

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4523t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F2423/2523/4423/4523

28/40/44-Pin, Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt Technology

Power Management Features:

- Run: CPU on, Peripherals on
- Idle: CPU off, Peripherals on
- · Sleep: CPU off, Peripherals off
- Ultra Low 50 nA Input Leakage
- Run mode Currents Down to 11 μA Typical
- Idle mode Currents Down to 2.5 μA Typical
- Sleep mode Current Down to 100 μA Typical
- Timer1 Oscillator: 900 nA, 32 kHz, 2V
- Watchdog Timer: 1.4 μA, 2V Typical
- Two-Speed Oscillator Start-up

Flexible Oscillator Structure:

- Four Crystal modes, up to 40 MHz
- 4x Phase Lock Loop (PLL) Available for Crystal and Internal Oscillators
- Two External RC modes, up to 4 MHz
- Two External Clock modes, up to 40 MHz
- Internal Oscillator Block:
- Fast wake from Sleep and Idle, 1 µs typical
- 8 user-selectable frequencies, from 31 kHz to 8 MHz
- Provides a complete range of clock speeds, from 31 kHz to 32 MHz, when used with PLL
 User-tunable to Compensate for Frequency Drift
- Secondary Oscillator using Timer1 @ 32 kHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops

Peripheral Highlights:

- 12-Bit, Up to 13-Channel Analog-to-Digital Converter module (A/D):
 - Auto-acquisition capability
 - Conversion available during Sleep mode
- · Dual Analog Comparators with Input Multiplexing
- High-Current Sink/Source 25 mA/25 mA
- Three Programmable External Interrupts
- Four Input Change Interrupts
- Up to Two Capture/Compare/PWM (CCP)
- modules, One with Auto-Shutdown (28-pin devices) • Enhanced Capture/Compare/PWM (ECCP) module
- (40/44-pin devices only):
- One, two or four PWM outputs
- Selectable polarity
- Programmable dead time
- Auto-shutdown and auto-restart

Peripheral Highlights (Continued):

- Master Synchronous Serial Port (MSSP) module Supporting 3-Wire SPI (all four modes) and I²C™ Master and Slave modes
- Enhanced USART module:
- Support for RS-485, RS-232 and LIN/J2602RS-232 operation using internal oscillator
- RS-232 operation using internal osc block (no external crystal required)
- Auto-wake-up on Start bit
- Auto-Baud Detect (ABD)

Special Microcontroller Features:

- C Compiler Optimized Architecture: Optional Extended Instruction Set Designed to Optimize Re-Entrant Code
- 100,000 Erase/Write Cycle, Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle, Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: 100 Years Typical
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT): Programmable Period, from 4 ms to 131s
- Single-Supply In-Circuit Serial Programming™ (ICSP™) via Two Pins
- In-Circuit Debug (ICD) via Two Pins
- Operating Voltage Range: 2.0V to 5.5V
- Programmable, 16-Level High/Low-Voltage Detection (HLVD) module: Supports Interrupt on High/Low-Voltage Detection
- Programmable Brown-out Reset (BOR): With Software-Enable Option

Note:	This d	ocumer	nt is	supplem	ented	by	the
	"PIC18	F2420/	2520/	4420/452	20 Data	a Sh	eet"
	(DS396	531). 3	See	Section	1.0 '	'De\	/ice
	Overvi	ew".					

	Program Memory		Data	Memory		40 51	CCP/	MS	SSP	RT		Times
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	12-Bit A/D (ch)	ECCP (PWM)	SPI	Master I ² C™	EUSA	Comp.	8/16-Bit
PIC18F2423	16K	8192	768	256	25	10	2/0	Y	Y	1	2	1/3
PIC18F2523	32K	16384	1536	256	25	10	2/0	Y	Y	1	2	1/3
PIC18F4423	16K	8192	768	256	36	13	1/1	Y	Y	1	2	1/3
PIC18F4523	32K	16384	1536	256	36	13	1/1	Y	Y	1	2	1/3

Pin Diagrams (Continued)

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 1-2:	PIC18F2423/2523 PINOUT I/O DESCRIPTIONS
------------	---

	Pin N	umber	Din	Duffer						
Pin Name	PDIP, SOIC	QFN	Туре	Туре	Description					
MCLR/VPP/RE3	1	26		0.7	Master Clear (input) or programming voltage (input).					
MCLR			I	SI	Reset to the device.					
VPP			Р		Programming voltage input.					
RE3			Ι	ST	Digital input.					
OSC1/CLKI/RA7	9	6			Oscillator crystal or external clock input.					
OSC1			I	ST	Oscillator crystal input or external clock source input.					
				01400	ST buffer when configured in RC mode; CMOS otherwise.					
CLKI				CIMOS	S External clock source input. Always associated with pi					
					nins)					
RA7			I/O	TTL	General purpose I/O pin.					
OSC2/CLKO/RA6	10	7			Oscillator crystal or clock output.					
OSC2			0	—	Oscillator crystal output. Connects to crystal or					
			~		resonator in Crystal Oscillator mode.					
CLKO			0		In RC mode, USC2 pin outputs CLKO, which has 1/4 the					
RA6			1/0	тті	frequency of OSC1 and denotes the instruction cycle rate.					
	omnatih	lo input			CMOS = CMOS compatible input or output					
ST = Schm	itt Trigg	ar input	with C							
	t nyy	si input	with C		$D = D_{OWOP}$					
2° = 2°										

 $I^2C = I^2C^{TM}/SMBus$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

	Pin N	umber	Dim	Duffer					
Pin Name	PDIP, SOIC	QFN	Туре	Туре	Description				
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.				
RB0/INT0/FLT0/AN12	21	18							
RB0			1/0		Digital I/O.				
				SI	External Interrupt 0.				
AN12				Analog	Analog Input 12				
RB1/INT1/AN10	22	10		, analog					
RB1	~~	13	1/0	тті	Digital I/O				
INT1			1	ST	External Interrupt 1.				
AN10			I	Analog	Analog Input 10.				
RB2/INT2/AN8	23	20		_					
RB2	_	-	I/O	TTL	Digital I/O.				
INT2			I	ST	External Interrupt 2.				
AN8			I	Analog	Analog Input 8.				
RB3/AN9/CCP2	24	21							
RB3			I/O	TTL	Digital I/O.				
AN9				Analog	Analog Input 9.				
			1/0	51	Capture 2 input/Compare 2 output/P wivi2 output.				
RB4/KBI0/AN11	25	22	1/0	T TI	Digital 1/0				
KB4 KBI0			1/0		Digital I/O.				
AN11				Analog	Analog Input 11.				
RB5/KBI1/PGM	26	23	-	1	·				
RB5	20	20	I/O	TTL	Digital I/O.				
KBI1			I	TTL	Interrupt-on-change pin.				
PGM			I/O	ST	Low-Voltage ICSP [™] Programming enable pin.				
RB6/KBI2/PGC	27	24							
RB6			I/O	TTL	Digital I/O.				
KBI2				TTL	Interrupt-on-change pin.				
PGC			I/O	ST	In-Circuit Debugger and ICSP programming clock pin.				
RB7/KBI3/PGD	28	25							
RB7			1/0		Digital I/O.				
PGD			1/0	ST	Interrupt-on-change pin.				
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	 omnatib	l la innut			CMOS = CMOS compatible input or output				
ST = Schmi	itt Trian	er innut	with C	CMOS le	vels I = Input				
O = Outpu	t				P = Power				
$I^2 C = I^2 C^{TM}/$	SMBus								

TABLE 1-2: PIC18F2423/2523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Din Nama	Pi	n Numb	ber	Pin	Buffer	Description				
	PDIP	QFN	TQFP	Туре	Туре	Description				
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.				
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	33	9	8	I/O I I	TTL ST ST Analog	Digital I/O. External Interrupt 0. PWM Fault input for Enhanced CCP1. Analog Input 12.				
RB1/INT1/AN10 RB1 INT1 AN10	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 1. Analog Input 10.				
RB2/INT2/AN8 RB2 INT2 AN8	35	11	10	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 2. Analog Input 8.				
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	36	12	11	I/O I I/O	TTL Analog ST	Digital I/O. Analog Input 9. Capture 2 input/Compare 2 output/PWM2 output.				
RB4/KBI0/AN11 RB4 KBI0 AN11	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog Input 11.				
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.				
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.				
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.				
Legend: TTL = TTL ST = Sch O = Out I^2C = I^2C^3	Legend:TTL = TTL compatible inputCMOS = CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsI= InputO = OutputP= Power I^2C = $I^2C^{TM}/SMBus$ P= Power									

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option of having an automatically determined acquisition time.

Acquisition time may be set with the ACQT<2:0> bits (ADCON2<5:3>), which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition time is <u>selected</u> when ACQT<2:0> = 0.00. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT<2:0> bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 32 Tosc
 64 Tosc
- 4 Tosc
- Internal RC Oscillator
- 8 Tosc 16 Tosc
 -)SC

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD. (For more information, see parameter 130 on page 41.)

Table 2-2 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

A/D Clock So	A/D Clock Source (TAD)						
Operation	ADCS<2:0>	Maximum Fosc					
2 Tosc	000	2.50 MHz					
4 Tosc	100	5.00 MHz					
8 Tosc	001	10.00 MHz					
16 Tosc	101	20.00 MHz					
32 Tosc	010	40.00 MHz					
64 Tosc	110	40.00 MHz					
RC ⁽²⁾	x11	1.00 MHz ⁽¹⁾					

TABLE 2-2:TAD vs. DEVICE OPERATING FREQUENCIES

Note 1: The RC source has a typical TAD time of 2.5 μ s.

2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT<2:0> bits do not need to be adjusted as the ADCS<2:0> bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - **3:** The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG<3:0> bits in ADCON1 are reset.

2.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user or an appropriate TACQ time is selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(Note 4)		
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	(Note 4)		
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	(Note 4)		
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	(Note 4)		
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	(Note 4)		
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	(Note 4)		
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	(Note 4)		
ADRESH	A/D Result Register High Byte										
ADRESL	A/D Result	Register Lov	w Byte						(Note 4)		
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	(Note 4)		
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	(Note 4)		
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	(Note 4)		
PORTA	RA7 ⁽²⁾	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	(Note 4)		
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽²⁾	PORTA Da	ata Direction	Control Re	gister			(Note 4)		
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	(Note 4)		
TRISB	PORTB Dat	a Direction (Control Reg	ister					(Note 4)		
LATB	PORTB Dat	ta Latch Reg	ister (Read	and Write to	Data Latc	h)			(Note 4)		
PORTE ⁽¹⁾	—	—			RE3 ⁽³⁾	RE2	RE1	RE0	(Note 4)		
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	(Note 4)		
LATE ⁽¹⁾	—	—	—	—	_	PORTE Da	ata Latch Re	gister	(Note 4)		

 TABLE 2-3:
 REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers and/or bits are not implemented on PIC18F2423/2523 devices and are read as '0'.

2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

4: For these Reset values, see Section 4.0 "Reset" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

PIC18F2423/2523/4423/4523

REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2423/2523/4423/4523

R	R	R	R	R	R	R	R				
DEV11 ⁽¹⁾	DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾				
bit 7 bit 0											
Legend:											
R = Read-only	bit	P = Programm	nable bit	U = Unimplemented bit, read as '0'							
-n = Value whe	n device is unp	programmed		u = Unchanged from programmed state							

bit 7-0 **DEV<11:4>:** Device ID bits⁽¹⁾ These bits are used with the DEV<3:0> bits in Device ID Register 1 to identify the part number. 0001 0001 = PIC18F2423/2523 devices 0001 0000 = PIC18F4423/4523 devices

Note 1: These values for DEV<11:4> may be shared with other devices. The specific device is always identified by using the entire DEV<11:0> bit sequence.

TABLE 4-1:A/D CONVERTER CHARACTERISTICS: PIC18F2423/2523/4423/4523 (INDUSTRIAL)PIC18LF2423/2523/4423/4523 (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Мах	Units		Conditions
A01	NR	Resolution	—	_	12	bit		$\Delta V \text{REF} \geq 3.0 V$
A03	EIL	Integral Linearity Error	—	<±1	±2.0	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$
			—	—	±2.0	LSB	VDD = 5.0V	
A04	Edl	Differential Linearity Error	—	<±1	+1.5/-1.0	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$
			—	_	+1.5/-1.0	LSB	VDD = 5.0V	
A06	EOFF	Offset Error	—	<±1	±5	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			—	_	±3	LSB	VDD = 5.0V	
A07	Egn	Gain Error	—	<±1	±1.25	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$
			—	—	±2.00	LSB	VDD = 5.0V	
A10	_	Monotonicity	Gu	arantee	d ⁽¹⁾	_		$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	—	Vdd - Vss	V		For 12-bit resolution.
A21	Vrefh	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V		For 12-bit resolution.
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	_	Vdd - 3.0V	V		For 12-bit resolution.
A25	VAIN	Analog Input Voltage	VREFL	—	VREFH	V		
A30	Zain	Recommended Impedance of Analog Voltage Source	—	—	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾	—	_	5 150	μΑ μΑ		During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

PIC18F2423/2523/4423/4523

Param No.	Symbol	Characte	Min	Мах	Units	Conditions	
130	Tad	A/D Clock Period	PIC18FXXXX	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			PIC18 LF XXXX	1.4	25.0 ⁽¹⁾	μs	VDD = 3.0V; Tosc based, VREF full range
			PIC18FXXXX	_	1	μS	A/D RC mode
			PIC18LFXXXX	_	3	μS	VDD = 3.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisition	on time) ⁽²⁾	13	14	Tad	
132	TACQ	Acquisition Time ⁽³⁾		1.4	—	μS	
135	Tswc	Switching Time from C	_	(Note 4)			
137	TDIS	Discharge Time		0.2	—	μS	

TABLE 4-2: A/D CONVERSION REQUIREMENT

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.

4: On the following cycle of the device clock.

NOTES:

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2006)

Original data sheet for PIC18F2423/2523/4423/4523 devices.

Revision B (January 2007)

This revision includes updates to the packaging diagrams.

Revision C (September 2009)

Electrical specifications updated. Preliminary condition status removed. Converted document to the "mini data sheet" format.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F2423 PIC18F2523		PIC18F4423	PIC18F4523
Program Memory (Bytes)	16384	32768	16384	32768
Program Memory (Instructions)	8192	16384	8192	16384
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E) Ports A, B, C, D		Ports A, B, C, D, E
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Parallel Communications (PSP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Packages	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN

TABLE B-1:DEVICE DIFFERENCES

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442"*. The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration*". This Application Note is available as Literature Number DS00726.

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Company	
	Address	<u>.</u>
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	lication (optional):	
Wou	Id you like a reply?YN	
Devi	ice: PIC18F2423/2523/4423/4523	Literature Number: DS39755C
Que	stions:	
1. \	What are the best features of this doc	ument?
-		
-		
2. I	How does this document meet your ha	ardware and software development needs?
-		
-		
3. I	Do you find the organization of this do	ocument easy to follow? If not, why?
-		
4	Albet additions to the desument days	withink would appear the structure and subject?
4.	what additions to the document do yo	ou think would enhance the structure and subject?
-		
5	What deletions from the document co	uld be made without affecting the overall usefulness?
0.		
-		
6.	Is there any incorrect or misleading in	formation (what and where)?
-		
7. I	How would you improve this documer	nt?
-		
-		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X Temperature	/XX Package	XXX Pattern	Exa a)	ample PIC ⁻	95: 18F452	:3-I/P 301 = Industrial temp., PDIP	
Device	Range PIC18F2423 ⁽¹⁾ , P PIC18F4523T ⁽²⁾ ; VDD range 4.21 PIC18F2423 ⁽¹⁾ , P PIC18F4232T ⁽²⁾ ; VDD range 2.0V	PIC18F2523 ⁽¹⁾ V to 5.5V IC18F2523 ⁽¹⁾ V to 5.5V	⁾ , PIC18F4423T ⁽²⁾ , ⁾ , PIC18F4423T ⁽²⁾ ,	b) c)	pack #30 ⁻ PIC pack PIC pack	package, Extended VDD limits, QTP pattern #301. PIC18F4523-I/PT = Industrial temp., TQFP package, Extended VDD limits. PIC18F4523-E/P = Extended temp., PDIP package, normal VDD limits.		
Temperature Range	$ \begin{array}{rcl} I & = -40^{\circ}C \\ E & = -40^{\circ}C \end{array} $	to +85°C to +125°C	(Industrial) (Extended)					
Package	PT = TQF ML = QFN SO = SOI(SP = Skini P = PDIF	P (Thin Quad C ny Plastic DIF	l Flat pack)	Not	e 1: 2:	F = LF = T =	 Standard Voltage Range Wide Voltage Range In tape and reel PLCC, and TQFP packages only. 	
Pattern	QTP, SQTP, Code (blank otherwise)	e or Special F	Requirements					