

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2423-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

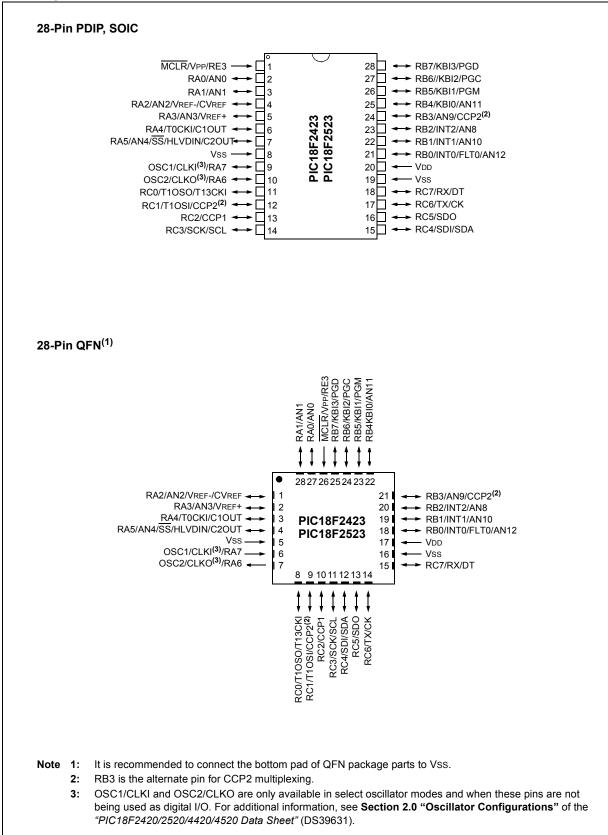
The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.


© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Pin Diagrams

Table of Contents

1.0 Device Overview	. 9
2.0 12-Bit Analog-to-Digital Converter (A/D) Module	25
3.0 Special Features of the CPU	
4.0 Electrical Characteristics	
5.0 Packaging Information	
Appendix A: Revision History	45
Appendix B: Device Differences	45
Appendix C: Conversion Considerations	46
Appendix D: Migration from Baseline to Enhanced Devices	46
Appendix E: Migration from Mid-Range to Enhanced Devices	47
Appendix F: Migration from High-End to Enhanced Devices	47
Index	49
The Microchip Web Site	51
Customer Change Notification Service	51
Customer Support	51
Reader Response	
Product Identification System	53

1.2 Other Special Features

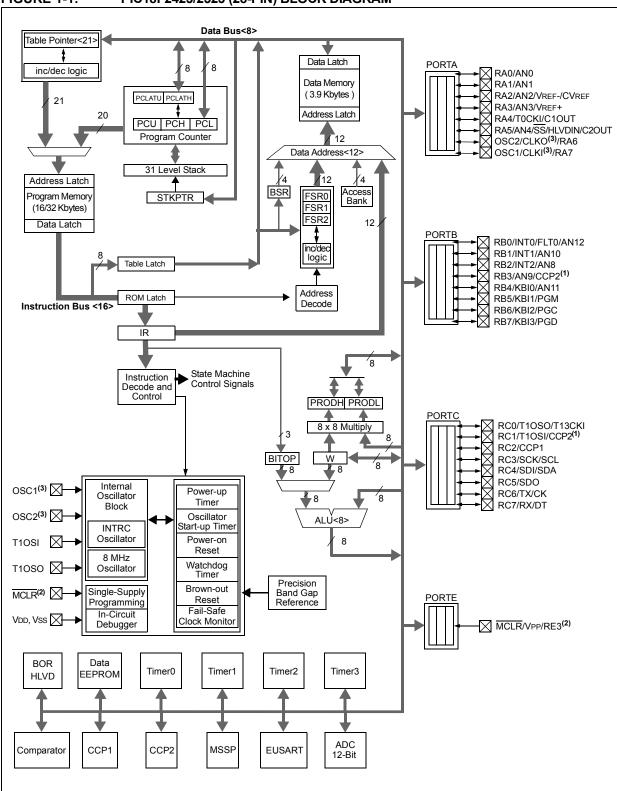
- **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, thereby reducing code overhead.
- **Memory Endurance:** The Enhanced Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 100,000 for program memory and 1,000,000 for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-Programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it is possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18F2423/ 2523/4423/4523 family introduces an optional extension to the PIC18 instruction set that adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced CCP module: In PWM mode, this module provides one, two or four modulated outputs for controlling half-bridge and full-bridge drivers. Other features include auto-shutdown, for disabling PWM outputs on interrupt or other select conditions, and auto-restart, to reactivate outputs once the condition has cleared.
- Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN/J2602 bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- Extended Watchdog Timer (WDT): This Enhanced version incorporates a 16-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 4.0 "Electrical Characteristics" for time-out periods.

1.3 Details on Individual Family Members

Devices in the PIC18F2423/2523/4423/4523 family are available in 28-pin and 40/44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in these ways:

- Flash Program Memory:
 - PIC18F2423/4423 devices 16 Kbytes
 - PIC18F2523/4523 devices 32 Kbytes
- A/D Channels:
 - PIC18F2423/2523 devices 10
 - PIC18F4423/4523 devices 13
- I/O Ports:
 - PIC18F2423/2523 devices Three bidirectional ports
 - PIC18F4423/4523 devices Five bidirectional ports
- CCP and Enhanced CCP Implementation:
 - PIC18F2423/2523 devices Two standard CCP modules
 - PIC18F4423/4523 devices One standard CCP module and one ECCP module
- Parallel Slave Port Present only on PIC18F4423/4523 devices


All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Members of the PIC18F2423/2523/4423/4523 family are available only as low-voltage devices, designated by "LF" (such as PIC18**LF**2423), and function over an extended VDD range of 2.0V to 5.5V.

Features	PIC18F2423	PIC18F2523	PIC18F4423	PIC18F4523
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	16,384	32,768	16,384	32,768
Program Memory (Instructions)	8,192	16,384	8,192	16,384
Data Memory (Bytes)	768	1,536	768	1,536
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable High/Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled			
Packages	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	40-Pin PDIP 44-Pin QFN 44-Pin TQFP	40-Pin PDIP 44-Pin QFN 44-Pin TQFP

TABLE 1-1: DEVICE FEATURES

FIGURE 1-1: PIC18F2423/2523 (28-PIN) BLOCK DIAGRAM

Note 1: CCP2 is multiplexed with RC1 when Configuration bit, CCP2MX, is set or RB3 when CCP2MX is not set.

2: RE3 is only available when MCLR functionality is disabled.

3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. For additional information, see Section 2.0 "Oscillator Configurations" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

TABLE 1-2:	PIC18F2423/2523 PINOUT I/O DESCRIPTIONS
------------	---

	Pin N	umber	Pin	Buffer			
Pin Name	PDIP, SOIC	QFN	Туре		Description		
MCLR/VPP/RE3	1	26			Master Clear (input) or programming voltage (input).		
MCLR				ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.		
Vpp			Р		Programming voltage input.		
RE3			Ι	ST	Digital input.		
OSC1/CLKI/RA7	9	6			Oscillator crystal or external clock input.		
OSC1				ST	Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise.		
CLKI			I	CMOS	External clock source input. Always associated with pin		
					function, OSC1. (See related OSC1/CLKI, OSC2/CLKO		
RA7			1/0	TTL	pins.) General purpose I/O pin.		
OSC2/CLKO/RA6	10	7	1/0	116			
OSC2/CLKO/RA6	10	1	0		Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or		
0002			Ŭ		resonator in Crystal Oscillator mode.		
CLKO			0	—	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the		
RA6			1/0	TTL	frequency of OSC1 and denotes the instruction cycle rate. General purpose I/O pin.		
				116			
-	ompatib	•			CMOS = CMOS compatible input or output		
		er input	with C	MOS le			
O = Outpu I ² C = I ² C™	it /SMBus				P = Power		

 $I^2C = I^2C^{TM}/SMBus$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

	Pin Number		Pin	Buffer			
Pin Name	PDIP, SOIC	QFN	Туре	Туре	Description		
					PORTC is a bidirectional I/O port.		
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	11	8	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽²⁾	12	9	I/O I I/O	ST Analog ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.		
RC2/CCP1 RC2 CCP1	13	10	I/O I/O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output.		
RC3/SCK/SCL RC3 SCK SCL	14	11	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.		
RC4/SDI/SDA RC4 SDI SDA	15	12	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.		
RC5/SDO RC5 SDO	16	13	I/O O	ST —	Digital I/O. SPI data out.		
RC6/TX/CK RC6 TX CK	17	14	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT).		
RC7/RX/DT RC7 RX DT	18	15	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK).		
RE3		_		_	See MCLR/VPP/RE3 pin.		
Vss	8, 19 క	5, 16	Р	_	Ground reference for logic and I/O pins.		
VDD	20	17	Р		Positive supply for logic and I/O pins.		
DT RE3 Vss	20 ompatible tt Trigger	17 e input	I/O — P P	ST — —	EUSART synchronous data (see re See MCLR/VPP/RE3 pin. Ground reference for logic and I/O pins Positive supply for logic and I/O pins. CMOS = CMOS compatible		

Р

= Power

TABLE 1-2 :	PIC18F2423/2523 PINOUT I/O DESCRIPTIONS (CONTINUED)
--------------------	---

O = Output I^2C = $I^2C^{TM}/SMBus$ Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Din Nama	Pin Number		Pin	Buffer	Description			
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTA is a bidirectional I/O port.		
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog Input 0.		
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog Input 1.		
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input. Comparator reference voltage output.		
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.		
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	23	23	I/O I O	ST ST	Digital I/O. Timer0 external clock input. Comparator 1 output.		
RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT	7	24	24	I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog Input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.		
RA6 RA7						See the OSC2/CLKO/RA6 pin. See the OSC1/CLKI/RA7 pin.		
Legend: TTL = TTL ST = Schr O = Outp	mitt Trig	ger inpl	ut ut with C	CMOSI	evels	CMOS = CMOS compatible input or output I = Input P = Power		

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

2.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has 10 inputs for the PIC18F2423/2523 devices and 13 for the PIC18F4423/4523 devices. This module allows conversion of an analog input signal to a corresponding 12-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

REGISTER 2-1:

Of the ADCONx registers:

- ADCON0 (shown in Register 2-1) Controls the module's operation
- ADCON1 (Register 2-2) Configures the functions of the port pins
- ADCON2 (Register 2-3) Configures the A/D clock source, programmed acquisition time and justification

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

ADCON0: A/D CONTROL REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-2	CHS<3:0>: Analog Channel Select bits
	0000 = Channel 0 (AN0)
	0001 = Channel 1 (AN1)
	0010 = Channel 2 (AN2)
	0011 = Channel 3 (AN3)
	0100 = Channel 4 (AN4)
	0101 = Channel 5 (AN5) ^(1,2)
	0110 = Channel 6 (AN6) ^(1,2)
	0111 = Channel 7 (AN7) ^(1,2)
	1000 = Channel 8 (AN8)
	1001 = Channel 9 (AN9)
	1010 = Channel 10 (AN10)
	1011 = Channel 11 (AN11)
	1100 = Channel 12 (AN12
	1101 = Unimplemented ⁽²⁾
	1110 = Unimplemented ⁽²⁾
	1111 = Unimplemented ⁽²⁾
bit 1	GO/DONE: A/D Conversion Status bit
	When ADON = 1:
	1 = A/D conversion in progress
	0 = A/D Idle
bit 0	ADON: A/D On bit
	1 = A/D Converter module is enabled
	0 = A/D Converter module is disabled
Note 1:	These channels are not implemented on PIC18F2423/2523 devices.
2.	Performing a conversion on unimplemented channels will return a floating input measurement

2: Performing a conversion on unimplemented channels will return a floating input measurement.

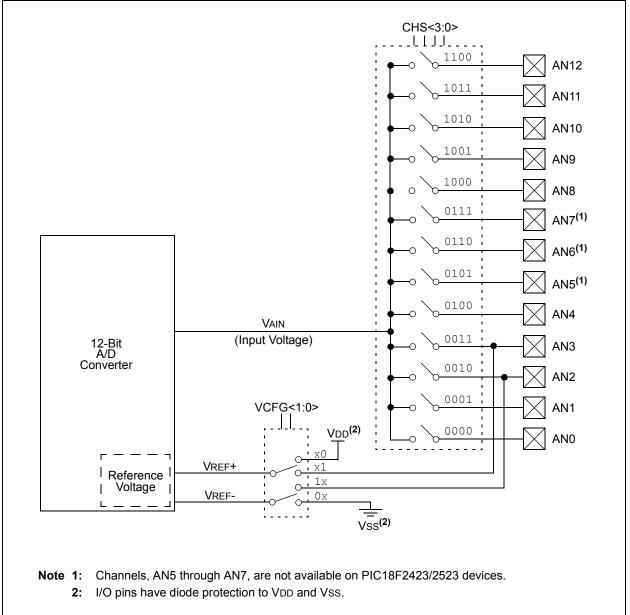
PIC18F2423/2523/4423/4523

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0			
bit 7							bit (
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown			
bit 7	ADFM: A/D F	Result Format S	Select bit							
	1 = Right just 0 = Left justifi									
bit 6	Unimplemented: Read as '0'									
bit 5-3	ACQT<2:0>: A/D Acquisition Time Select bits									
	111 = 20 T AD)								
	110 = 16 Tad)								
	101 = 12 TAD)								
	100 = 8 TAD									
	011 = 6 TAD 010 = 4 TAD									
	010 = 4 TAD 001 = 2 TAD									
	000 = 0 TAD ^{(*}	1)								
bit 2-0	ADCS<2:0>:	A/D Conversio	n Clock Sele	ct bits						
	111 = FRC (clock derived from A/D RC oscillator) ⁽¹⁾									
	110 = Fosc/64									
	101 = Fosc/16									
	100 = Fosc/4			(4)						
		lock derived fro	om A/D RC os	scillator) ⁽¹⁾						
	010 = Fosc/3									
	001 = Fosc/8 000 = Fosc/2	5								

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.


The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is <u>loaded</u> into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and A/D Interrupt Flag bit, ADIF, is set.

The block diagram of the A/D module is shown in Figure 2-1.

FIGURE 2-1: A/D BLOCK DIAGRAM

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3.

The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω .

After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	g capa	acitor is disco	nne	ected from	the
	input p	in.				

EQUATION 2-1: ACQUISITION TIME

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4,096 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the application system assumptions shown in Table 2-1:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 4 \ k\Omega$
Temperature	=	85°C (system maximum)

TABLE 2-1:	TACQ ASSUMPTIONS
IADLL 2-I.	

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/4096)) \cdot (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})$ or $TC = -(CHOLD)(RIC + RSS + RS) \ln(1/4096)$

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
ТС	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/4095) \mu s$ -(25 pF) (1 k Ω + 4 k Ω + 2.5 k Ω) ln(0.0004883) μs 1.56 μs
TACQ	=	0.2 μs + 1.56 μs + 1.2 μs 2.96 μs

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT<2:0> bits do not need to be adjusted as the ADCS<2:0> bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

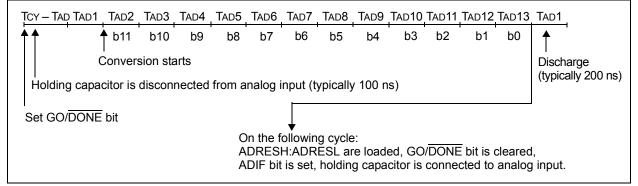
The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - **3:** The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG<3:0> bits in ADCON1 are reset.

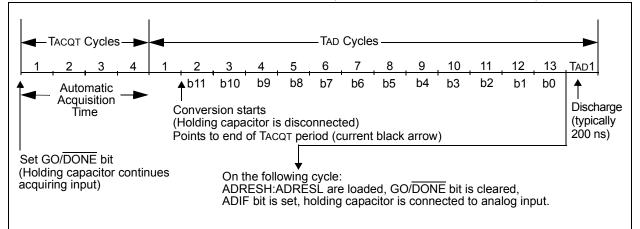
2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT<2:0> bits have been set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.


Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TcY wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.
	Code should wait at least 3 TAD after
	enabling the A/D before beginning an
	acquisition and conversion cycle.


2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unitygain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

2.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user or an appropriate TACQ time is selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(Note 4)
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	(Note 4)
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	(Note 4)
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	(Note 4)
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	(Note 4)
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	(Note 4)
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	(Note 4)
ADRESH	A/D Result Register High Byte								
ADRESL	A/D Result	Register Lov	w Byte						(Note 4)
ADCON0	—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	(Note 4)
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	(Note 4)
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	(Note 4)
PORTA	RA7 ⁽²⁾	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	(Note 4)
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽²⁾	PORTA Da	ata Direction	Control Re	gister			(Note 4)
PORTB	RB7	RB6	RB6 RB5 RB4 RB3 RB2 RB1 RB0						
TRISB	PORTB Data Direction Control Register								(Note 4)
LATB	PORTB Data Latch Register (Read and Write to Data Latch)								(Note 4)
PORTE ⁽¹⁾	—	—	_	— — RE3 ⁽³⁾ RE2 RE1 RE0					
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	(Note 4)
LATE ⁽¹⁾	_	_	_	_		PORTE D	ata Latch Re	egister	(Note 4)

 TABLE 2-3:
 REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers and/or bits are not implemented on PIC18F2423/2523 devices and are read as '0'.

2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

4: For these Reset values, see Section 4.0 "Reset" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

PIC18F2423/2523/4423/4523

REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2423/2523/4423/4523

R	R	R	R	R	R	R	R	
DEV11 ⁽¹⁾	DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	
bit 7						•	bit 0	
Legend:								
R = Read-only bit P = Programmable bit			U = Unimplemented bit, read as '0'					
-n = Value when device is unprogrammed			u = Unchanged from programmed state					

bit 7-0 **DEV<11:4>:** Device ID bits⁽¹⁾ These bits are used with the DEV<3:0> bits in Device ID Register 1 to identify the part number. 0001 0001 = PIC18F2423/2523 devices 0001 0000 = PIC18F4423/4523 devices

Note 1: These values for DEV<11:4> may be shared with other devices. The specific device is always identified by using the entire DEV<11:0> bit sequence.

TABLE 4-1:A/D CONVERTER CHARACTERISTICS: PIC18F2423/2523/4423/4523 (INDUSTRIAL)PIC18LF2423/2523/4423/4523 (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Max	Units		Conditions
A01	NR	Resolution	-	_	12	bit		$\Delta \text{VREF} \geq 3.0 \text{V}$
A03	EIL	Integral Linearity Error	_	<±1	±2.0	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$
				_	±2.0	LSB	VDD = 5.0V	
A04	Edl	Differential Linearity Error		<±1	+1.5/-1.0	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
				—	+1.5/-1.0	LSB	VDD = 5.0V	
A06	EOFF	Offset Error		<±1	±5	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
				—	±3	LSB	VDD = 5.0V	
A07	Egn	Gain Error		<±1	±1.25	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
				_	±2.00	LSB	VDD = 5.0V	
A10	—	Monotonicity	Guaranteed ⁽¹⁾		d ⁽¹⁾	_		$Vss \leq Vain \leq Vref$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	_	Vdd - Vss	V		For 12-bit resolution.
A21	Vrefh	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V		For 12-bit resolution.
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	_	VDD - 3.0V	V		For 12-bit resolution.
A25	Vain	Analog Input Voltage	VREFL	_	VREFH	V		
A30	Zain	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾	_	_	5 150	μΑ μΑ		During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

INDEX

Α	
A/D	25
A/D Converter Interrupt, Configuring	
Acquisition Requirements	
ADCON0 Register	25
ADCON1 Register	25
ADCON2 Register	25
ADRESH Register	25, 28
ADRESL Register	25
Analog Port Pins, Configuring	
Associated Registers	34
Configuring the Module	29
Conversion Clock (TAD)	31
Conversion Status (GO/DONE Bit)	
Conversions	33
Converter Characteristics	40
Discharge	33
Operation in Power-Managed Modes	
Selecting and Configuring Acquisition Time	31
Special Event Trigger (CCP)	34
Use of the CCP2 Trigger	34
Absolute Maximum Ratings	37
ADCON0 Register	
GO/DONE Bit	28
ADCON1 Register	25
ADCON2 Register	25
ADRESH Register	25
ADRESL Register	25, 28
Analog-to-Digital Converter. See A/D.	

B

13

С

. 34
46
. 51
. 51
. 51

D

Device Differences	45
Device Overview	9
Details on Individual Family Members	
Features (table)	
New Core Features	9
Other Special Features	
Documentation	
Related Data Sheet	9
E	
Electrical Characteristics	
Equations	
A/D Acquisition Time	
A/D Minimum Charging Time	
Calculating the Minimum Required	
Acquisition Time	
Errata	8

I

Internet Address	51
Interrupt Sources	
A/D Conversion Complete	29
Μ	
Microchip Internet Web Site	51
Migration from Baseline to Enhanced Devices	46
Migration from High-End to Enhanced Devices	47
Migration from Mid-Range to Enhanced Devices	47

Ρ

Pacl	kaging Information		43
	Functions		
	MCLR/VPP/RE3	14,	18
	OSC1/CLKI/RA7	14,	18
	OSC2/CLKO/RA6	14,	18
	RA0/AN0	15,	19
	RA1/AN1	15,	19
	RA2/AN2/VREF-/CVREF		
	RA3/AN3/VREF+		
	RA4/T0CKI/C1OUT	15,	19
	RA5/AN4/SS/HLVDIN/C2OUT	15,	19
	RB0/INT0/FLT0/AN12		
	RB1/INT1/AN10	16,	20
	RB2/INT2/AN8	16,	20
	RB3/AN9/CCP2		
	RB4/KBI0/AN11	16,	20
	RB5/KBI1/PGM	16.	20
	RB6/KBI2/PGC	16,	20
	RB7/KBI3/PGD	16,	20
	RC0/T10SO/T13CKI		
	RC1/T1OSI/CCP2		
	RC2/CCP1		
	RC2/CCP1/P1A		21
	RC3/SCK/SCL	17,	21
	RC4/SDI/SDA	17,	21
	RC5/SDO	17,	21
	RC6/TX/CK		
	RC7/RX/DT	17,	21
	RD0/PSP0		
	RD1/PSP1		
	RD2/PSP2		22
	RD3/PSP3		22
	RD4/PSP4		22
	RD5/PSP5/P1B		22
	RD6/PSP6/P1C		
	RD7/PSP7/P1D		
	RE0/RD/AN5		23
	RE1/WR/AN6		23
	RE2/CS/AN7		23
	VDD		
	Vss	17,	23
Pino	ut I/O Descriptions		
	PIC18F2423/2523		14
	PIC18F4423/4523		18
Pow	er-Managed Modes		
	and A/D Operation		32
	-		

R

Reader Response	52
Registers	
ADCON0 (A/D Control 0)	25
ADCON1 (A/D Control 1)	26
ADCON2 (A/D Control 2)	27
DEVID1 (Device ID 1)	35
DEVID2	
(Device ID 2)	36
Revision History	
S	
Special Features of the CPU	35

Т

Timing Diagrams A/D Conversion	41
Timing Diagrams and Specifications	44
A/D Conversion Requirements	41
V	
Voltage-Frequency Graphics	
PIC18F2423/2523/4423/4523 (Extended)	38
PIC18F2423/2523/4423/4523 (Industrial)	38
PIC18LF2423/2523/4423/4523 (Industrial)	39

W

WWW Address	51
WWW, On-Line Support	. 8