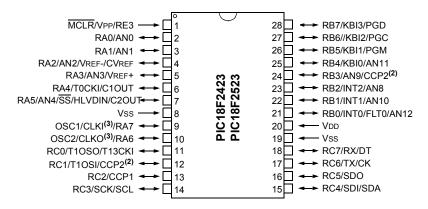


Welcome to **E-XFL.COM**

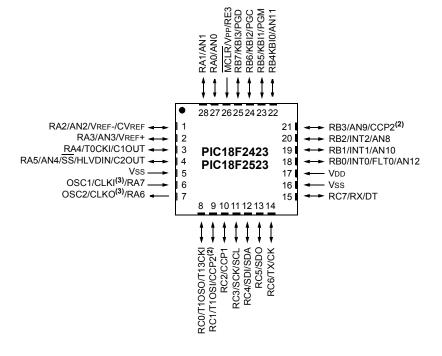
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

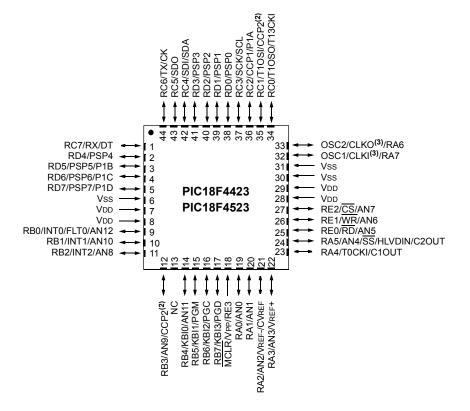

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4423-i-ml

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

28-Pin PDIP, SOIC


28-Pin QFN⁽¹⁾

- Note 1: It is recommended to connect the bottom pad of QFN package parts to Vss.
 - 2: RB3 is the alternate pin for CCP2 multiplexing.
 - 3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. For additional information, see Section 2.0 "Oscillator Configurations" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

Pin Diagrams (Continued)

- Note 1: It is recommended to connect the bottom pad of QFN package parts to Vss.
 - 2: RB3 is the alternate pin for CCP2 multiplexing.
 - 3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. For additional information, see Section 2.0 "Oscillator Configurations" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

PIC18F2423
 PIC18F2423
 PIC18F2523
 PIC18F4423
 PIC18F4423
 PIC18F4523
 PIC18LF4523

Note: This data sheet documents only the devices' features and specifications that are in addition to, or different from, the features and specifications of the PIC18F2420/2520/4420/4520 devices. For information on the features and specifications shared by the PIC18F2423/2523/4423/4523 and PIC18F2420/2520/4420/4520 devices, see the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. On top of these features, the PIC18F2423/2523/4423/4523 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power-sensitive applications.

1.1 New Core Features

1.1.1 nanoWatt TECHNOLOGY

All of the devices in the PIC18F2423/2523/4423/4523 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller also can run
 with its CPU core disabled and the peripherals still
 active. In these states, power consumption can be
 reduced even further, to as little as 4% of normal
 operation requirements.
- On-the-Fly Mode Switching: The power-managed modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- Low Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer are minimized. See Section 4.0 "Electrical Characteristics" for values.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18F2423/2523/4423/4523 family offer ten different oscillator options, allowing users a wide range of choices in developing application hardware. These include:

- Four Crystal modes, using crystals or ceramic resonators.
- Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O).
- Two External RC Oscillator modes with the same pin options as the External Clock modes.
- An internal oscillator block that offers eight clock frequencies: an 8 MHz clock and an INTRC source (approximately 31 kHz), as well as a range of six user-selectable clock frequencies, between 125 kHz to 4 MHz. This option frees the two oscillator pins for use as additional general purpose I/O.
- A Phase Lock Loop (PLL) frequency multiplier, available to both the High-Speed Crystal and Internal Oscillator modes, allowing clock speeds of up to 40 MHz from the HS clock source. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 32 MHz, all without using an external crystal or clock circuit.

Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: Constantly monitors
 the main clock source against a reference signal
 provided by the internal oscillator. If a clock failure
 occurs, the controller is switched to the internal
 oscillator block, allowing for continued operation
 or a safe application shutdown.
- Two-Speed Start-up: Allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available.

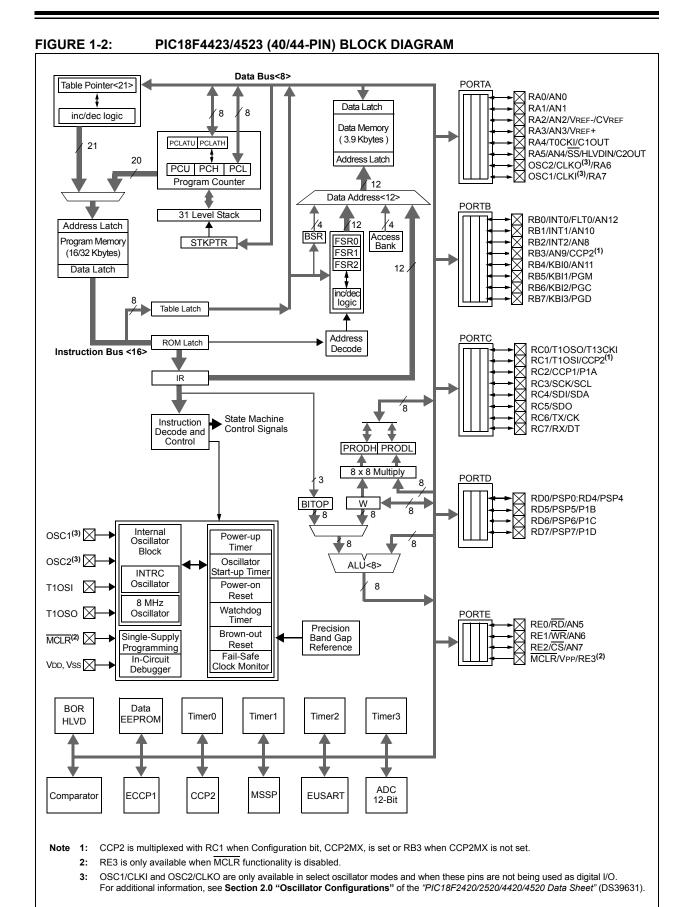


TABLE 1-2: PIC18F2423/2523 PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin Number		Pin	Buffer			
Pin Name	PDIP, SOIC	QFN	Туре	Туре	Description		
					PORTA is a bidirectional I/O port.		
RA0/AN0	2	27					
RA0			I/O	TTL	Digital I/O.		
AN0			I	Analog	Analog Input 0.		
RA1/AN1	3	28					
RA1			I/O	TTL	Digital I/O.		
AN1			I	Analog	Analog Input 1.		
RA2/AN2/VREF-/CVREF	4	1					
RA2			I/O	TTL	Digital I/O.		
AN2			I	Analog	Analog Input 2.		
VREF-			I	Analog	A/D reference voltage (low) input.		
CVREF			0	Analog	Comparator reference voltage output.		
RA3/AN3/VREF+	5	2					
RA3			I/O	TTL	Digital I/O.		
AN3			I	Analog	Analog Input 3.		
VREF+			I	Analog	A/D reference voltage (high) input.		
RA4/T0CKI/C1OUT	6	3					
RA4			I/O	ST	Digital I/O.		
T0CKI			I	ST	Timer0 external clock input.		
C1OUT			0	_	Comparator 1 output.		
RA5/AN4/SS/HLVDIN/	7	4					
C2OUT							
RA5			I/O	TTL	Digital I/O.		
<u>AN</u> 4			I	Analog	Analog Input 4.		
SS			!	TTL	SPI slave select input.		
HLVDIN				Analog			
C2OUT			0	_	Comparator 2 output.		
RA6					See the OSC2/CLKO/RA6 pin.		
RA7					See the OSC1/CLKI/RA7 pin.		

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels I = Input
O = Output P = Power

 $I^2C = I^2C^{\dagger M}/SMBus$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number			Pin	Buffer	Description	
PIII Name	PDIP	QFN	TQFP	Type	Type	Description	
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.	
VPP				Р		Programming voltage input.	
RE3				I	ST	Digital input.	
OSC1/CLKI/RA7 OSC1	13	32	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode;	
CLKI				I	CMOS	analog otherwise. External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)	
RA7				I/O	TTL	General purpose I/O pin.	
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.	
CLKO				0	_	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.	
RA6				I/O	TTL	General purpose I/O pin.	

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

O = Output

 $I^2C = I^2C^{TM}/SMBus$

CMOS = CMOS compatible input or output

I = Input P = Power

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Nama	Pi	n Numb	er	Pin	Buffer	Boo and add and
Pin Name	PDIP	QFN	TQFP	Туре	Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	33	9	8	I/O I I	TTL ST ST Analog	Digital I/O. External Interrupt 0. PWM Fault input for Enhanced CCP1. Analog Input 12.
RB1/INT1/AN10 RB1 INT1 AN10	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 1. Analog Input 10.
RB2/INT2/AN8 RB2 INT2 AN8	35	11	10	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 2. Analog Input 8.
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	36	12	11	I/O I I/O	TTL Analog ST	Digital I/O. Analog Input 9. Capture 2 input/Compare 2 output/PWM2 output.
RB4/KBI0/AN11 RB4 KBI0 AN11	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog Input 11.
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

O = Output

 $I^2C = I^2C^{TM}/SMBus$

CMOS = CMOS compatible input or output

I = Input
P = Power

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number		er	Pin	Buffer	Description
riii ivailie	PDIP	QFN	TQFP	Type	Type	Description
						PORTC is a bidirectional I/O port.
RC0/T10S0/T13CKI RC0 T10S0 T13CKI	15	34	32	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽²⁾	16	35	35	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.
RC2/CCP1/P1A RC2 CCP1 P1A	17	36	36	I/O I/O O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Enhanced CCP1 output.
RC3/SCK/SCL RC3 SCK	18	37	37	I/O I/O	ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode.
SCL				I/O	I ² C	Synchronous serial clock input/output for I ² C™ mode.
RC4/SDI/SDA RC4 SDI SDA	23	42	42	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.
RC5/SDO RC5 SDO	24	43	43	I/O O	ST —	Digital I/O. SPI data out.
RC6/TX/CK RC6 TX CK	25	44	44	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT).
RC7/RX/DT RC7 RX DT	26	1	1	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK).

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

s I = Input P = Power

CMOS = CMOS compatible input or output

O = Output

 $I^2C = I^2C^{TM}/SMBus$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3.

The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω .

After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4,096 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the application system assumptions shown in Table 2-1:

TABLE 2-1: TACQ ASSUMPTIONS

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	≤	1/2 LSb
VDD	=	$3V \rightarrow Rss = 4 \text{ k}\Omega$
Temperature	=	85°C (system maximum)

EQUATION 2-1: ACQUISITION TIME

```
TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
```

EQUATION 2-2: A/D MINIMUM CHARGING TIME

```
V_{HOLD} = (V_{REF} - (V_{REF}/4096)) \cdot (1 - e^{(-T_{C}/C_{HOLD}(R_{IC} + R_{SS} + R_{S}))})
or
T_{C} = -(C_{HOLD})(R_{IC} + R_{SS} + R_{S}) \ln(1/4096)
```

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

```
TACQ = TAMP + TC + TCOFF

TAMP = 0.2 \,\mu s

TCOFF = (Temp - 25°C)(0.02 \,\mu s/°C)
(85^{\circ}C - 25^{\circ}C)(0.02 \,\mu s/°C)
1.2 \,\mu s

Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 ms.

TC = -(CHOLD)(RIC + RSS + RS) ln(1/4095) \mu s
-(25 \,p F) (1 \,k \Omega + 4 \,k \Omega + 2.5 \,k \Omega) ln(0.0004883) \,\mu s
1.56 \,\mu s

TACQ = 0.2 \,\mu s + 1.56 \,\mu s + 1.2 \,\mu s
2.96 \,\mu s
```

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option of having an automatically determined acquisition time.

Acquisition time may be set with the ACQT<2:0> bits (ADCON2<5:3>), which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition time is selected when ACQT<2:0> = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT<2:0> bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

2 Tosc4 Tosc64 Tosc

8 Tosc
 Internal RC Oscillator

16 Tosc

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD. (For more information, see parameter 130 on page 41.)

Table 2-2 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 2-2: TAD vs. DEVICE OPERATING FREQUENCIES

A/D Clock So	A/D Clock Source (TAD)							
Operation	ADCS<2:0>	Maximum Fosc						
2 Tosc	000	2.50 MHz						
4 Tosc	100	5.00 MHz						
8 Tosc	001	10.00 MHz						
16 Tosc	101	20.00 MHz						
32 Tosc	010	40.00 MHz						
64 Tosc	110	40.00 MHz						
RC ⁽²⁾	×11	1.00 MHz ⁽¹⁾						

Note 1: The RC source has a typical TAD time of 2.5 μ s.

2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT<2:0> bits do not need to be adjusted as the ADCS<2:0> bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

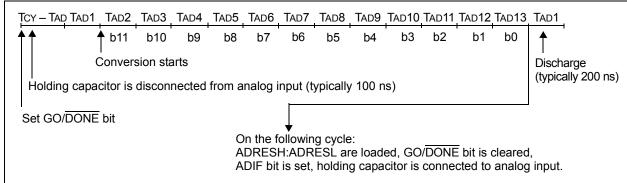
- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - **3:** The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG<3:0> bits in ADCON1 are reset.

2.6 A/D Conversions

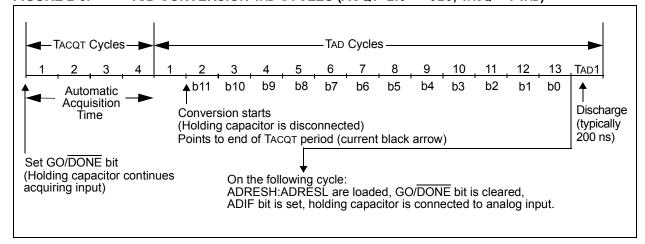
Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT<2:0> bits have been set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 Tcy wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D. Code should wait at least 3 TAD after enabling the A/D before beginning an acquisition and conversion cycle.


2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unitygain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

2.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location).

The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user or an appropriate TACQ time is selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

TABLE 2-3: REGISTERS ASSOCIATED WITH A/D OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(Note 4)	
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	(Note 4)	
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	(Note 4)	
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	(Note 4)	
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	(Note 4)	
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	(Note 4)	
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	(Note 4)	
ADRESH	A/D Result Register High Byte									
ADRESL	A/D Result	Register Lo	w Byte						(Note 4)	
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	(Note 4)	
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	(Note 4)	
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	(Note 4)	
PORTA	RA7 ⁽²⁾	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	(Note 4)	
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽²⁾	PORTA Da	ata Direction	Control Re	gister			(Note 4)	
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	(Note 4)	
TRISB	PORTB Dat	a Direction (Control Reg	ister					(Note 4)	
LATB	PORTB Dat	a Latch Reg	ister (Read	and Write to	Data Latc	h)			(Note 4)	
PORTE ⁽¹⁾	_	_	_	_	RE3 ⁽³⁾	RE2	RE1	RE0	(Note 4)	
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	(Note 4)	
LATE ⁽¹⁾	_	_		_	_	PORTE D	ata Latch Re	gister	(Note 4)	

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

- Note 1: These registers and/or bits are not implemented on PIC18F2423/2523 devices and are read as '0'.
 - 2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.
 - 3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.
 - **4:** For these Reset values, see **Section 4.0 "Reset"** of the "*PIC18F2420/2520/4420/4520 Data Sheet"* (DS39631).

4.0 ELECTRICAL CHARACTERISTICS

Note: Other than some basic data, this section documents only the PIC18F2423/2523/4423/4523 devices' specifications that differ from those of the PIC18F2420/2520/4420/4520 devices. For detailed information on the electrical specifications shared by the PIC18F2423/2523/4423/4523 and PIC18F2420/2520/4420/4520 devices, see the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, liκ (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loκ (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

- Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)
 - 2: Voltage spikes below Vss at the $\overline{\text{MCLR}/\text{VPP/RE3}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}/\text{VPP/RE3}}$ RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

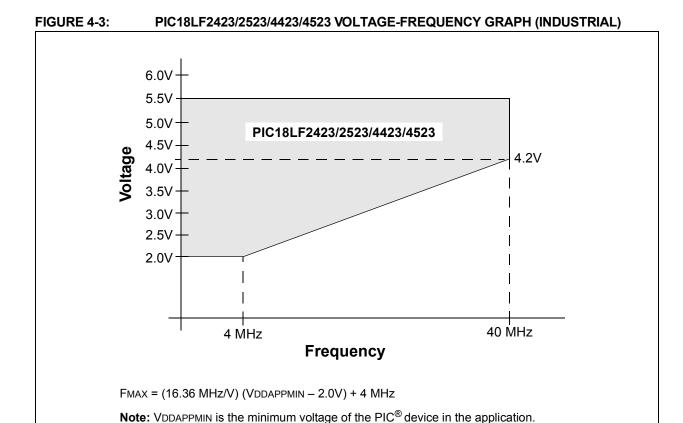


TABLE 4-1: A/D CONVERTER CHARACTERISTICS: PIC18F2423/2523/4423/4523 (INDUSTRIAL) PIC18LF2423/2523/4423/4523 (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Max	Units		Conditions
A01	NR	Resolution	_	_	12	bit		ΔV REF $\geq 3.0V$
A03	EIL	Integral Linearity Error	_	<±1	±2.0	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			_	_	±2.0	LSB	VDD = 5.0V	
A04	EDL	Differential Linearity Error	_	<±1	+1.5/-1.0	LSB	VDD = 3.0V	ΔV REF $\geq 3.0V$
			_	_	+1.5/-1.0	LSB	VDD = 5.0V	
A06	Eoff	Offset Error	_	<±1	±5	LSB	VDD = 3.0V	ΔV REF $\geq 3.0V$
			_	_	±3	LSB	VDD = 5.0V	
A07	Egn	Gain Error	_	<±1	±1.25	LSB	VDD = 3.0V	ΔV REF $\geq 3.0V$
			_	_	±2.00	LSB	VDD = 5.0V	
A10	_	Monotonicity	Gı	uarantee	d ⁽¹⁾	_		$Vss \leq Vain \leq Vref$
A20	ΔVREF	Reference Voltage Range (VREFH – VREFL)	3	_	VDD - VSS	V		For 12-bit resolution.
A21	VREFH	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V		For 12-bit resolution.
A22	VREFL	Reference Voltage Low	Vss - 0.3V	_	VDD - 3.0V	V		For 12-bit resolution.
A25	Vain	Analog Input Voltage	VREFL	_	VREFH	V		
A30	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾	_	_ _	5 150	μA μA		During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

^{2:} VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSs, whichever is selected as the VREFL source.

NOTES:

INDEX

A		l		
A/D	25	Internet Address		. 51
A/D Converter Interrupt, Configuring	29	Interrupt Sources		
Acquisition Requirements	30	A/D Conversion Complete		. 29
ADCON0 Register	25			
ADCON1 Register	25	М		
ADCON2 Register		Microchip Internet Web Site		. 51
ADRESH Register	25, 28	Migration from Baseline to Enhanced Devices		. 46
ADRESL Register	25	Migration from High-End to Enhanced Devices		. 47
Analog Port Pins, Configuring		Migration from Mid-Range to Enhanced Devices		. 47
Associated Registers		D		
Configuring the Module		Р		
Conversion Clock (TAD)		Packaging Information		. 43
Conversion Status (GO/DONE Bit)	28	Pin F <u>unction</u> s		
Conversions		MCLR/VPP/RE3	,	, -
Converter Characteristics	40	OSC1/CLKI/RA7		
Discharge	33	OSC2/CLKO/RA6	14	, 18
Operation in Power-Managed Modes	32	RA0/AN0	15	, 19
Selecting and Configuring Acquisition Time		RA1/AN1	15	, 19
Special Event Trigger (CCP)		RA2/AN2/VREF-/CVREF	15	, 19
Use of the CCP2 Trigger		RA3/AN3/VREF+	15	, 19
Absolute Maximum Ratings		RA4/T0CKI/C1OUT	15	, 19
ADCON0 Register		RA5/AN4/SS/HLVDIN/C2OUT	15	, 19
GO/DONE Bit		RB0/INT0/FLT0/AN12	16	, 20
ADCON1 Register		RB1/INT1/AN10	16	, 20
ADCON2 Register		RB2/INT2/AN8	16	, 20
ADRESH Register		RB3/AN9/CCP2	16	, 20
ADRESL Register		RB4/KBI0/AN11	16	, 20
Analog-to-Digital Converter. See A/D.	20, 20	RB5/KBI1/PGM	16	. 20
Tritalog to Digital Convertor. Coc 7 vb.		RB6/KBI2/PGC		-
В		RB7/KBI3/PGD	16	. 20
Block Diagrams		RC0/T10S0/T13CKI		
A/D	28	RC1/T1OSI/CCP2		-
Analog Input Model		RC2/CCP1		,
PIC18F2423/2523 (28-Pin)		RC2/CCP1/P1A		
PIC18F4423/4523 (40/44-Pin)		RC3/SCK/SCL		
1 10 101 4423/4323 (40/44-1 111)	10	RC4/SDI/SDA		,
C		RC5/SDO		
Compare (CCP Module)		RC6/TX/CK		
Special Event Trigger	34	RC7/RX/DT		
Conversion Considerations		RD0/PSP0		-
Customer Change Notification Service		RD1/PSP1		
Customer Notification Service		RD2/PSP2		
Customer Support		RD3/PSP3		
Customer Support		RD4/PSP4		
D		RD5/PSP5/P1B		
Device Differences	45	RD6/PSP6/P1C		
Device Overview		RD7/PSP7/P1D		
Details on Individual Family Members		RE0/RD/AN5		
Features (table)		RE1/WR/AN6		
New Core Features		RE2/CS/AN7		
Other Special Features				
Documentation	10	VDD		, -
	0	Vss	17,	, 23
Related Data Sheet	9	Pinout I/O Descriptions		
E		PIC18F2423/2523		
Electrical Characteristics	27	PIC18F4423/4523		. 18
	J1	Power-Managed Modes		
Equations A/D Acquisition Time	20	and A/D Operation		. 32
A/D Minimum Charging Time				
A/D Minimum Charging Time	30			
Calculating the Minimum Required	20			
Acquisition Time				
Errata	ర			

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com