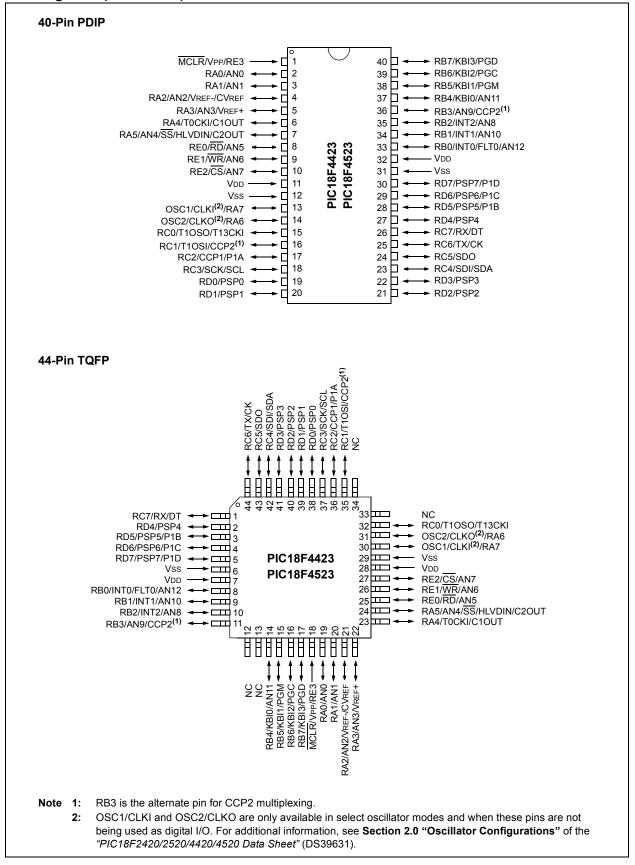


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2423-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Din Nama	Pin Number			Pin	Buffer	Description	
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description	
						PORTA is a bidirectional I/O port.	
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog Input 0.	
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog Input 1.	
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input. Comparator reference voltage output.	
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.	
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	23	23	I/O I O	ST ST	Digital I/O. Timer0 external clock input. Comparator 1 output.	
RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT	7	24	24	I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog Input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.	
RA6 RA7						See the OSC2/CLKO/RA6 pin. See the OSC1/CLKI/RA7 pin.	
Legend: TTL = TTL ST = Schr O = Outp	mitt Trig	ger inpl	ut ut with C	CMOSI	evels	CMOS = CMOS compatible input or output I = Input P = Power	

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Din Nama	Pin Number			Pin Buffer	Description		
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description	
						PORTC is a bidirectional I/O port.	
RC0/T1OSO/T13CKI	15	34	32				
RC0				I/O	ST	Digital I/O.	
T1OSO				0	—	Timer1 oscillator output.	
T13CKI				Ι	ST	Timer1/Timer3 external clock input.	
RC1/T1OSI/CCP2	16	35	35				
RC1				I/O	ST	Digital I/O.	
T1OSI				I	CMOS	Timer1 oscillator input.	
CCP2 ⁽²⁾				I/O	ST	Capture 2 input/Compare 2 output/PWM2 output.	
RC2/CCP1/P1A	17	36	36				
RC2				I/O	ST	Digital I/O.	
CCP1				I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.	
P1A				0		Enhanced CCP1 output.	
RC3/SCK/SCL	18	37	37				
RC3				I/O	ST	Digital I/O.	
SCK				I/O	ST	Synchronous serial clock input/output for SPI mode.	
SCL				I/O	l ² C	Synchronous serial clock input/output for I ² C [™] mod	
	22	42	42	1/0	10		
RC4/SDI/SDA RC4	23	42	42	I/O	ST	Digital I/O.	
SDI				10	ST	SPI data in.	
SDA				I/O	I ² C	I^2C data I/O.	
RC5/SDO	24	43	43				
RC5	27	40		I/O	ST	Digital I/O.	
SDO				0	_	SPI data out.	
RC6/TX/CK	25	44	44				
RC6	20			I/O	ST	Digital I/O.	
ТХ				0		EUSART asynchronous transmit.	
CK				I/O	ST	EUSART synchronous clock (see related RX/DT).	
RC7/RX/DT	26	1	1				
RC7				I/O	ST	Digital I/O.	
RX				I	ST	EUSART asynchronous receive.	
DT				I/O	ST	EUSART synchronous data (see related TX/CK).	
Legend: TTL = TTL						CMOS = CMOS compatible input or output	
	mitt Trig	ger inp	ut with C	CMOSI	evels	I = Input	
O = Out						P = Power	
$I^2C = I^2C$	™/SMBเ	IS					

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pin Number			Pin	Buffer	Description
Fill Name	PDIP	QFN	TQFP	QFP Type Type		Description
						PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when the PSP module is enabled.
RD0/PSP0 RD0 PSP0	19	38	38	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD1/PSP1 RD1 PSP1	20	39	39	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD2/PSP2 RD2 PSP2	21	40	40	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD3/PSP3 RD3 PSP3	22	41	41	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD4/PSP4 RD4 PSP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD7/PSP7/P1D RD7 PSP7 P1D	30	5	5	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power						

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output $I^{2}C = I^{2}C^{TM}/SMBus$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pin Number		Pin Buffer	Buffer	Description		
Pin Name	PDIP	QFN TQFP		Туре	Туре	Description	
						PORTE is a bidirectional I/O port.	
RE0/RD/AN5	8	25	25				
RE0	-			I/O	ST	Digital I/O.	
RD				I	TTL	Read control for Parallel Slave Port	
						(see also \overline{WR} and \overline{CS} pins).	
AN5				I	Analog	Analog Input 5.	
RE1/WR/AN6	9	26	26				
RE1				I/O	ST	Digital I/O.	
WR				I	TTL	Write control for Parallel Slave Port	
						(see \overline{CS} and \overline{RD} pins).	
AN6				I	Analog	Analog Input 6.	
RE2/CS/AN7	10	27	27				
RE2				I/O	ST	Digital I/O.	
CS				I	TTL	Chip select control for Parallel Slave Port	
						(see related \overline{RD} and \overline{WR}).	
AN7				Ι	Analog	Analog Input 7.	
RE3	—	—		_		See MCLR/VPP/RE3 pin.	
Vss	12, 31	6, 30,	6, 29	Р		Ground reference for logic and I/O pins.	
		31					
Vdd	11, 32	7, 8,	7, 28	Р		Positive supply for logic and I/O pins.	
		28, 29					
NC	—	13	12, 13,	_		No connect.	
			33, 34				
Legend: TTL = TTL	compat	tible inp	ut			CMOS = CMOS compatible input or output	

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

I

= Schmitt Trigger input with CMOS levels ST = Output

= Input Ρ = Power

0 I²C = I²C™/SMBus

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

NOTES:

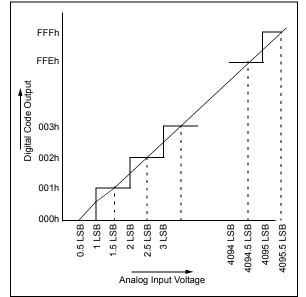
The value in the ADRESH:ADRESL registers is unknown following POR and BOR Resets and is not affected by any other Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. To determine acquisition time, see **Section 2.1 "A/D Acquisition Requirements"**.

After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on the A/D module (ADCON0)
- 2. Configure the A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time (if required).
- Start conversion by setting the GO/DONE bit (ADCON0<1>).


- 5. Wait for the A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared
 OR

· Waiting for the A/D interrupt

- 6. Read the A/D Result registers (ADRESH:ADRESL) and clear the ADIF bit, if required.
- 7. For the next conversion, go to step 1 or step 2, as required.

The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 2-2: A/D TRANSFER FUNCTION

FIGURE 2-3: ANALOG INPUT MODEL

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3.

The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω .

After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	g capa	acitor is disco	nne	ected from	the
	input p	in.				

EQUATION 2-1: ACQUISITION TIME

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4,096 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the application system assumptions shown in Table 2-1:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 4 \ k\Omega$
Temperature	=	85°C (system maximum)

TABLE 2-1:	TACQ ASSUMPTIONS
IADLL 2-I.	TACK ASSUME HONS

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/4096)) \cdot (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})$ or $TC = -(CHOLD)(RIC + RSS + RS) \ln(1/4096)$

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25°C, TCOFF = 0 ms.
Тс	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/4095) \mu s$ -(25 pF) (1 k Ω + 4 k Ω + 2.5 k Ω) ln(0.0004883) μs 1.56 μs
TACQ	=	0.2 μs + 1.56 μs + 1.2 μs 2.96 μs

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT<2:0> bits do not need to be adjusted as the ADCS<2:0> bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

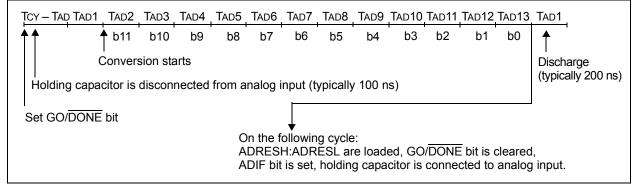
The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - **3:** The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG<3:0> bits in ADCON1 are reset.

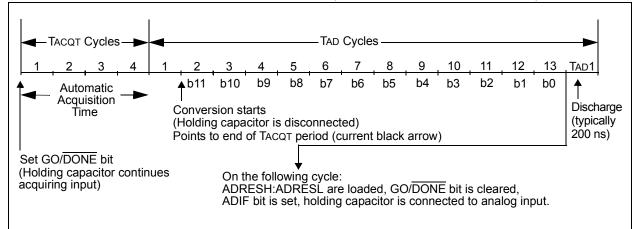
2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT<2:0> bits have been set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.


Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TcY wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.
	Code should wait at least 3 TAD after
	enabling the A/D before beginning an
	acquisition and conversion cycle.


2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unitygain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

Device ID Registers

The Device ID registers are read-only registers. They identify the device type and revision for device pro-

grammers and can be read by firmware using table

3.0 SPECIAL FEATURES OF THE CPU

Note: For additional details on the Configuration bits, refer to Section 23.1 "Configuration Bits" in the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631). Device ID information presented in this section is for the PIC18F2423/2523/4423/4523 devices only.

TABLE 3-1: DEVICE IDs

Default/ File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Unprogrammed Value ×××× ××××××××(2) DEVID1⁽¹⁾ 3FFFFEh DEV3 DEV2 DEV1 DEV0 REV3 REV2 REV1 REV0 XXXX XXXX(2) 3FFFFFh DEVID2⁽¹⁾ DEV11 DEV10 DEV8 DEV7 DEV6 DEV5 DEV4 DEV9

3.1

reads.

x = unknown, u = unchanged, — = unimplemented. Shaded cells are unimplemented, read as '0'. Legend:

Note 1: DEVID registers are read-only and cannot be programmed by the user.

2: See Register 3-1 and Register 3-2 for DEVID1 and DEVID2 values.

REGISTER 3-1: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2423/2523/4423/4523

R	R	R	R	R	R	R	R
DEV3	DEV2	DEV1	DEV0	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:			
R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'	
-n = Value when device i	s unprogrammed	u = Unchanged from programmed state	

bit 7-4	DEV<3:0>: Device ID bits
	1101 = PIC18F4423
	1001 = PIC18F4523
	0101 = PIC18F2423
	0001 = PIC18F2523
bit 3-0	REV<3:0>: Revision ID bits
	These bits are used to indicate the device revision.

PIC18F2423/2523/4423/4523

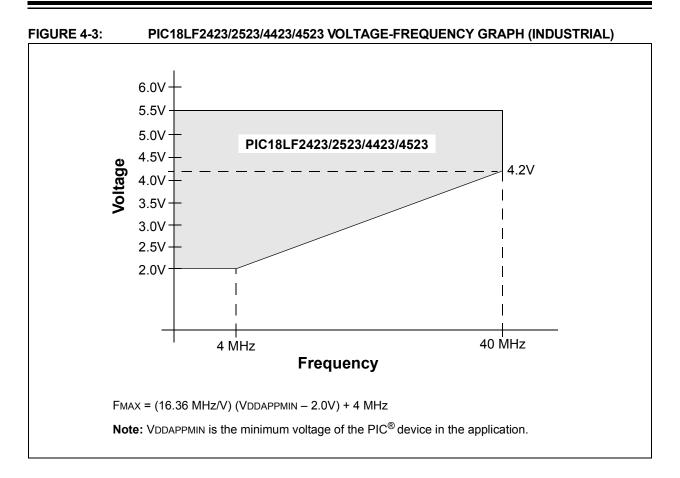
REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2423/2523/4423/4523

R	R	R	R	R	R	R	R
DEV11 ⁽¹⁾	DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾
bit 7						•	bit 0
Legend:							
R = Read-only bit P = Programmable bit		U = Unimplemented bit, read as '0'					
-n = Value when device is unprogrammed			u = Unchanged from programmed state				

bit 7-0 **DEV<11:4>:** Device ID bits⁽¹⁾ These bits are used with the DEV<3:0> bits in Device ID Register 1 to identify the part number. 0001 0001 = PIC18F2423/2523 devices 0001 0000 = PIC18F4423/4523 devices

Note 1: These values for DEV<11:4> may be shared with other devices. The specific device is always identified by using the entire DEV<11:0> bit sequence.

4.0 ELECTRICAL CHARACTERISTICS


Note: Other than some basic data, this section documents only the PIC18F2423/2523/4423/4523 devices' specifications that differ from those of the PIC18F2420/2520/4420/4520 devices. For detailed information on the electrical specifications shared by the PIC18F2423/2523/4423/4523 and PIC18F2420/2520/4420/4520 devices, see the *"PIC18F2420/2520/4420/4520 Data Sheet"* (DS39631).

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - 2: Voltage spikes below Vss at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 4-1:A/D CONVERTER CHARACTERISTICS: PIC18F2423/2523/4423/4523 (INDUSTRIAL)PIC18LF2423/2523/4423/4523 (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Мах	Units		Conditions
A01	NR	Resolution	-	_	12	bit		$\Delta \text{VREF} \geq 3.0 \text{V}$
A03	EIL	Integral Linearity Error	_	<±1	±2.0	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$
				_	±2.0	LSB	VDD = 5.0V	
A04	Edl	Differential Linearity Error		<±1	+1.5/-1.0	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
				—	+1.5/-1.0	LSB	VDD = 5.0V	
A06	EOFF	Offset Error		<±1	±5	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
				—	±3	LSB	VDD = 5.0V	
A07	Egn	Gain Error		<±1	±1.25	LSB	VDD = 3.0V	$\Delta V \text{Ref} \geq 3.0 V$
				_	±2.00	LSB	VDD = 5.0V	
A10	—	Monotonicity	Gu	Jarantee	d ⁽¹⁾	_		$Vss \leq Vain \leq Vref$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	_	Vdd - Vss	V		For 12-bit resolution.
A21	Vrefh	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V		For 12-bit resolution.
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	_	VDD - 3.0V	V		For 12-bit resolution.
A25	Vain	Analog Input Voltage	VREFL	_	VREFH	V		
A30	Zain	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾	_	_	5 150	μΑ μΑ		During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

5.0 PACKAGING INFORMATION

For packaging information, see **Section 28.0 "Packaging Information"** in the *"PIC18F2420/2520/4420/4520 Data Sheet"* (DS39631).

APPENDIX A: REVISION HISTORY

Revision A (June 2006)

Original data sheet for PIC18F2423/2523/4423/4523 devices.

Revision B (January 2007)

This revision includes updates to the packaging diagrams.

Revision C (September 2009)

Electrical specifications updated. Preliminary condition status removed. Converted document to the "mini data sheet" format.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F2423	PIC18F2523	PIC18F4423	PIC18F4523
Program Memory (Bytes)	16384	32768	16384	32768
Program Memory (Instructions)	8192	16384	8192	16384
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Parallel Communications (PSP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Packages	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN

TABLE B-1:DEVICE DIFFERENCES

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442"*. The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration*". This Application Note is available as Literature Number DS00726.

INDEX

Α	
A/D	25
A/D Converter Interrupt, Configuring	
Acquisition Requirements	
ADCON0 Register	25
ADCON1 Register	25
ADCON2 Register	25
ADRESH Register	25, 28
ADRESL Register	25
Analog Port Pins, Configuring	
Associated Registers	34
Configuring the Module	29
Conversion Clock (TAD)	31
Conversion Status (GO/DONE Bit)	
Conversions	33
Converter Characteristics	40
Discharge	33
Operation in Power-Managed Modes	
Selecting and Configuring Acquisition Time	31
Special Event Trigger (CCP)	34
Use of the CCP2 Trigger	34
Absolute Maximum Ratings	37
ADCON0 Register	
GO/DONE Bit	28
ADCON1 Register	25
ADCON2 Register	25
ADRESH Register	25
ADRESL Register	25, 28
Analog-to-Digital Converter. See A/D.	

B

13

С

. 34
46
. 51
. 51
. 51

D

Device Differences	45
Device Overview	9
Details on Individual Family Members	
Features (table)	
New Core Features	9
Other Special Features	
Documentation	
Related Data Sheet	9
E	
Electrical Characteristics	
Equations	
A/D Acquisition Time	
A/D Minimum Charging Time	
Calculating the Minimum Required	
Acquisition Time	
Errata	8

I

Internet Address	51
Interrupt Sources	
A/D Conversion Complete	29
Μ	
Microchip Internet Web Site	51
Migration from Baseline to Enhanced Devices	46
Migration from High-End to Enhanced Devices	47
Migration from Mid-Range to Enhanced Devices	47

Ρ

Pacl	kaging Information		43
Pin Functions			
	MCLR/VPP/RE3	14,	18
	OSC1/CLKI/RA7	14,	18
	OSC2/CLKO/RA6	14,	18
	RA0/AN0	15,	19
	RA1/AN1	15,	19
	RA2/AN2/VREF-/CVREF		
	RA3/AN3/VREF+		
	RA4/T0CKI/C1OUT	15,	19
	RA5/AN4/SS/HLVDIN/C2OUT	15,	19
	RB0/INT0/FLT0/AN12		
	RB1/INT1/AN10	16,	20
	RB2/INT2/AN8	16,	20
	RB3/AN9/CCP2		
	RB4/KBI0/AN11	16,	20
	RB5/KBI1/PGM	16.	20
	RB6/KBI2/PGC	16,	20
	RB7/KBI3/PGD	16,	20
	RC0/T10SO/T13CKI		
	RC1/T1OSI/CCP2		
	RC2/CCP1		
	RC2/CCP1/P1A		21
	RC3/SCK/SCL	17,	21
	RC4/SDI/SDA	17,	21
	RC5/SDO	17,	21
	RC6/TX/CK		
	RC7/RX/DT	17,	21
	RD0/PSP0		
	RD1/PSP1		
	RD2/PSP2		22
	RD3/PSP3		22
	RD4/PSP4		22
	RD5/PSP5/P1B		22
	RD6/PSP6/P1C		
	RD7/PSP7/P1D		
	RE0/RD/AN5		23
	RE1/WR/AN6		23
	RE2/CS/AN7		23
	VDD		
	Vss	17,	23
Pino	ut I/O Descriptions		
	PIC18F2423/2523		14
	PIC18F4423/4523		18
Pow	er-Managed Modes		
	and A/D Operation		32
	-		

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com