472 UART: ETU compensation needed for ISO-7816 wait time (WT) and block wait time (BWT)

4647 UART: Flow control timing issue can result in loss of characters if FIFO is not enabled

7029 UART: In ISO-7816 T=1 mode, CWT interrupts assert at both character and block boundaries

7090 UART: In ISO-7816 mode, timer interrupts flags do not clear

7031 UART: In single wire receive mode UART will attempt to transmit if data is written to UART_D

5704 UART: TC bit in UARTx_S1 register is set before the last character is sent out in ISO7816 T=0 mode

7091 UART: UART_S1[NF] and UART_S1[PE] can set erroneously while UART_S1[FE] is set

7092 UART: UART_S1[TC] is not cleared by queuing a preamble or break character

5928 USBOTG: USBx_USBTRC0[USBRESET] bit does not operate as expected in all cases

6933 eDMA: Possible misbehavior of a preempted channel when using continuous link mode

e6804: CJTAG: Performing a mode change from Standard Protocol to Advanced
Protocol may reset the CJTAG.

Errata type: Errata
Description: In extremely rare conditions, when performing a mode change from Standard Protocol to

Advanced Protocol on trhe IEEE 1149.7 (Compact JTAG interface) , the CJTAG may reset
itself. In this case, all internal CJTAG registers will be reset and the CJTAG will return to the
Standard Protocol mode.

Workaround: If the CJTAG resets itself while attempting to change modes from Standard Protocol to
Advanced Protocol and Advanced Protocol cannot be enabled after several attempts, perform
future accesses in Standard Protocol mode and do not use the Advanced Protocol feature.

e6939: Core: Interrupted loads to SP can cause erroneous behavior

Errata type: Errata
Description: ARM Errata 752770: Interrupted loads to SP can cause erroneous behavior

Affects: Cortex-M4, Cortex-M4F

Fault Type: Programmer Category B

Fault Status: Present in: r0p0, r0p1 Open.

Description

If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/
R13), erroneous behavior can occur. In all cases, returning from the interrupt will result in the
load instruction being executed an additional time. For all instructions performing an update to
the base register, the base register will be erroneously updated on each execution, resulting in
the stack-pointer being loaded from an incorrect memory location.

The affected instructions that can result in the load transaction being repeated are:

1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

2 Freescale Semiconductor, Inc.



3) LDR SP,[Rn,#imm]

4) LDR SP,[Rn]

5) LDR SP,[Rn,Rm]

The affected instructions that can result in the stack-pointer being loaded from an incorrect
memory address are:

1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

Conditions

1) An LDR is executed, with SP/R13 as the destination

2) The address for the LDR is successfully issued to the memory system

3) An interrupt is taken before the data has been returned and written to the stack-pointer.

Implications

Unless the load is being performed to Device or Strongly-Ordered memory, there should be no
implications from the repetition of the load. In the unlikely event that the load is being
performed to Device or Strongly-Ordered memory, the repeated read can result in the final
stack-pointer value being different than had only a single load been performed.

Interruption of the two write-back forms of the instruction can result in both the base register
value and final stack-pointer value being incorrect. This can result in apparent stack corruption
and subsequent unintended modification of memory.

Workaround: Both issues may be worked around by replacing the direct load to the stack-pointer, with an
intermediate load to a general-purpose register followed by a move to the stack-pointer.

If repeated reads are acceptable, then the base-update issue may be worked around by
performing the stack pointer load without the base increment followed by a subsequent ADD or
SUB instruction to perform the appropriate update to the base register.

e6940: Core: VDIV or VSQRT instructions might not complete correctly when very
short ISRs are used

Errata type: Errata
Description: ARM Errata 709718: VDIV or VSQRT instructions might not complete correctly when very

short ISRs are used

Affects: Cortex-M4F

Fault Type: Programmer Category B

Fault Status: Present in: r0p0, r0p1 Open.

On Cortex-M4 with FPU, the VDIV and VSQRT instructions take 14 cycles to execute. When
an interrupt is taken a VDIV or VSQRT instruction is not terminated, and completes its
execution while the interrupt stacking occurs. If lazy context save of floating point state is
enabled then the automatic stacking of the floating point context does not occur until a floating
point instruction is executed inside the interrupt service routine.

Lazy context save is enabled by default. When it is enabled, the minimum time for the first
instruction in the interrupt service routine to start executing is 12 cycles. In certain timing
conditions, and if there is only one or two instructions inside the interrupt service routine, then
the VDIV or VSQRT instruction might not write its result to the register bank or to the FPSCR.

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

Freescale Semiconductor, Inc. 3



Workaround: A workaround is only required if the floating point unit is present and enabled. A workaround is
not required if the memory system inserts one or more wait states to every stack transaction.

There are two workarounds:

1) Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the
FPCCR at address 0xE000EF34).

2) Ensure that every interrupt service routine contains more than 2 instructions in addition to
the exception return instruction.

e5706: FTFx: MCU security is inadvertently enabled (secured) if a mass erase is
executed when the flash blocks/halves are swapped. This issue only affects
applications that use the flash swap feature.

Errata type: Errata
Description: When the logical addresses of the flash blocks (halves) are swapped via the flash swap control

command sequence and a mass erase is executed (via the MDM-AP or EzPort), the MCU
security can go from un-secure to secure. Thus, when using a debugger to erase the entire
flash memory and re-download a software application, the debugger may report that the device
is secure after the erase completes. This issue only affects applications that use the flash
swap feature.

Workaround: Issue the mass erase request (via the MDM-AP or EzPort) a second time to un-secure the
device.

e4710: FTM: FTMx_PWMLOAD register does not support 8-/16-bit accesses

Errata type: Errata
Description: The FTM PWM Load register should support 8-bit and 16-bit accesses. However, the

FTMx_PWMLOAD[LDOK] bit is cleared automatically by FTM with these sized accesses, thus
disabling the loading of the FTMx_MOD, FTMx_CNTIN, and FTMx_CnV registers.

Workaround: Always use a 32-bit write access to modify contents of the FTMx_PWMLOAD register.

e6573: JTAG: JTAG TDO function on the PTA2 disables the pull resistor

Errata type: Errata
Description: The JTAG TDO function on the PTA2 pin disables the pull resistor, but keeps the input buffer

enabled. Because the JTAG will tri-state this pin during JTAG reset (or other conditions), this
pin will float with the input buffer enabled. If the pin is unconnected in the circuit, there can be
increased power consumption in low power modes for some devices.

Workaround: Disable JTAG TDO functionality when the JTAG interface is not needed and left floating in a
circuit. Modify the PORTA_PCR2 mux before entering low power modes. Set the mux to a pin
function other than ALT7. If set up as a digital input and left unconnected in the circuit, then a
pull-up or pull-down should be enabled. Alternatively, an external pull device or external source
can be added to the pin.

Note: Enabling the pull resistor on the JTAG TDO function violates the JTAG specification.

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

4 Freescale Semiconductor, Inc.



e7214: Low Leakage Stop (LLS) mode non-functional

Errata type: Errata
Description: On some devices, system and peripheral memories may be corrupted when a device exits the

Low Leakage Stop (LLS) mode.

Workaround: All other low power modes are not affected. Use VLPS or VLLSx mode.

A silicon revision to correct the errata is planned.

e6665: Operating requirements: Limitation of the device operating range

Errata type: Errata
Description: Some devices, when power is applied, may not consistently begin to execute code under

certain voltage and temperature conditions. Applications that power up with either VDD >= 2.0
V or temperature >= -20C are not impacted. Entry and exit of low-power modes is not
impacted.

Workaround: To avoid this unwanted behavior, one or both of these conditions must be met:

a) Perform power on reset of the device with a supply voltage (VDD) equal-to or greater-than
2.0 V , or

b) Perform power on reset of the device at a temperature at or above -20 C.

e5130: SAI: Under certain conditions, the CPU cannot reenter STOP mode via an
asynchronous interrupt wakeup event

Errata type: Errata
Description: If the SAI generates an asynchronous interrupt to wake the core and it attempts to reenter

STOP mode, then under certain conditions the STOP mode entry is blocked and the
asynchronous interrupt will remain set.

This issue applies to interrupt wakeups due to the FIFO request flags or FIFO warning flags
and then only if the time between the STOP mode exit and subsequent STOP mode reentry is
less than 3 asynchronous bit clock cycles.

Workaround: Ensure that at least 3 bit clock cycles elapse following an asynchronous interrupt wakeup
event, before STOP mode is reentered.

e3981: SDHC: ADMA fails when data length in the last descriptor is less or equal to 4
bytes

Errata type: Errata
Description: A possible data corruption or incorrect bus transactions on the internal AHB bus, causing

possible system corruption or a stall, can occur under the combination of the following
conditions:

1. ADMA2 or ADMA1 type descriptor

2. TRANS descriptor with END flag

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

Freescale Semiconductor, Inc. 5



3. Data length is less than or equal to 4 bytes (the length field of the corresponding descriptor
is set to 1, 2, 3, or 4) and the ADMA transfers one 32-bit word on the bus

4. Block Count Enable mode

Workaround: The software should avoid setting ADMA type last descriptor (TRANS descriptor with END
flag) to data length less than or equal to 4 bytes. In ADMA1 mode, if needed, a last NOP
descriptor can be appended to the descriptors list. In ADMA2 mode this workaround is not
feasible due to ERR003983.

e3982: SDHC: ADMA transfer error when the block size is not a multiple of four

Errata type: Errata
Description: Issue in eSDHC ADMA mode operation. The eSDHC read transfer is not completed when

block size is not a multiple of 4 in transfer mode ADMA1 or ADMA2. The eSDHC DMA
controller is stuck waiting for the IRQSTAT[TC] bit in the interrupt status register.

The following examples trigger this issue:

1. Working with an SD card while setting ADMA1 mode in the eSDHC

2. Performing partial block read

3. Writing one block of length 0x200

4. Reading two blocks of length 0x22 each. Reading from the address where the write
operation is performed. Start address is 0x512 aligned. Watermark is set as one word during
read. This read is performed using only one ADMA1 descriptor in which the total size of the
transfer is programmed as 0x44 (2 blocks of 0x22).

Workaround: When the ADMA1 or ADMA2 mode is used and the block size is not a multiple of 4, the block
size should be rounded to the next multiple of 4 bytes via software. In case of write, the
software should add the corresponding number of bytes at each block end, before the write is
initialized. In case of read, the software should remove the dummy bytes after the read is
completed.

For example, if the original block length is 22 bytes, and there are several blocks to transfer,
the software should set the block size to 24. The following data is written/stored in the external
memory:

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

2 Bytes valid data + 2 Byte dummy data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

4 Bytes valid data

2 Bytes valid data + 2 Byte dummy data

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

6 Freescale Semiconductor, Inc.



In this example, 48 (24 x 2) bytes are transferred instead of 44 bytes. The software should
remove the dummy data.

e4624: SDHC: AutoCMD12 and R1b polling problem

Errata type: Errata
Description: Occurs when a pending command which issues busy is completed. For a command with R1b

response, the proper software sequence is to poll the DLA for R1b commands to determine
busy state completion. The DLA polling is not working properly for the ESDHC module and
thus the DLA bit in PRSSTAT register cannot be polled to wait for busy state ompletion. This is
relevant for all eSDHC ports (eSDHC1-4 ports).

Workaround: Poll bit 24 in PRSSTAT register (DLSL[0] bit) to check that wait busy state is over.

e3977: SDHC: Does not support Infinite Block Transfer Mode

Errata type: Errata
Description: The eSDHC does not support infinite data transfers, if the Block Count register is set to one,

even when block count enable is not set.

Workaround: The following software workaround can be used instead of the infinite block mode:

1. Set BCEN bit to one and enable block count

2. Set the BLKCNT to the maximum value in Block Attributes Register (BLKATTR) (0xFFFFfor
65535 blocks)

e4627: SDHC: Erroneous CMD CRC error and CMD Index error may occur on sending
new CMD during data transfer

Errata type: Errata
Description: When sending new, non data CMD during data transfer between the eSDHC and EMMC card,

the module may return an erroneous CMD CRC error and CMD Index error. This occurs when
the CMD response has arrived at the moment the FIFO clock is stopped. The following bits
after the start bit of the response are wrongly interpreted as index, generating the CRC and
Index errors.

The data transfer itself is not impacted.

The rate of occurrence of the issue is very small, as there is a need for the following
combination of conditions to occur at the same cycle:

• The FIFO clock is stopped due to FIFO full or FIFO empty

• The CMD response start bit is received

Workaround: The recommendation is to not set FIFO watermark level to a too small value in order to reduce
frequency of clock pauses.

The problem is identified by receiving the CMD CRC error and CMD Index error. Once this
issue occurs, one can send the same CMD again until operation is successful.

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

Freescale Semiconductor, Inc. 7



e3980: SDHC: Glitch is generated on card clock with software reset or clock divider
change

Errata type: Errata
Description: A glitch may occur on the SDHC card clock when the software sets the RSTA bit (software

reset) in the system control register. It can also be generated by setting the clock divider value.
The glitch produced can cause the external card to switch to an unknown state. The
occurrence is not deterministic.

Workaround: A simple workaround is to disable the SD card clock before the software reset, and enable it
when the module resumes the normal operation. The Host and the SD card are in a master-
slave relationship. The Host provides clock and control transfer across the interface.
Therefore, any existing operation is discarded when the Host controller is reset.

The recommended flow is as follows:

1. Software disable bit[3], SDCLKEN, of the System Control Register

2. Trigger software reset and/or set clock divider

3. Check bit[3], SDSTB, of the Present State Register for stable clock

4. Enable bit[3], SDCLKEN, of the System Control Register.

Using the above method, the eSDHC cannot send command or transfer data when there is a
glitch in the clock line, and the glitch does not cause any issue.

e3983: SDHC: Problem when ADMA2 last descriptor is LINK or NOP

Errata type: Errata
Description: ADMA2 mode in the eSDHC is used for transfers to/from the SD card. There are three types of

ADMA2 descriptors: TRANS, LINK or NOP. The eSDHC has a problem when the last
descriptor (which has the End bit '1') is a LINK descriptor or a NOP descriptor.

In this case, the eSDHC completes the transfers associated with this descriptor set, whereas it
does not even start the transfers associated with the new data command. For example, if a
WRITE transfer operation is performed on the card using ADMA2, and the last descriptor of
the WRITE descriptor set is a LINK descriptor, then the WRITE is successfully finished. Now, if
a READ transfer is programmed from the SD card using ADMA2, then this transfer does not go
through.

Workaround: Software workaround is to always program TRANS descriptor as the last descriptor.

e3978: SDHC: Software can not clear DMA interrupt status bit after read operation

Errata type: Errata
Description: After DMA read operation, if the SDHC System Clock is automatically gated off, the DINT

status can not be cleared by software.

Workaround: Set HCKEN bit before starting DMA read operation, to disable SDHC System Clock auto-
gating feature; after the DINT and TC bit received when read operation is done, clear HCKEN
bit to re-enable the SDHC System Clock auto-gating feature.

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

8 Freescale Semiconductor, Inc.



e3984: SDHC: eSDHC misses SDIO interrupt when CINT is disabled

Errata type: Errata
Description: An issue is identified when interfacing the SDIO card. There is a case where an SDIO interrupt

from the card is not recognized by the hardware, resulting in a hang.

If the SDIO card lowers the DAT1 line (which indicates an interrupt) when the SDIO interrupt is
disabled in the eSDHC registers (that is, CINTEN bits in IRQSTATEN and IRQSIGEN are set
to zero), then, after the SDIO interrupt is enabled (by setting the CINTEN bits in IRQSTATEN
and IRQSIGEN registers), the eSDHC does not sense that the DAT1 line is low. Therefore, it
fails to set the CINT interrupt in IRQSTAT even if DAT1 is low.

Generally, CINTEN bit is disabled in interrupt service.

The SDIO interrupt service steps are as follows:

1. Clear CINTEN bit in IRQSTATEN and IRQSIGEN.

2. Reset the interrupt factors in the SDIO card and write 1 to clear the CINT interrupt in
IRQSTAT.

3. Re-enable CINTEN bit in IRQSTATEN and IRQSIGEN.

If a new SDIO interrupt from the card occurs between step 2 and step 3, the eSDHC skips it.

Workaround: The workaround interrupt service steps are as follows:

1. Clear CINTEN bit in IRQSTATEN and IRQSIGEN.

2. Reset the interrupt factors in the SDIO card and write 1 to clear CINT interrupt in IRQSTAT.

3. Clear and then set D3CD bit in the PROCTL register. Clearing D3CD bit sets the reverse
signal of DAT1 to low, even if DAT1 is low. After D3CD bit is re-enabled, the eSDHC can catch
the posedge of the reversed DAT1 signal, if the DAT1 line is still low.

4. Re-enable CINTEN bit in IRQSTATEN and IRQSIGEN.

e4218: SIM/FLEXBUS: SIM_SCGC7[FLEXBUS] bit should be cleared when the FlexBus
is not being used.

Errata type: Errata
Description: The SIM_SCGC7[FLEXBUS] bit is set by default. This means that the FlexBus will be enabled

and come up in global chip select mode.

With some code sequence and register value combinations the core could attempt to prefetch
from the FlexBus even though it might not actually use the value it prefetched. In the case
where the FlexBus is unconfigured, this can result in a hung bus cycle on the FlexBus.

Workaround: If the FlexBus is not being used, disabled the clock to the FlexBus during chip initialization by
clearing the SIM_SCGC7[FLEXBUS] bit.

If the FlexBus will be used, then enable at least one chip select as early in the chip initialization
process as possible.

e4935: UART: CEA709.1 features not supported

Errata type: Errata

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

Freescale Semiconductor, Inc. 9



Description: Due to some issues that affect compliance with the specification, the CEA709.1 features of the
UART module are not supported. Normal UART mode, IrDA, and ISO-7816 are unaffected.

Workaround: Do not use the UART in CEA709.1 mode.

e7027: UART: During ISO-7816 T=0 initial character detection invalid initial characters
are stored in the RxFIFO

Errata type: Errata
Description: When performing initial character detection (UART_C7816[INIT] = 1) in ISO-7816 T=0 mode

with UART_C7816[ANACK] cleared, the UART samples incoming traffic looking for a valid
initial character. Instead of discarding any invalid initial characters that are received, the UART
will store them in the receive FIFO.

Workaround: After a valid initial charcter is detected (UART_IS7816[INITD] sets), flush the RxFIFO to
discard any invalid initial characters that might have been received before the valid initial
character.

e7028: UART: During ISO-7816 initial character detection the parity, framing, and noise
error flags can set

Errata type: Errata
Description: When performing initial character detection (UART_C7816[INIT] = 1) in ISO-7816 mode the

UART should not set error flags for any receive traffic before a valid initial character is
detected, but the UART will still set these error flags if any of the conditions are true.

Workaround: After a valid initial charcter is detected (UART_IS7816[INITD] sets), check the UART_S1[NF,
FE, and PF] flags. If any of them are set, then clear them.

e6472: UART: ETU compensation needed for ISO-7816 wait time (WT) and block wait
time (BWT)

Errata type: Errata
Description: When using the default ISO-7816 values for wait time integer (UARTx_WP7816T0[WI]), guard

time FD multiplier (UARTx_WF7816[GTFD]), and block wait time integer
(UARTx_WP7816T1[BWI]), the calculated values for Wait Time (WT) and Block Wait Time
(BWT) as defined in the Reference Manual will be 1 ETU less than the ISO-7816-3
requirement.

Workaround: To comply with ISO-7816 requirements, compensation for the extra 1 ETU is needed. This
compensation can be achieved by using a timer, such as the low-power timer (LPTMR), to
introduce a 1 ETU delay after the WT or BWT expires.

e4647: UART: Flow control timing issue can result in loss of characters if FIFO is not
enabled

Errata type: Errata

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

10 Freescale Semiconductor, Inc.



Description: On UART0 and UART1 when /RTS flow control signal is used in receiver request-to-send
mode, the /RTS signal is negated if the number of characters in the Receive FIFO is equal to
or greater than the receive watermark. The /RTS signal will not negate until after the last
character (the one that makes the condition for /RTS negation true) is completely received and
recognized. This creates a delay between the end of the STOP bit and the negation of the /
RTS signal. In some cases this delay can be long enough that a transmitter will start
transmission of another character before it has a chance to recognize the negation of the /RTS
signal (the /CTS input to the transmitter).

Workaround: Always enable the RxFIFO if you are using flow control for UART0 or UART1. The receive
watermark should be set to seven or less. This will ensure that there is space for at least one
more character in the FIFO when /RTS negates. So in this case no data would be lost.

Note that only UART0 and UART1 are affected. The UARTs that do not have the RxFIFO
feature are not affected.

e7029: UART: In ISO-7816 T=1 mode, CWT interrupts assert at both character and
block boundaries

Errata type: Errata
Description: When operating in ISO-7816 T=1 mode and switching from transmission to reception block,

the character wait time interrupt flag (UART_IS7816[CWT]) should not be set, only block type
interrupts should be valid. However, the UART can set the CWT flag while switching from
transmit to receive block and at the start of transmit blocks.

Workaround: If a CWT interrupt is detected at a block boundary instead of a character boundary, then the
interrupt flag should be cleared and otherwise ignored.

e7090: UART: In ISO-7816 mode, timer interrupts flags do not clear

Errata type: Errata
Description: In ISO-7816, when any of the timer counter expires, the corresponding interrupt status register

bits gets set. The timer register bits cannot be cleared by software without additional steps,
because the counter expired signal remains asserted internally. Therefore, these bits can be
cleared only after forcing the counters to reload.

Workaround: Follow these steps to clear the UART_IS7816 WT, CWT, or BWT bits:

1. Clear the UART_C7816[ISO_7816E] bit, to temporarily disable ISO-7816 mode.

2. Write 1 to the WT, CWT, or BWT bits that need to be cleared.

3. Set UART_C7816[ISO_7816E] to re-enable ISO-7816 mode.

Note that the timers will start counting again as soon as the ISO_7816E bit is set. To avoid
unwanted timeouts, software might need to wait until new transmit or receive traffic is expected
or desired before re-enabling ISO-7816 mode.

e7031: UART: In single wire receive mode UART will attempt to transmit if data is
written to UART_D

Errata type: Errata

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

Freescale Semiconductor, Inc. 11



Description: If transmit data is loaded into the UART_D register while the UART is configured for single wire
receive mode, the UART will attempt to send the data. The data will not be driven on the pin,
but it will be shifted out of the FIFO and the UART_S1[TDRE] bit will set when the character
shifting is complete.

Workaround: Do not queue up characters to transmit while the UART is in receive mode. Always write
UART_C3[TXDIR] = 1 before writing to UART_D in single wire mode.

e5704: UART: TC bit in UARTx_S1 register is set before the last character is sent out in
ISO7816 T=0 mode

Errata type: Errata
Description: When using the UART in ISO-7816 mode, the UARTx_S1[TC] flag sets after a NACK is

received, but before guard time expires.

Workaround: If using the UART in ISO-7816 mode with T=0 and a guard time of 12 ETU, check the
UARTn_S1[TC] bit after each byte is transmitted. If a NACK is detected, then the transmitter
should be reset.

The recommended code sequence is:

UART0_C2 &= ~UART_C2_TE_MASK; //make sure the transmitter is disabled at first

UART0_C3 |= UART_C3_TXDIR_MASK; //set the TX pin as output

UART0_C2 |= UART_C2_TE_MASK; //enable TX

UART0_C2 |= UART_C2_RE_MASK; //enable RX to detect NACK

for(i=0;i<length;i++)

{

while(!(UART0_S1&UART_S1_TDRE_MASK)){}

UART0_D = data[i];

while(!(UART0_S1&UART_S1_TC_MASK)){}//check for NACK

if(UART0_IS7816 & UART_IS7816_TXT_MASK)//check if TXT flag set

{

/* Disable transmit to clear the internal NACK detection counter */

UART0_C2 &= ~UART_C2_TE_MASK;

UART0_IS7816 = UART_IS7816_TXT_MASK;// write one to clear TXT

UART0_C2 |= UART_C2_TE_MASK; // re-enable transmit

}

}

UART0_C2 &= ~UART_C2_TE_MASK; //disable after transmit

e7091: UART: UART_S1[NF] and UART_S1[PE] can set erroneously while
UART_S1[FE] is set

Errata type: Errata

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

12 Freescale Semiconductor, Inc.



Description: While the UART_S1[FE] framing error flag is set the UART will discard any received data.
Even though the data is discarded, if characters are received that include noise or parity
errors, then the UART_S1[NF] or UART_S1[PE] bits can still set. This can lead to triggering of
unwanted interrupts if the parity or noise error interrupts are enabled and framing error
interrupts are disabled.

Workaround: If a framing error is detected (UART_S1[FE] = 1), then the noise and parity error flags can be
ignored until the FE flag is cleared. Note: the process to clear the FE bit will also clear the NF
and PE bits.

e7092: UART: UART_S1[TC] is not cleared by queuing a preamble or break character

Errata type: Errata
Description: The UART_S1[TC] flag can be cleared by first reading UART_S1 with TC set and then

performing one of the following: writing to UART_D, queuing a preamble, or queuing a break
character. If the TC flag is cleared by queuing a preamble or break character, then the flag will
clear as expected the first time. When TC sets again, the flag can be cleared by any of the
three clearing mechanisms without reading the UART_S1 register first. This can cause a TC
flag occurrence to be missed.

Workaround: If preamble and break characters are never used to clear the TC flag, then no workaround is
required.

If a preamble or break character is used to clear TC, then write UART_D immediately after
queuing the preamble or break character.

e5928: USBOTG: USBx_USBTRC0[USBRESET] bit does not operate as expected in all
cases

Errata type: Errata
Description: The USBx_USBTCR0[USBRESET] bit is not properly synchronized. In some cases using the

bit can cause the USB module to enter an undefined state.

Workaround: Do not use the USBx_USBTCR0[USBRESET] bit. If USB registers need to be written to their
reset states, then write those registers manually instead of using the module reset bit.

e6933: eDMA: Possible misbehavior of a preempted channel when using continuous
link mode

Errata type: Errata
Description: When using continuous link mode (DMA_CR[CLM] = 1) with a high priority channel linking to

itself, if the high priority channel preempts a lower priority channel on the cycle before its last
read/write sequence, the counters for the preempted channel (the lower priority channel) are
corrupted. When the preempted channel is restored, it runs past its "done" point instead of
performing a single read/write sequence and retiring.

The preempting channel (the higher priority channel) will execute as expected.

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

Freescale Semiconductor, Inc. 13



Workaround: Disable continuous link mode (DMA_CR[CLM]=0) if a high priority channel is using minor loop
channel linking to itself and preemption is enabled. The second activation of the preempting
channel will experience the normal startup latency (one read/write sequence + startup) instead
of the shortened latency (startup only) provided by continuous link mode.

Mask Set Errata for Mask 2N03G, Rev 26 AUG 2013

14 Freescale Semiconductor, Inc.



Information in this document is provided solely to enable system and software 

implementers to use Freescale products. There are no express or implied copyright 

licenses granted hereunder to design or fabricate any integrated circuits based on the 

information in this document.

Freescale reserves the right to make changes without further notice to any products 

herein. Freescale makes no warranty, representation, or guarantee regarding the 

suitability of its products for any particular purpose, nor does Freescale assume any 

liability arising out of the application or use of any product or circuit, and specifically 

disclaims any and all liability, including without limitation consequential or incidental 

damages. “Typical” parameters that may be provided in Freescale data sheets and/or 

specifications can and do vary in different applications, and actual performance may 

vary over time. All operating parameters, including “typicals,” must be validated for 

each customer application by customer’s technical experts. Freescale does not convey 

any license under its patent rights nor the rights of others. Freescale sells products 

pursuant to standard terms and conditions of sale, which can be found at the following 

address: freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page: 
freescale.com 

Web Support: 
freescale.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., 

Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their 

respective owners. ARM and Cortex are the registered trademarks of ARM Limited. 

© 2013 Freescale Semiconductor, Inc.

 

http://www.freescale.com/
http://www.freescale.com/
http://www.freescale.com/

