

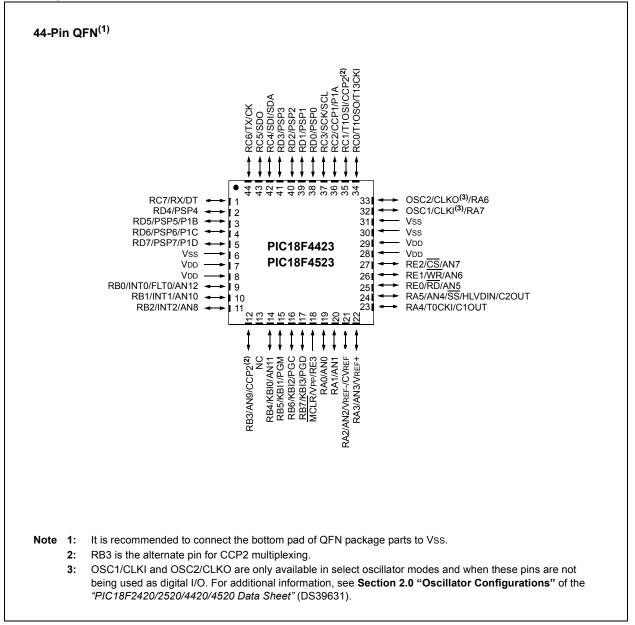
innin receive

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4423-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Table of Contents

1.0 Device Overview	. 9
2.0 12-Bit Analog-to-Digital Converter (A/D) Module	25
3.0 Special Features of the CPU	
4.0 Electrical Characteristics	
5.0 Packaging Information	
Appendix A: Revision History	45
Appendix B: Device Differences	45
Appendix C: Conversion Considerations	46
Appendix D: Migration from Baseline to Enhanced Devices	46
Appendix E: Migration from Mid-Range to Enhanced Devices	47
Appendix F: Migration from High-End to Enhanced Devices	47
Index	49
The Microchip Web Site	51
Customer Change Notification Service	51
Customer Support	51
Reader Response	
Product Identification System	53

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC18F2423 PIC18LF2423
- PIC18F2523 PIC18LF2523
- PIC18F4423 PIC18LF4423
- PIC18F4523 PIC18LF4523
- Note: This data sheet documents only the devices' features and specifications that are in addition to, or different from, the features and specifications of the PIC18F2420/2520/4420/4520 devices. For information on the features and specifications shared by the PIC18F2423/2523/4423/4523 and PIC18F2420/2520/4420/4520 devices, see the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. On top of these features, the PIC18F2423/2523/4423/4523 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power-sensitive applications.

1.1 New Core Features

1.1.1 nanoWatt TECHNOLOGY

All of the devices in the PIC18F2423/2523/4423/4523 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller also can run with its CPU core disabled and the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- **On-the-Fly Mode Switching:** The power-managed modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- Low Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer are minimized. See Section 4.0 "Electrical Characteristics" for values.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18F2423/2523/4423/4523 family offer ten different oscillator options, allowing users a wide range of choices in developing application hardware. These include:

- Four Crystal modes, using crystals or ceramic resonators.
- Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O).
- Two External RC Oscillator modes with the same pin options as the External Clock modes.
- An internal oscillator block that offers eight clock frequencies: an 8 MHz clock and an INTRC source (approximately 31 kHz), as well as a range of six user-selectable clock frequencies, between 125 kHz to 4 MHz. This option frees the two oscillator pins for use as additional general purpose I/O.
- A Phase Lock Loop (PLL) frequency multiplier, available to both the High-Speed Crystal and Internal Oscillator modes, allowing clock speeds of up to 40 MHz from the HS clock source. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 32 MHz, all without using an external crystal or clock circuit.

Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: Constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued operation or a safe application shutdown.
- **Two-Speed Start-up:** Allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available.

	Pin Nur	mber	Pin	Buffer			
Pin Name	PDIP, SOIC	QFN	Туре	Туре	Description		
					PORTC is a bidirectional I/O port.		
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	11	8	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽²⁾	12	9	I/O I I/O	ST Analog ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.		
RC2/CCP1 RC2 CCP1	13	10	I/O I/O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output.		
RC3/SCK/SCL RC3 SCK SCL	14	11	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.		
RC4/SDI/SDA RC4 SDI SDA	15	12	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.		
RC5/SDO RC5 SDO	16	13	I/O O	ST —	Digital I/O. SPI data out.		
RC6/TX/CK RC6 TX CK	17	14	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT).		
RC7/RX/DT RC7 RX DT	18	15	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK).		
RE3		_		_	See MCLR/VPP/RE3 pin.		
Vss	8, 19 క	5, 16	Р	_	Ground reference for logic and I/O pins.		
VDD	20	17	Р		Positive supply for logic and I/O pins.		
DT RE3 Vss	20 ompatible tt Trigger	17 e input	I/O — P P	ST — —	EUSART synchronous data (see re See MCLR/VPP/RE3 pin. Ground reference for logic and I/O pins Positive supply for logic and I/O pins. CMOS = CMOS compatible		

Р

= Power

TABLE 1-2 :	PIC18F2423/2523 PINOUT I/O DESCRIPTIONS (CONTINUED)
--------------------	---

O = Output I^2C = $I^2C^{TM}/SMBus$ Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pi	n Numb	per	Pin Buffer		Description		
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.		
VPP				Р		Programming voltage input.		
RE3					ST	Digital input.		
OSC1/CLKI/RA7 OSC1	13	32	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode;		
CLKI				I	CMOS	analog otherwise. External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)		
RA7				I/O	TTL	General purpose I/O pin.		
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.		
CLKO				0	_	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.		
RA6				I/O	TTL	General purpose I/O pin.		
Legend:TTL = TTL compatible inputCMOS = CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsI= InputO = OutputP= Power $I^2C = I^2C^{TM}/SMBus$ P= Power								

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pi	n Numb	ber	Pin	Buffer	Description		
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on a inputs.		
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	33	9	8	I/O I I	TTL ST ST Analog	Digital I/O. External Interrupt 0. PWM Fault input for Enhanced CCP1. Analog Input 12.		
RB1/INT1/AN10 RB1 INT1 AN10	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 1. Analog Input 10.		
RB2/INT2/AN8 RB2 INT2 AN8	35	11	10	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 2. Analog Input 8.		
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	36	12	11	I/O I I/O	TTL Analog ST	Digital I/O. Analog Input 9. Capture 2 input/Compare 2 output/PWM2 output.		
RB4/KBI0/AN11 RB4 KBI0 AN11	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog Input 11.		
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.		
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.		
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.		
O = Out	mitt Trig put ™/SMBเ	iger inpi is	ut with C			CMOS = CMOS compatible input or output I = Input P = Power it CCD2MX is set		

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pin Number			Pin	Buffer	Description			
Fill Name	PDIP	QFN	TQFP	Туре	Туре	Description			
						PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when the PSP module is enabled.			
RD0/PSP0 RD0 PSP0	19	38	38	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD1/PSP1 RD1 PSP1	20	39	39	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD2/PSP2 RD2 PSP2	21	40	40	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD3/PSP3 RD3 PSP3	22	41	41	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD4/PSP4 RD4 PSP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.			
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.			
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.			
RD7/PSP7/P1D RD7 PSP7 P1D	30	5	5	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.			
Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output ¹ ² O = ^{1/2} OTMONDER O = CMOS = CMOS compatible input or output I = Input P = Power									

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output $I^{2}C = I^{2}C^{TM}/SMBus$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pin Number			Pin Buff	Buffer	Description
Pin Name	PDIP	QFN TQFP		Туре	Туре	Description
						PORTE is a bidirectional I/O port.
RE0/RD/AN5	8	25	25			
RE0	-			I/O	ST	Digital I/O.
RD				I	TTL	Read control for Parallel Slave Port
						(see also \overline{WR} and \overline{CS} pins).
AN5				I	Analog	Analog Input 5.
RE1/WR/AN6	9	26	26			
RE1				I/O	ST	Digital I/O.
WR				I	TTL	Write control for Parallel Slave Port
						(see \overline{CS} and \overline{RD} pins).
AN6				I	Analog	Analog Input 6.
RE2/CS/AN7	10	27	27			
RE2				I/O	ST	Digital I/O.
CS				I	TTL	Chip select control for Parallel Slave Port
						(see related \overline{RD} and \overline{WR}).
AN7				Ι	Analog	Analog Input 7.
RE3	—	—		_		See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 30,	6, 29	Р		Ground reference for logic and I/O pins.
		31				
Vdd	11, 32	7, 8,	7, 28	Р		Positive supply for logic and I/O pins.
		28, 29				
NC	—	13	12, 13,	_		No connect.
			33, 34			
Legend: TTL = TTL	compat	tible inp	ut			CMOS = CMOS compatible input or output

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

I

= Schmitt Trigger input with CMOS levels ST = Output

= Input Ρ = Power

0 I²C = I²C™/SMBus

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3.

The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω .

After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	g capa	acitor is disco	nne	ected from	the
	input p	in.				

EQUATION 2-1: ACQUISITION TIME

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4,096 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the application system assumptions shown in Table 2-1:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 4 \ k\Omega$
Temperature	=	85°C (system maximum)

TABLE 2-1:	TACQ ASSUMPTIONS
IADLL 2-I.	TACK ASSUME HONS

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 2-2: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/4096)) \cdot (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})$ or $TC = -(CHOLD)(RIC + RSS + RS) \ln(1/4096)$

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF			
TAMP	=	0.2 μs			
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs			
Tempera	Temperature coefficient is only required for temperatures $> 25^{\circ}$ C. Below 25°C, TCOFF = 0 ms.				
ТС	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/4095) \mu s$ -(25 pF) (1 k Ω + 4 k Ω + 2.5 k Ω) ln(0.0004883) μs 1.56 μs			
TACQ	=	0.2 μs + 1.56 μs + 1.2 μs 2.96 μs			

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT<2:0> bits do not need to be adjusted as the ADCS<2:0> bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - **3:** The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG<3:0> bits in ADCON1 are reset.

2.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user or an appropriate TACQ time is selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(Note 4)
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	(Note 4)
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	(Note 4)
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	(Note 4)
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	(Note 4)
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	(Note 4)
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	(Note 4)
ADRESH	A/D Result Register High Byte							(Note 4)	
ADRESL	A/D Result Register Low Byte						(Note 4)		
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	(Note 4)
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	(Note 4)
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	(Note 4)
PORTA	RA7 ⁽²⁾	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	(Note 4)
TRISA	TRISA7 ⁽²⁾ TRISA6 ⁽²⁾ PORTA Data Direction Control Register					(Note 4)			
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	(Note 4)
TRISB	PORTB Data Direction Control Register						(Note 4)		
LATB	PORTB Data Latch Register (Read and Write to Data Latch)					(Note 4)			
PORTE ⁽¹⁾	—	—	_		RE3 ⁽³⁾	RE2	RE1	RE0	(Note 4)
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE		TRISE2	TRISE1	TRISE0	(Note 4)
LATE ⁽¹⁾						PORTE D	ata Latch Re	egister	(Note 4)

TABLE 2-3:	REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers and/or bits are not implemented on PIC18F2423/2523 devices and are read as '0'.

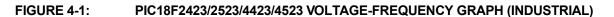
2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

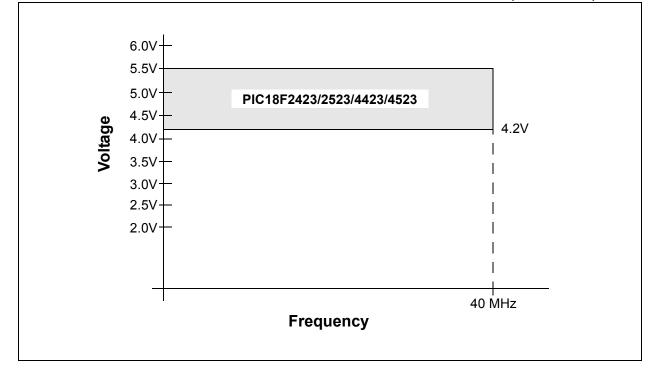
3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

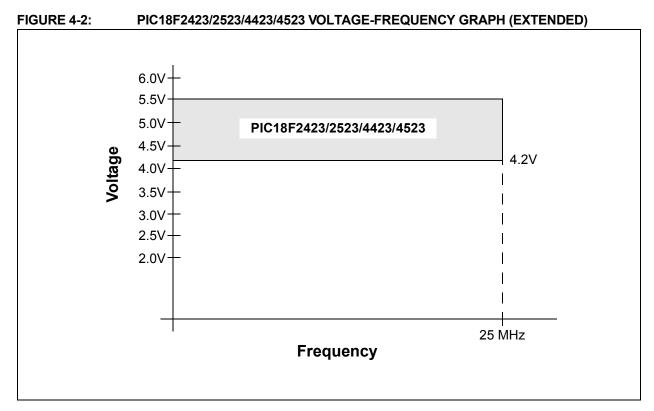
4: For these Reset values, see Section 4.0 "Reset" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

4.0 ELECTRICAL CHARACTERISTICS

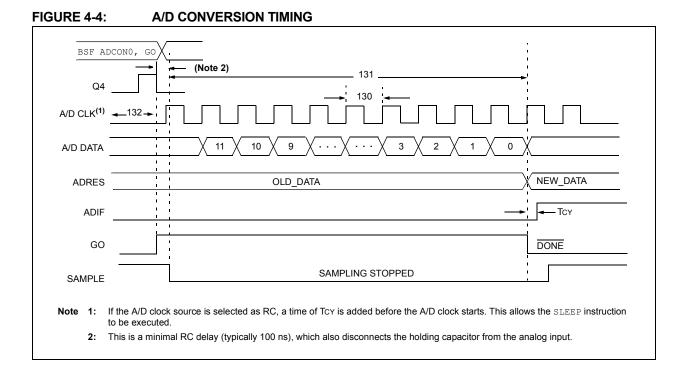
Note: Other than some basic data, this section documents only the PIC18F2423/2523/4423/4523 devices' specifications that differ from those of the PIC18F2420/2520/4420/4520 devices. For detailed information on the electrical specifications shared by the PIC18F2423/2523/4423/4523 and PIC18F2420/2520/4420/4520 devices, see the *"PIC18F2420/2520/4420/4520 Data Sheet"* (DS39631).


Absolute Maximum Ratings^(†)


Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA


- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - 2: Voltage spikes below Vss at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


PIC18F2423/2523/4423/4523

PIC18F2423/2523/4423/4523

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
130	TAD	A/D Clock Period	PIC18FXXXX	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			PIC18 LF XXXX	1.4	25.0 ⁽¹⁾	μS	V _{DD} = 3.0V; Tosc based, VREF full range
			PIC18FXXXX		1	μS	A/D RC mode
			PIC18LFXXXX		3	μS	VDD = 3.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquis	ition time) ⁽²⁾	13	14	Tad	
132	TACQ	Acquisition Time ⁽³⁾		1.4		μS	
135	Tswc	Switching Time from	—	(Note 4)			
137	TDIS	Discharge Time	0.2		μS		

TABLE 4-2: A/D CONVERSION REQUIREMENTS

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.

4: On the following cycle of the device clock.

NOTES:

5.0 PACKAGING INFORMATION

For packaging information, see **Section 28.0 "Packaging Information"** in the *"PIC18F2420/2520/4420/4520 Data Sheet"* (DS39631).

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

NOTES:

R

Reader Response	52
Registers	
ADCON0 (A/D Control 0)	25
ADCON1 (A/D Control 1)	26
ADCON2 (A/D Control 2)	27
DEVID1 (Device ID 1)	35
DEVID2	
(Device ID 2)	36
Revision History	
S	
Special Features of the CPU	35

Т

Timing Diagrams A/D Conversion	41
Timing Diagrams and Specifications	44
A/D Conversion Requirements	41
V	
Voltage-Frequency Graphics	
PIC18F2423/2523/4423/4523 (Extended)	38
PIC18F2423/2523/4423/4523 (Industrial)	38
PIC18LF2423/2523/4423/4523 (Industrial)	39

W

WWW Address	51
WWW, On-Line Support	. 8

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	¥	<u>/xx</u>	<u>xxx</u>	E	Examples:
Device	Temperature Range	Package	Pattern		 a) PIC18F4523-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18F4523-I/PT = Industrial temp., TQFP
Device	PIC18F4523T ⁽²⁾	; 2V to 5.5V PIC18F2523 ⁽¹⁾ ;	⁾ , PIC18F4423T ⁽²⁾ , ⁾ , PIC18F4423T ⁽²⁾ ,		 package, Extended VDD limits. PIC18F4523-E/P = Extended temp., PDIP package, normal VDD limits.
Temperature Range		C to +85°C C to +125°C			
Package	ML = QF SO = SO	IC nny Plastic DIF	. ,	•	Note 1:F=Standard Voltage RangeLF=Wide Voltage Range2:T=In tape and reel PLCC, and TQFP packages only.
Pattern	QTP, SQTP, Co (blank otherwise		tequirements		