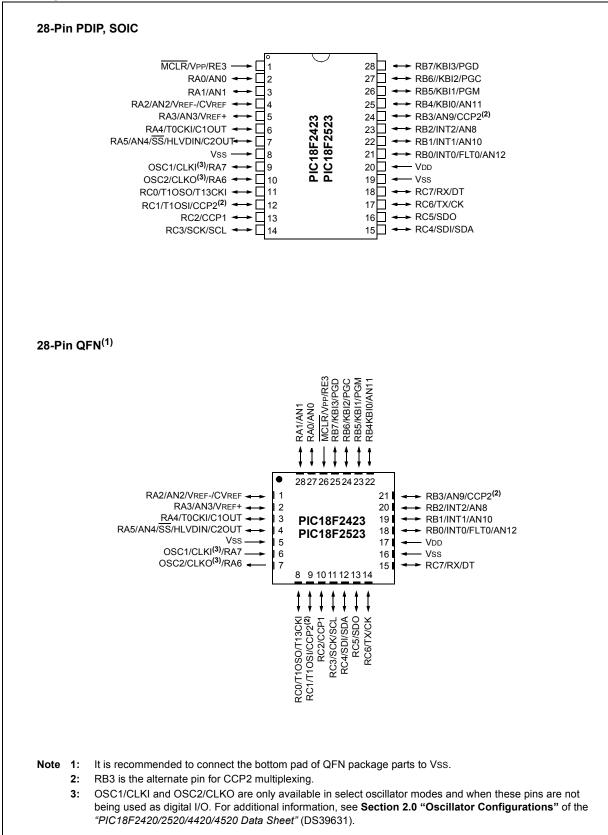


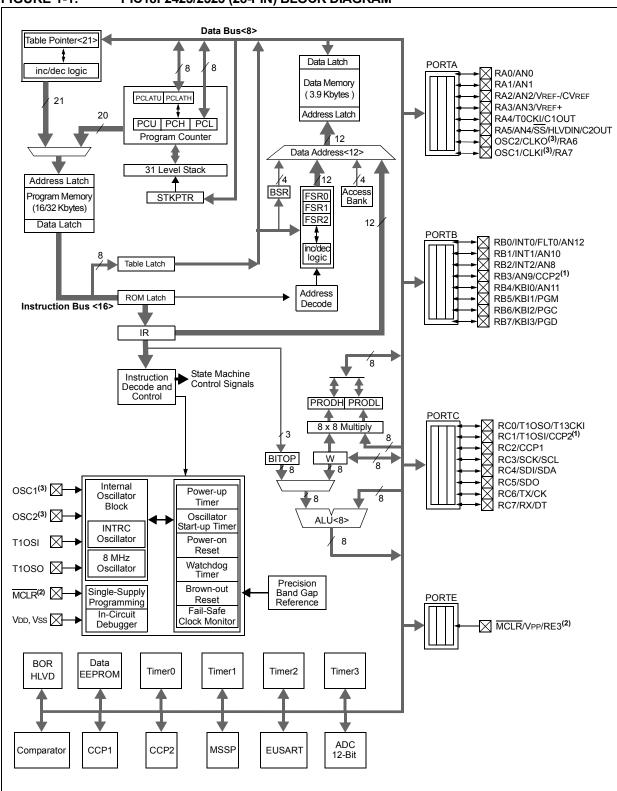
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2423-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

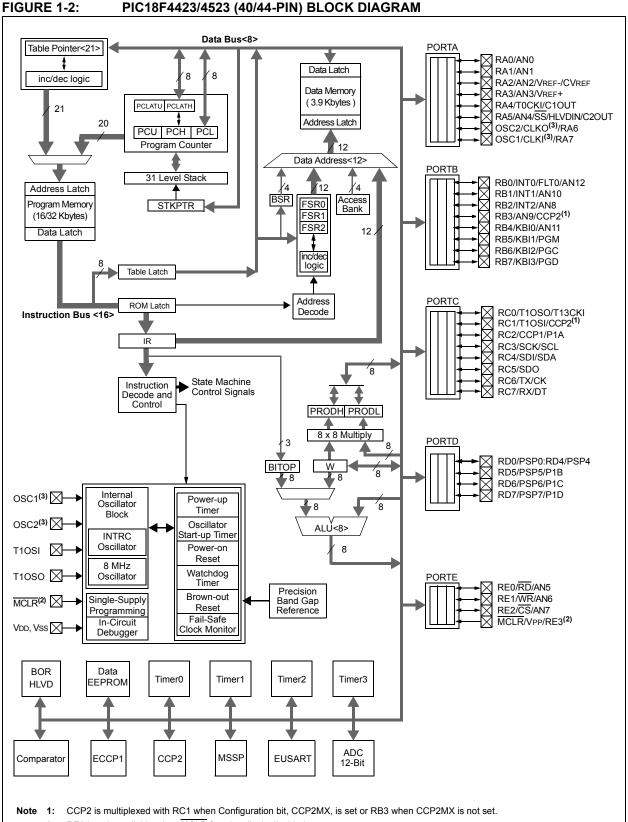


FIGURE 1-1: PIC18F2423/2523 (28-PIN) BLOCK DIAGRAM

Note 1: CCP2 is multiplexed with RC1 when Configuration bit, CCP2MX, is set or RB3 when CCP2MX is not set.

2: RE3 is only available when MCLR functionality is disabled.

3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. For additional information, see Section 2.0 "Oscillator Configurations" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

- **2:** RE3 is only available when MCLR functionality is disabled.
- 3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. For additional information, see Section 2.0 "Oscillator Configurations" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

TABLE 1-2:	PIC18F2423/2523 PINOUT I/O DESCRIPTIONS
------------	---

	Pin N	umber	Pin	Buffer	
Pin Name	PDIP, SOIC	QFN	Туре		Description
MCLR/VPP/RE3	1	26			Master Clear (input) or programming voltage (input).
MCLR				ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
Vpp			Р		Programming voltage input.
RE3			Ι	ST	Digital input.
OSC1/CLKI/RA7	9	6			Oscillator crystal or external clock input.
OSC1				ST	Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise.
CLKI			I	CMOS	External clock source input. Always associated with pin
					function, OSC1. (See related OSC1/CLKI, OSC2/CLKO
RA7			1/0	TTL	pins.) General purpose I/O pin.
OSC2/CLKO/RA6	10	7	1/0	116	
OSC2/CLKO/RA6	10	1	0		Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or
0002			Ŭ		resonator in Crystal Oscillator mode.
CLKO			0	—	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the
RA6			1/0	TTL	frequency of OSC1 and denotes the instruction cycle rate. General purpose I/O pin.
				116	
-	ompatib	•			CMOS = CMOS compatible input or output
		er input	with C	MOS le	
O = Outpu I ² C = I ² C™	it /SMBus				P = Power

 $I^2C = I^2C^{TM}/SMBus$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

	Pin Nur	mber	Pin	Buffer			
Pin Name	PDIP, SOIC	QFN	Туре	Туре	Description		
					PORTC is a bidirectional I/O port.		
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	11	8	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽²⁾	12	9	I/O I I/O	ST Analog ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.		
RC2/CCP1 RC2 CCP1	13	10	I/O I/O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output.		
RC3/SCK/SCL RC3 SCK SCL	14	11	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.		
RC4/SDI/SDA RC4 SDI SDA	15	12	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.		
RC5/SDO RC5 SDO	16	13	I/O O	ST —	Digital I/O. SPI data out.		
RC6/TX/CK RC6 TX CK	17	14	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT).		
RC7/RX/DT RC7 RX DT	18	15	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK).		
RE3		_		_	See MCLR/VPP/RE3 pin.		
Vss	8, 19 క	5, 16	Р	_	Ground reference for logic and I/O pins.		
VDD	20	17	Р		Positive supply for logic and I/O pins.		
DT RE3 Vss	20 ompatible tt Trigger	17 e input	I/O — P P	ST — —	EUSART synchronous data (see re See MCLR/VPP/RE3 pin. Ground reference for logic and I/O pins Positive supply for logic and I/O pins. CMOS = CMOS compatible		

Р

= Power

TABLE 1-2 :	PIC18F2423/2523 PINOUT I/O DESCRIPTIONS (CONTINUED)
--------------------	---

O = Output I^2C = $I^2C^{TM}/SMBus$ Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pi	n Numb	ber	Pin	Buffer	Description		
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on a inputs.		
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	33	9	8	I/O I I	TTL ST ST Analog	Digital I/O. External Interrupt 0. PWM Fault input for Enhanced CCP1. Analog Input 12.		
RB1/INT1/AN10 RB1 INT1 AN10	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 1. Analog Input 10.		
RB2/INT2/AN8 RB2 INT2 AN8	35	11	10	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 2. Analog Input 8.		
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	36	12	11	I/O I I/O	TTL Analog ST	Digital I/O. Analog Input 9. Capture 2 input/Compare 2 output/PWM2 output.		
RB4/KBI0/AN11 RB4 KBI0 AN11	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog Input 11.		
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.		
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.		
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.		
O = Out	mitt Trig put ™/SMBเ	iger inpi is	ut with C			CMOS = CMOS compatible input or output I = Input P = Power it CCD2MX is set		

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Din Nama	Pin Number			Pin Buffer	Description			
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTC is a bidirectional I/O port.		
RC0/T1OSO/T13CKI	15	34	32					
RC0				I/O	ST	Digital I/O.		
T1OSO				0	—	Timer1 oscillator output.		
T13CKI				I	ST	Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2	16	35	35					
RC1				I/O	ST	Digital I/O.		
T1OSI				I	CMOS	Timer1 oscillator input.		
CCP2 ⁽²⁾				I/O	ST	Capture 2 input/Compare 2 output/PWM2 output.		
RC2/CCP1/P1A	17	36	36					
RC2				I/O	ST	Digital I/O.		
CCP1				I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.		
P1A				0		Enhanced CCP1 output.		
RC3/SCK/SCL	18	37	37					
RC3				I/O	ST	Digital I/O.		
SCK				I/O	ST	Synchronous serial clock input/output for SPI mode.		
SCL				I/O	l ² C	Synchronous serial clock input/output for I ² C [™] mod		
	22	42	42	1/0	10			
RC4/SDI/SDA RC4	23	42	42	I/O	ST	Digital I/O.		
SDI				10	ST	SPI data in.		
SDA				I/O	I ² C	I^2C data I/O.		
RC5/SDO	24	43	43					
RC5	27	-0		I/O	ST	Digital I/O.		
SDO				0	_	SPI data out.		
RC6/TX/CK	25	44	44					
RC6	20			I/O	ST	Digital I/O.		
ТХ				0		EUSART asynchronous transmit.		
CK				I/O	ST	EUSART synchronous clock (see related RX/DT).		
RC7/RX/DT	26	1	1					
RC7				I/O	ST	Digital I/O.		
RX				I	ST	EUSART asynchronous receive.		
DT				I/O	ST	EUSART synchronous data (see related TX/CK).		
Legend: TTL = TTL						CMOS = CMOS compatible input or output		
	mitt Trig	ger inp	ut with C	CMOSI	evels	I = Input		
O = Out						P = Power		
$I^2C = I^2C$	™/SMBเ	IS						

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

NOTES:

PIC18F2423/2523/4423/4523

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
bit 7	ADFM: A/D F	Result Format S	Select bit				
	1 = Right just 0 = Left justifi						
bit 6	•	ted: Read as '	0'				
bit 5-3	ACQT<2:0>:	A/D Acquisitio	n Time Select	t bits			
	111 = 20 T AD)					
	110 = 16 Tad)					
	101 = 12 TAD)					
	100 = 8 T AD						
	011 = 6 TAD 010 = 4 TAD						
	010 = 4 TAD 001 = 2 TAD						
	000 = 0 TAD ^{(*}	1)					
bit 2-0	ADCS<2:0>:	A/D Conversio	n Clock Sele	ct bits			
	111 = FRC (c	lock derived fro	om A/D RC os	scillator) ⁽¹⁾			
	110 = Fosc/6			,			
	101 = Fosc/*	16					
	100 = Fosc/4			(4)			
		lock derived fro	om A/D RC os	scillator) ⁽¹⁾			
	010 = Fosc/3						
	001 = Fosc/8 000 = Fosc/2	5					

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

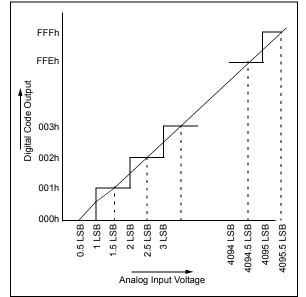
The value in the ADRESH:ADRESL registers is unknown following POR and BOR Resets and is not affected by any other Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. To determine acquisition time, see **Section 2.1 "A/D Acquisition Requirements"**.

After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on the A/D module (ADCON0)
- 2. Configure the A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time (if required).
- Start conversion by setting the GO/DONE bit (ADCON0<1>).


- 5. Wait for the A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared
 OR

· Waiting for the A/D interrupt

- 6. Read the A/D Result registers (ADRESH:ADRESL) and clear the ADIF bit, if required.
- 7. For the next conversion, go to step 1 or step 2, as required.

The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

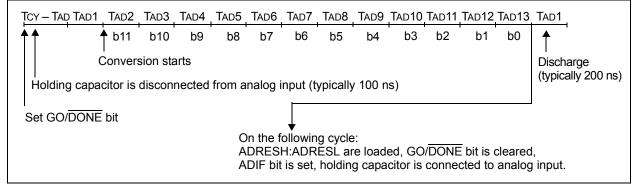
FIGURE 2-2: A/D TRANSFER FUNCTION

FIGURE 2-3: ANALOG INPUT MODEL

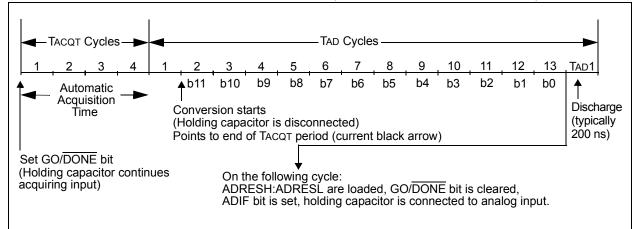
2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT<2:0> bits have been set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.


Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TcY wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.
	Code should wait at least 3 TAD after
	enabling the A/D before beginning an
	acquisition and conversion cycle.


2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unitygain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

Device ID Registers

The Device ID registers are read-only registers. They identify the device type and revision for device pro-

grammers and can be read by firmware using table

3.0 SPECIAL FEATURES OF THE CPU

Note: For additional details on the Configuration bits, refer to Section 23.1 "Configuration Bits" in the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631). Device ID information presented in this section is for the PIC18F2423/2523/4423/4523 devices only.

TABLE 3-1: DEVICE IDs

Default/ File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Unprogrammed Value ×××× ××××××××(2) DEVID1⁽¹⁾ 3FFFFEh DEV3 DEV2 DEV1 DEV0 REV3 REV2 REV1 REV0 XXXX XXXX(2) 3FFFFFh DEVID2⁽¹⁾ DEV11 DEV10 DEV8 DEV7 DEV6 DEV5 DEV4 DEV9

3.1

reads.

x = unknown, u = unchanged, — = unimplemented. Shaded cells are unimplemented, read as '0'. Legend:

Note 1: DEVID registers are read-only and cannot be programmed by the user.

2: See Register 3-1 and Register 3-2 for DEVID1 and DEVID2 values.

REGISTER 3-1: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2423/2523/4423/4523

R	R	R	R	R	R	R	R
DEV3	DEV2	DEV1	DEV0	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:			
R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'	
-n = Value when device i	s unprogrammed	u = Unchanged from programmed state	

bit 7-4	DEV<3:0>: Device ID bits
	1101 = PIC18F4423
	1001 = PIC18F4523
	0101 = PIC18F2423
	0001 = PIC18F2523
bit 3-0	REV<3:0>: Revision ID bits
	These bits are used to indicate the device revision.

TABLE 4-1:A/D CONVERTER CHARACTERISTICS: PIC18F2423/2523/4423/4523 (INDUSTRIAL)PIC18LF2423/2523/4423/4523 (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Max	Units		Conditions
A01	NR	Resolution	—	_	12	bit		$\Delta \text{VREF} \geq 3.0 \text{V}$
A03	EIL	Integral Linearity Error	—	<±1	±2.0	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$
			—	_	±2.0	LSB	VDD = 5.0V	
A04	Edl	Differential Linearity Error	—	<±1	+1.5/-1.0	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$
			—	_	+1.5/-1.0	LSB	VDD = 5.0V	
A06	EOFF	Offset Error	—	<±1	±5	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$
			—	_	±3	LSB	VDD = 5.0V	
A07	Egn	Gain Error	—	<±1	±1.25	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$
			_	_	±2.00	LSB	VDD = 5.0V	
A10	—	Monotonicity	Guaranteed ⁽¹⁾		—		$Vss \leq Vain \leq Vref$	
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	—	Vdd – Vss	V		For 12-bit resolution.
A21	VREFH	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V		For 12-bit resolution.
A22	VREFL	Reference Voltage Low	Vss – 0.3V	_	VDD - 3.0V	V		For 12-bit resolution.
A25	Vain	Analog Input Voltage	VREFL	_	VREFH	V		
A30	Zain	Recommended Impedance of Analog Voltage Source	—	—	2.5	kΩ		
A50	IREF	VREF Input Current ⁽²⁾		_	5 150	μΑ μΑ		During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

NOTES:

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2006)

Original data sheet for PIC18F2423/2523/4423/4523 devices.

Revision B (January 2007)

This revision includes updates to the packaging diagrams.

Revision C (September 2009)

Electrical specifications updated. Preliminary condition status removed. Converted document to the "mini data sheet" format.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F2423	PIC18F2523	PIC18F4423	PIC18F4523
Program Memory (Bytes)	16384	32768	16384	32768
Program Memory (Instructions)	8192	16384	8192	16384
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Parallel Communications (PSP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Packages	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN

TABLE B-1:DEVICE DIFFERENCES

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

R

Reader Response	52
Registers	
ADCON0 (A/D Control 0)	25
ADCON1 (A/D Control 1)	26
ADCON2 (A/D Control 2)	27
DEVID1 (Device ID 1)	35
DEVID2	
(Device ID 2)	36
Revision History	
S	
Special Features of the CPU	35

Т

Timing Diagrams A/D Conversion	41
Timing Diagrams and Specifications	44
A/D Conversion Requirements	41
V	
Voltage-Frequency Graphics	
PIC18F2423/2523/4423/4523 (Extended)	38
PIC18F2423/2523/4423/4523 (Industrial)	38
PIC18LF2423/2523/4423/4523 (Industrial)	39

W

WWW Address	51
WWW, On-Line Support	. 8

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Company	
	Address	<u>.</u>
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC18F2423/2523/4423/4523	Literature Number: DS39755C
Que	stions:	
1. \	What are the best features of this doc	ument?
-		
-		
2. I	How does this document meet your h	ardware and software development needs?
-		
-		
3. I	Do you find the organization of this do	ocument easy to follow? If not, why?
-		
-	Meet additions to the desument days	withink would appear the structure and subject?
4. \	what additions to the document do yo	ou think would enhance the structure and subject?
-		
5. \	What deletions from the document co	uld be made without affecting the overall usefulness?
0.		
-		
6. I	s there any incorrect or misleading in	formation (what and where)?
-		
7. I	How would you improve this documer	nt?
-		
_		