

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2523-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC18F2423/2523/4423/4523

28/40/44-Pin, Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt Technology

Power Management Features:

- Run: CPU on, Peripherals on
- Idle: CPU off, Peripherals on
- · Sleep: CPU off, Peripherals off
- Ultra Low 50 nA Input Leakage
- Run mode Currents Down to 11 μA Typical
- Idle mode Currents Down to 2.5 μA Typical
- Sleep mode Current Down to 100 μA Typical
- Timer1 Oscillator: 900 nA, 32 kHz, 2V
- Watchdog Timer: 1.4 μA, 2V Typical
- Two-Speed Oscillator Start-up

Flexible Oscillator Structure:

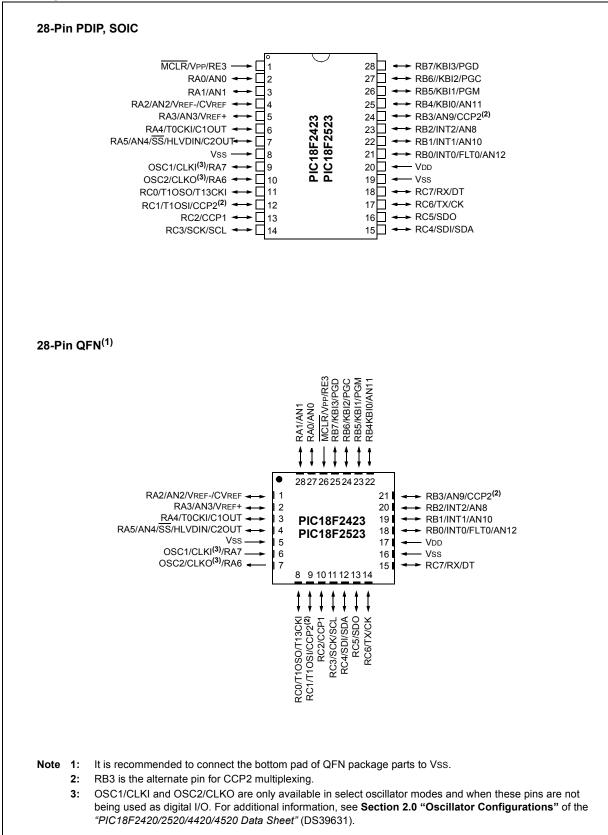
- Four Crystal modes, up to 40 MHz
- 4x Phase Lock Loop (PLL) Available for Crystal and Internal Oscillators
- Two External RC modes, up to 4 MHz
- Two External Clock modes, up to 40 MHz
- Internal Oscillator Block:
- Fast wake from Sleep and Idle, 1 µs typical
- 8 user-selectable frequencies, from 31 kHz to 8 MHz
- Provides a complete range of clock speeds, from 31 kHz to 32 MHz, when used with PLL
 User-tunable to Compensate for Frequency Drift
- Secondary Oscillator using Timer1 @ 32 kHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops

Peripheral Highlights:

- 12-Bit, Up to 13-Channel Analog-to-Digital Converter module (A/D):
 - Auto-acquisition capability
 - Conversion available during Sleep mode
- · Dual Analog Comparators with Input Multiplexing
- High-Current Sink/Source 25 mA/25 mA
- Three Programmable External Interrupts
- Four Input Change Interrupts
- Up to Two Capture/Compare/PWM (CCP)
- modules, One with Auto-Shutdown (28-pin devices) • Enhanced Capture/Compare/PWM (ECCP) module
- (40/44-pin devices only):
- One, two or four PWM outputs
- Selectable polarity
- Programmable dead time
- Auto-shutdown and auto-restart

Peripheral Highlights (Continued):

- Master Synchronous Serial Port (MSSP) module Supporting 3-Wire SPI (all four modes) and I²C[™] Master and Slave modes
- · Enhanced USART module:
 - Support for RS-485, RS-232 and LIN/J2602
 - RS-232 operation using internal oscillator block (no external crystal required)
 - Auto-wake-up on Start bit
 - Auto-Baud Detect (ABD)


Special Microcontroller Features:

- C Compiler Optimized Architecture: Optional Extended Instruction Set Designed to Optimize Re-Entrant Code
- 100,000 Erase/Write Cycle, Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle, Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: 100 Years Typical
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT): Programmable Period, from 4 ms to 131s
- Single-Supply In-Circuit Serial Programming™ (ICSP™) via Two Pins
- In-Circuit Debug (ICD) via Two Pins
- Operating Voltage Range: 2.0V to 5.5V
- Programmable, 16-Level High/Low-Voltage Detection (HLVD) module: Supports Interrupt on High/Low-Voltage Detection
- Programmable Brown-out Reset (BOR): With Software-Enable Option

Note: This document is supplemented by the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631). See Section 1.0 "Device Overview".

	Program Memory Data Memory		42 Bit (CCP/	MSSP		RT		Times		
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	12-Bit A/D (ch)	ECCP (PWM)	SPI	Master I ² C™	EUSA	Comp.	Timers 8/16-Bit
PIC18F2423	16K	8192	768	256	25	10	2/0	Y	Y	1	2	1/3
PIC18F2523	32K	16384	1536	256	25	10	2/0	Y	Y	1	2	1/3
PIC18F4423	16K	8192	768	256	36	13	1/1	Y	Y	1	2	1/3
PIC18F4523	32K	16384	1536	256	36	13	1/1	Y	Y	1	2	1/3

Pin Diagrams

Table of Contents

1.0 Device Overview	. 9
2.0 12-Bit Analog-to-Digital Converter (A/D) Module	25
3.0 Special Features of the CPU	
4.0 Electrical Characteristics	
5.0 Packaging Information	
Appendix A: Revision History	45
Appendix B: Device Differences	45
Appendix C: Conversion Considerations	46
Appendix D: Migration from Baseline to Enhanced Devices	46
Appendix E: Migration from Mid-Range to Enhanced Devices	47
Appendix F: Migration from High-End to Enhanced Devices	47
Index	49
The Microchip Web Site	51
Customer Change Notification Service	51
Customer Support	51
Reader Response	
Product Identification System	53

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

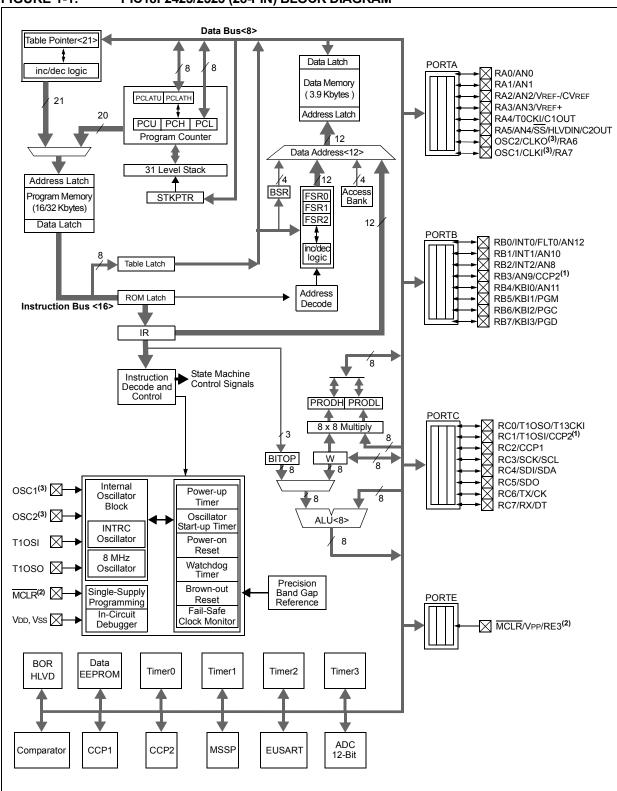
Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.2 Other Special Features

- **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, thereby reducing code overhead.
- **Memory Endurance:** The Enhanced Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 100,000 for program memory and 1,000,000 for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-Programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it is possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18F2423/ 2523/4423/4523 family introduces an optional extension to the PIC18 instruction set that adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced CCP module: In PWM mode, this module provides one, two or four modulated outputs for controlling half-bridge and full-bridge drivers. Other features include auto-shutdown, for disabling PWM outputs on interrupt or other select conditions, and auto-restart, to reactivate outputs once the condition has cleared.
- Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN/J2602 bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- Extended Watchdog Timer (WDT): This Enhanced version incorporates a 16-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 4.0 "Electrical Characteristics" for time-out periods.

1.3 Details on Individual Family Members

Devices in the PIC18F2423/2523/4423/4523 family are available in 28-pin and 40/44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.


The devices are differentiated from each other in these ways:

- Flash Program Memory:
 - PIC18F2423/4423 devices 16 Kbytes
 - PIC18F2523/4523 devices 32 Kbytes
- A/D Channels:
 - PIC18F2423/2523 devices 10
 - PIC18F4423/4523 devices 13
- I/O Ports:
 - PIC18F2423/2523 devices Three bidirectional ports
 - PIC18F4423/4523 devices Five bidirectional ports
- CCP and Enhanced CCP Implementation:
 - PIC18F2423/2523 devices Two standard CCP modules
 - PIC18F4423/4523 devices One standard CCP module and one ECCP module
- Parallel Slave Port Present only on PIC18F4423/4523 devices

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Members of the PIC18F2423/2523/4423/4523 family are available only as low-voltage devices, designated by "LF" (such as PIC18**LF**2423), and function over an extended VDD range of 2.0V to 5.5V.

FIGURE 1-1: PIC18F2423/2523 (28-PIN) BLOCK DIAGRAM

Note 1: CCP2 is multiplexed with RC1 when Configuration bit, CCP2MX, is set or RB3 when CCP2MX is not set.

2: RE3 is only available when MCLR functionality is disabled.

3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. For additional information, see Section 2.0 "Oscillator Configurations" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

Pin Name	Pi	n Numb	per	Pin	Buffer	Description
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP				Р		Programming voltage input.
RE3					ST	Digital input.
OSC1/CLKI/RA7 OSC1	13	32	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode;
CLKI				I	CMOS	analog otherwise. External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)
RA7				I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0	_	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6				I/O	TTL	General purpose I/O pin.
ST = Sch O = Ou	_ compat nmitt Trig put ™/SMΒι	ger inpi		CMOSI	evels	CMOS = CMOS compatible input or output I = Input P = Power

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Din Nama	Pi	n Numb	ber	Pin	Buffer	Description			
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description			
						PORTC is a bidirectional I/O port.			
RC0/T1OSO/T13CKI	15	34	32						
RC0				I/O	ST	Digital I/O.			
T1OSO				0	—	Timer1 oscillator output.			
T13CKI				I	ST	Timer1/Timer3 external clock input.			
RC1/T1OSI/CCP2	16	35	35						
RC1				I/O	ST	Digital I/O.			
T1OSI				I	CMOS	Timer1 oscillator input.			
CCP2 ⁽²⁾				I/O	ST	Capture 2 input/Compare 2 output/PWM2 output.			
RC2/CCP1/P1A	17	36	36						
RC2				I/O	ST	Digital I/O.			
CCP1				I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.			
P1A				0		Enhanced CCP1 output.			
RC3/SCK/SCL	18	37	37						
RC3				I/O	ST	Digital I/O.			
SCK				I/O	ST	Synchronous serial clock input/output for SPI mode.			
SCL				I/O	l ² C	Synchronous serial clock input/output for I ² C [™] mod			
	22	42	42	1/0	10				
RC4/SDI/SDA RC4	23	42	42	I/O	ST	Digital I/O.			
SDI				10	ST	SPI data in.			
SDA				I/O	I ² C	I^2C data I/O.			
RC5/SDO	24	43	43						
RC5	27	40		I/O	ST	Digital I/O.			
SDO				0	_	SPI data out.			
RC6/TX/CK	25	44	44						
RC6	20			I/O	ST	Digital I/O.			
ТХ				0		EUSART asynchronous transmit.			
CK				I/O	ST	EUSART synchronous clock (see related RX/DT).			
RC7/RX/DT	26	1	1						
RC7				I/O	ST	Digital I/O.			
RX				I	ST	EUSART asynchronous receive.			
DT				I/O	ST	EUSART synchronous data (see related TX/CK).			
Legend: TTL = TTL						CMOS = CMOS compatible input or output			
	mitt Trig	ger inp	ut with C	CMOSI	evels	I = Input			
O = Out						P = Power			
$I^2C = I^2C$	™/SMBเ	IS							

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	ne Pin Number PDIP QFN TQFP		ber	Pin Buffer		Description
Pin Name			Туре	Туре	Description	
						PORTE is a bidirectional I/O port.
RE0/RD/AN5	8	25	25			
RE0	-			I/O	ST	Digital I/O.
RD				I	TTL	Read control for Parallel Slave Port
						(see also \overline{WR} and \overline{CS} pins).
AN5				I	Analog	Analog Input 5.
RE1/WR/AN6	9	26	26			
RE1				I/O	ST	Digital I/O.
WR				I	TTL	Write control for Parallel Slave Port
						(see \overline{CS} and \overline{RD} pins).
AN6				I	Analog	Analog Input 6.
RE2/CS/AN7	10	27	27			
RE2				I/O	ST	Digital I/O.
CS				I	TTL	Chip select control for Parallel Slave Port
						(see related \overline{RD} and \overline{WR}).
AN7				Ι	Analog	Analog Input 7.
RE3	—	—		_		See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 30,	6, 29	Р		Ground reference for logic and I/O pins.
		31				
Vdd	11, 32	7, 8,	7, 28	Р		Positive supply for logic and I/O pins.
		28, 29				
NC	—	13	12, 13,	_		No connect.
			33, 34			
Legend: TTL = TTL	compat	tible inp	ut			CMOS = CMOS compatible input or output

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

I

= Schmitt Trigger input with CMOS levels ST = Output

= Input Ρ = Power

0 I²C = I²C™/SMBus

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

NOTES:

2.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has 10 inputs for the PIC18F2423/2523 devices and 13 for the PIC18F4423/4523 devices. This module allows conversion of an analog input signal to a corresponding 12-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

REGISTER 2-1:

Of the ADCONx registers:

- ADCON0 (shown in Register 2-1) Controls the module's operation
- ADCON1 (Register 2-2) Configures the functions of the port pins
- ADCON2 (Register 2-3) Configures the A/D clock source, programmed acquisition time and justification

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

ADCON0: A/D CONTROL REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

	•
bit 5-2	CHS<3:0>: Analog Channel Select bits
	0000 = Channel 0 (AN0)
	0001 = Channel 1 (AN1)
	0010 = Channel 2 (AN2)
	0011 = Channel 3 (AN3)
	0100 = Channel 4 (AN4)
	0101 = Channel 5 (AN5) ^(1,2)
	0110 = Channel 6 (AN6) ^(1,2)
	0111 = Channel 7 (AN7) ^(1,2)
	1000 = Channel 8 (AN8)
	1001 = Channel 9 (AN9)
	1010 = Channel 10 (AN10)
	1011 = Channel 11 (AN11)
	1100 = Channel 12 (AN12
	1101 = Unimplemented ⁽²⁾
	1110 = Unimplemented ⁽²⁾
	1111 = Unimplemented ⁽²⁾
bit 1	GO/DONE: A/D Conversion Status bit
	When ADON = 1:
	1 = A/D conversion in progress
	0 = A/D Idle
bit 0	ADON: A/D On bit
	1 = A/D Converter module is enabled
	0 = A/D Converter module is disabled
Note 1:	These channels are not implemented on PIC18F2423/2523 devices.
2.	Performing a conversion on unimplemented channels will return a floating input measurement

2: Performing a conversion on unimplemented channels will return a floating input measurement.

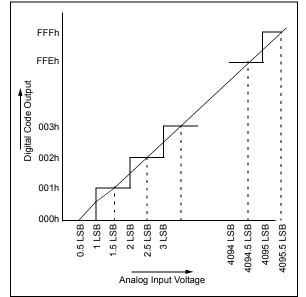
The value in the ADRESH:ADRESL registers is unknown following POR and BOR Resets and is not affected by any other Reset.

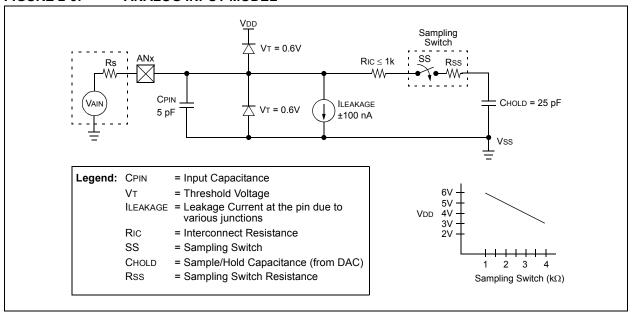
After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. To determine acquisition time, see **Section 2.1 "A/D Acquisition Requirements"**.

After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on the A/D module (ADCON0)
- 2. Configure the A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- Start conversion by setting the GO/DONE bit (ADCON0<1>).


- 5. Wait for the A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared
 OR


· Waiting for the A/D interrupt

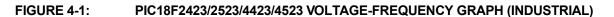
- 6. Read the A/D Result registers (ADRESH:ADRESL) and clear the ADIF bit, if required.
- 7. For the next conversion, go to step 1 or step 2, as required.

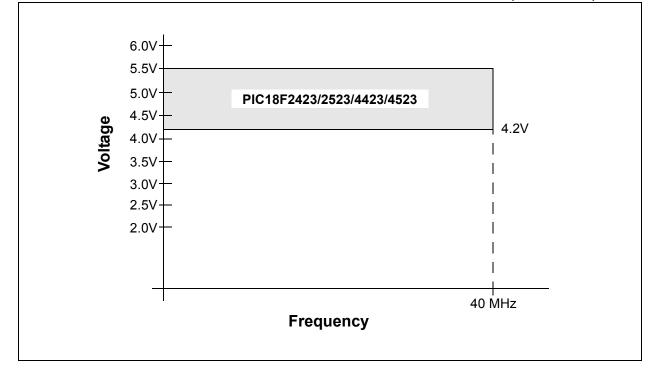
The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

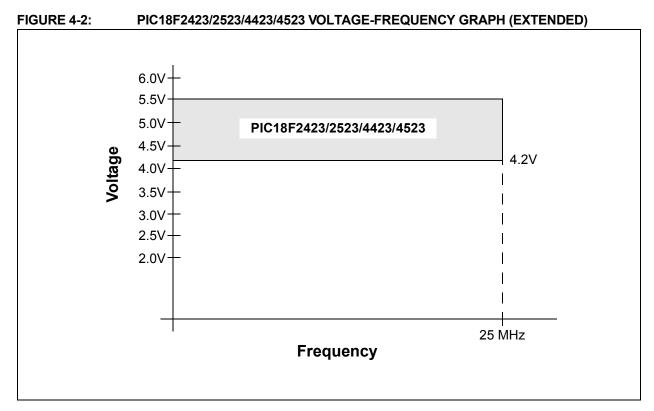
FIGURE 2-2: A/D TRANSFER FUNCTION

FIGURE 2-3: ANALOG INPUT MODEL

PIC18F2423/2523/4423/4523


REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2423/2523/4423/4523


R	R	R	R	R	R	R	R			
DEV11 ⁽¹⁾	DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾			
bit 7						•	bit 0			
Legend:										
R = Read-only bit P = Programmable bit				U = Unimplemented bit, read as '0'						
-n = Value whe	n device is unp	programmed		u = Unchanged from programmed state						


bit 7-0 **DEV<11:4>:** Device ID bits⁽¹⁾ These bits are used with the DEV<3:0> bits in Device ID Register 1 to identify the part number. 0001 0001 = PIC18F2423/2523 devices 0001 0000 = PIC18F4423/4523 devices

Note 1: These values for DEV<11:4> may be shared with other devices. The specific device is always identified by using the entire DEV<11:0> bit sequence.

PIC18F2423/2523/4423/4523

5.0 PACKAGING INFORMATION

For packaging information, see **Section 28.0 "Packaging Information"** in the *"PIC18F2420/2520/4420/4520 Data Sheet"* (DS39631).

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442"*. The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration*". This Application Note is available as Literature Number DS00726.

INDEX

Α	
A/D	25
A/D Converter Interrupt, Configuring	
Acquisition Requirements	
ADCON0 Register	25
ADCON1 Register	25
ADCON2 Register	25
ADRESH Register	25, 28
ADRESL Register	25
Analog Port Pins, Configuring	
Associated Registers	34
Configuring the Module	29
Conversion Clock (TAD)	31
Conversion Status (GO/DONE Bit)	
Conversions	33
Converter Characteristics	40
Discharge	33
Operation in Power-Managed Modes	
Selecting and Configuring Acquisition Time	31
Special Event Trigger (CCP)	34
Use of the CCP2 Trigger	34
Absolute Maximum Ratings	37
ADCON0 Register	
GO/DONE Bit	28
ADCON1 Register	25
ADCON2 Register	25
ADRESH Register	25
ADRESL Register	25, 28
Analog-to-Digital Converter. See A/D.	

B

13

С

34
6
51
51
51

D

Device Differences	45
Device Overview	9
Details on Individual Family Members	
Features (table)	
New Core Features	9
Other Special Features	
Documentation	
Related Data Sheet	9
E	
Electrical Characteristics	
Equations	
A/D Acquisition Time	
A/D Minimum Charging Time	
Calculating the Minimum Required	
Acquisition Time	
Errata	8

I

Internet Address	51
Interrupt Sources	
A/D Conversion Complete	29
Μ	
Microchip Internet Web Site	51
Migration from Baseline to Enhanced Devices	46
Migration from High-End to Enhanced Devices	47
Migration from Mid-Range to Enhanced Devices	47

Ρ

Pacl	kaging Information		43
	Functions		
	MCLR/VPP/RE3	14,	18
	OSC1/CLKI/RA7	14,	18
	OSC2/CLKO/RA6	14,	18
	RA0/AN0	15,	19
	RA1/AN1	15,	19
	RA2/AN2/VREF-/CVREF		
	RA3/AN3/VREF+		
	RA4/T0CKI/C1OUT	15,	19
	RA5/AN4/SS/HLVDIN/C2OUT	15,	19
	RB0/INT0/FLT0/AN12		
	RB1/INT1/AN10	16,	20
	RB2/INT2/AN8	16,	20
	RB3/AN9/CCP2		
	RB4/KBI0/AN11	16,	20
	RB5/KBI1/PGM	16.	20
	RB6/KBI2/PGC	16,	20
	RB7/KBI3/PGD	16,	20
	RC0/T10SO/T13CKI		
	RC1/T10SI/CCP2		
	RC2/CCP1		
	RC2/CCP1/P1A		21
	RC3/SCK/SCL	17,	21
	RC4/SDI/SDA		
	RC5/SDO	17,	21
	RC6/TX/CK		
	RC7/RX/DT	17,	21
	RD0/PSP0		
	RD1/PSP1		
	RD2/PSP2		22
	RD3/PSP3		22
	RD4/PSP4		22
	RD5/PSP5/P1B		22
	RD6/PSP6/P1C		
	RD7/PSP7/P1D		
	RE0/RD/AN5		23
	RE1/WR/AN6		23
	RE2/CS/AN7		23
	VDD		
	Vss	17,	23
Pino	ut I/O Descriptions		
	PIC18F2423/2523		14
	PIC18F4423/4523		18
Pow	er-Managed Modes		
	and A/D Operation		32
	-		

R

Reader Response	52
Registers	
ADCON0 (A/D Control 0)	25
ADCON1 (A/D Control 1)	26
ADCON2 (A/D Control 2)	27
DEVID1 (Device ID 1)	35
DEVID2	
(Device ID 2)	36
Revision History	
S	
Special Features of the CPU	35

Т

Timing Diagrams A/D Conversion	41
Timing Diagrams and Specifications	44
A/D Conversion Requirements	41
V	
Voltage-Frequency Graphics	
PIC18F2423/2523/4423/4523 (Extended)	38
PIC18F2423/2523/4423/4523 (Industrial)	38
PIC18LF2423/2523/4423/4523 (Industrial)	39

W

WWW Address	51
WWW, On-Line Support	. 8

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	¥	<u>/xx</u>	<u>xxx</u>	E	Examples:
Device	Temperature Range	Package	Pattern		 a) PIC18F4523-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18F4523-I/PT = Industrial temp., TQFP
Device	PIC18F4523T ⁽²⁾ VDD range 4 2	; 2V to 5.5V PIC18F2523 ⁽¹⁾ ;	⁾ , PIC18F4423T ⁽²⁾ , ⁾ , PIC18F4423T ⁽²⁾ ,		 package, Extended VDD limits. PIC18F4523-E/P = Extended temp., PDIP package, normal VDD limits.
Temperature Range		C to +85°C C to +125°C			
Package	ML = QF SO = SO	IC nny Plastic DIF	. ,	•	Note 1:F=Standard Voltage RangeLF=Wide Voltage Range2:T=In tape and reel PLCC, and TQFP packages only.
Pattern	QTP, SQTP, Co (blank otherwise		tequirements		