

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2523-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

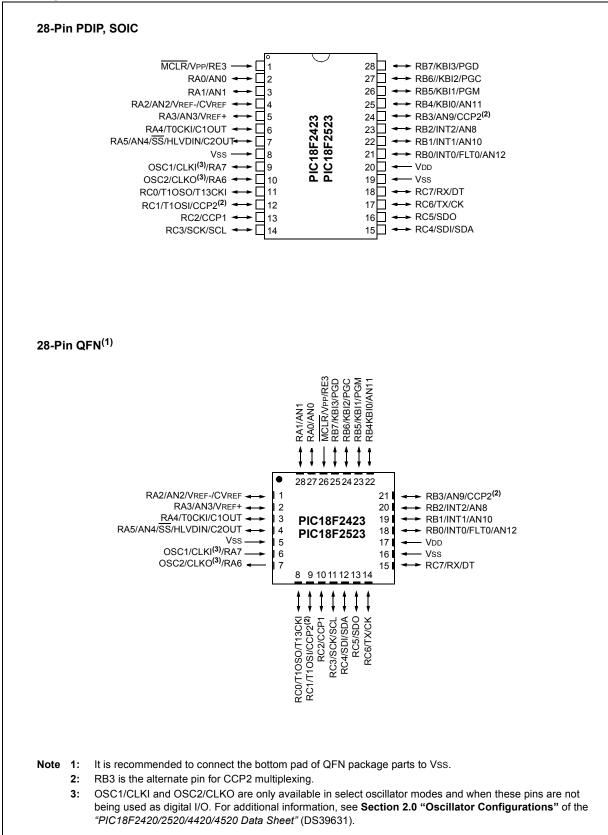
The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.


© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Pin Diagrams

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Pin Name	Pi	n Numb	per	Pin Buffer		Description
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP				Р		Programming voltage input.
RE3					ST	Digital input.
OSC1/CLKI/RA7 OSC1	13	32	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode;
CLKI				I	CMOS	analog otherwise. External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)
RA7				I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0	_	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6				I/O	TTL	General purpose I/O pin.
ST = Sch O = Ou	_ compat nmitt Trig put ™/SMΒι	ger inpi		CMOSI	evels	CMOS = CMOS compatible input or output I = Input P = Power

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Din Nama	Pin Number			Pin	Buffer	Description	
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description	
						PORTA is a bidirectional I/O port.	
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog Input 0.	
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog Input 1.	
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input. Comparator reference voltage output.	
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.	
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	23	23	I/O I O	ST ST	Digital I/O. Timer0 external clock input. Comparator 1 output.	
RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT	7	24	24	I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog Input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.	
RA6 RA7						See the OSC2/CLKO/RA6 pin. See the OSC1/CLKI/RA7 pin.	
Legend: TTL = TTL ST = Schr O = Outp	mitt Trig	ger inpl	ut ut with C	CMOSI	evels	CMOS = CMOS compatible input or output I = Input P = Power	

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	Pin Number			Pin Buffer		Description
Pin Name	PDIP	QFN TQFP		Туре	Туре	Description
						PORTE is a bidirectional I/O port.
RE0/RD/AN5	8	25	25			
RE0	-			I/O	ST	Digital I/O.
RD				I	TTL	Read control for Parallel Slave Port
						(see also \overline{WR} and \overline{CS} pins).
AN5				I	Analog	Analog Input 5.
RE1/WR/AN6	9	26	26			
RE1				I/O	ST	Digital I/O.
WR				I	TTL	Write control for Parallel Slave Port
						(see \overline{CS} and \overline{RD} pins).
AN6				I	Analog	Analog Input 6.
RE2/CS/AN7	10	27	27			
RE2				I/O	ST	Digital I/O.
CS				I	TTL	Chip select control for Parallel Slave Port
						(see related \overline{RD} and \overline{WR}).
AN7				Ι	Analog	Analog Input 7.
RE3	—	—		_		See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 30,	6, 29	Р		Ground reference for logic and I/O pins.
		31				
Vdd	11, 32	7, 8,	7, 28	Р		Positive supply for logic and I/O pins.
		28, 29				
NC	—	13	12, 13,	_		No connect.
			33, 34			
Legend: TTL = TTL	compat	tible inp	ut			CMOS = CMOS compatible input or output

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

I

= Schmitt Trigger input with CMOS levels ST = Output

= Input Ρ = Power

0 I²C = I²C™/SMBus

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

2.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has 10 inputs for the PIC18F2423/2523 devices and 13 for the PIC18F4423/4523 devices. This module allows conversion of an analog input signal to a corresponding 12-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

REGISTER 2-1:

Of the ADCONx registers:

- ADCON0 (shown in Register 2-1) Controls the module's operation
- ADCON1 (Register 2-2) Configures the functions of the port pins
- ADCON2 (Register 2-3) Configures the A/D clock source, programmed acquisition time and justification

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

ADCON0: A/D CONTROL REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-2	CHS<3:0>: Analog Channel Select bits
	0000 = Channel 0 (AN0)
	0001 = Channel 1 (AN1)
	0010 = Channel 2 (AN2)
	0011 = Channel 3 (AN3)
	0100 = Channel 4 (AN4)
	0101 = Channel 5 (AN5) ^(1,2)
	0110 = Channel 6 (AN6) ^(1,2)
	0111 = Channel 7 (AN7) ^(1,2)
	1000 = Channel 8 (AN8)
	1001 = Channel 9 (AN9)
	1010 = Channel 10 (AN10)
	1011 = Channel 11 (AN11)
	1100 = Channel 12 (AN12
	1101 = Unimplemented ⁽²⁾
	1110 = Unimplemented ⁽²⁾
	1111 = Unimplemented ⁽²⁾
bit 1	GO/DONE: A/D Conversion Status bit
	When ADON = 1:
	1 = A/D conversion in progress
	0 = A/D Idle
bit 0	ADON: A/D On bit
	1 = A/D Converter module is enabled
	0 = A/D Converter module is disabled
Note 1:	These channels are not implemented on PIC18F2423/2523 devices.
2.	Performing a conversion on unimplemented channels will return a floating input measurement

2: Performing a conversion on unimplemented channels will return a floating input measurement.

REGISTER 2-2: ADCON1: A/D CONTROL REGISTER	1
--	---

U-0	U-0	R/W-0	R/W-0	R/W-0 ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾
—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5	VCFG1: Voltage Reference Configuration bit (VREF- source)
	1 = VREF- (AN2)
	0 = Vss
bit 4	VCFG0: Voltage Reference Configuration bit (VREF+ source)
	1 = VREF+ (AN3)
	0 = VDD

bit 3-0 **PCFG<3:0>:** A/D Port Configuration Control bits:

PCFG<3:0>	AN12	AN11	AN10	AN9	AN8	AN 7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4	AN3	AN2	AN1	ANO
₀₀₀₀ (1)	А	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	Α	А	А	Α	А	Α	Α	Α	Α	Α	Α	Α	Α
0011	D	А	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0100	D	D	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0101	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0110	D	D	D	D	А	Α	Α	Α	Α	А	Α	Α	Α
0111(1)	D	D	D	D	D	Α	Α	Α	Α	А	А	А	А
1000	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D	D
A = Analog in	put				D =	Digital	I/O						

Note 1: The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN = 1, PCFG<3:0> = 0000; when PBADEN = 0, PCFG<3:0> = 0111.

2: AN5 through AN7 are only available on PIC18F4423/4523 devices.

PIC18F2423/2523/4423/4523

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
bit 7	ADFM: A/D F	Result Format S	Select bit				
	1 = Right just 0 = Left justifi						
bit 6	•	ted: Read as '	0'				
bit 5-3	ACQT<2:0>:	A/D Acquisitio	n Time Select	t bits			
	111 = 20 T AD)					
	110 = 16 Tad)					
	101 = 12 TAD)					
	100 = 8 T AD						
	011 = 6 TAD 010 = 4 TAD						
	010 = 4 TAD 001 = 2 TAD						
	000 = 0 TAD ^{(*}	1)					
bit 2-0	ADCS<2:0>:	A/D Conversio	n Clock Sele	ct bits			
	111 = FRC (c	lock derived fro	om A/D RC os	scillator) ⁽¹⁾			
	110 = Fosc/6			,			
	101 = Fosc/*	16					
	100 = Fosc/4			(4)			
		lock derived fro	om A/D RC os	scillator) ⁽¹⁾			
	010 = Fosc/3						
	001 = Fosc/8 000 = Fosc/2	5					

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option of having an automatically determined acquisition time.

Acquisition time may be set with the ACQT<2:0> bits (ADCON2<5:3>), which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition time is <u>selected</u> when ACQT<2:0> = 0.00. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT<2:0> bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 32 Tosc
 64 Tosc
- 4 Tosc
- Internal RC Oscillator
- 8 Tosc 16 Tosc
 -)SC

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD. (For more information, see parameter 130 on page 41.)

Table 2-2 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

A/D Clock So	urce (TAD)	Assumes TAD Min. = 0.8 μs
Operation	ADCS<2:0>	Maximum Fosc
2 Tosc	000	2.50 MHz
4 Tosc	100	5.00 MHz
8 Tosc	001	10.00 MHz
16 Tosc	101	20.00 MHz
32 Tosc	010	40.00 MHz
64 Tosc	110	40.00 MHz
RC ⁽²⁾	x11	1.00 MHz ⁽¹⁾

TABLE 2-2:TAD vs. DEVICE OPERATING FREQUENCIES

Note 1: The RC source has a typical TAD time of 2.5 μ s.

2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT<2:0> bits do not need to be adjusted as the ADCS<2:0> bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - **3:** The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG<3:0> bits in ADCON1 are reset.

2.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user or an appropriate TACQ time is selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(Note 4)
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	(Note 4)
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	(Note 4)
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	(Note 4)
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	(Note 4)
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	(Note 4)
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	(Note 4)
ADRESH	A/D Result Register High Byte								(Note 4)
ADRESL	A/D Result Register Low Byte								(Note 4)
ADCON0	—	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	(Note 4)
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	(Note 4)
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	(Note 4)
PORTA	RA7 ⁽²⁾	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	(Note 4)
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽²⁾	PORTA Da	ata Direction	Control Re	gister			(Note 4)
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	(Note 4)
TRISB	PORTB Data Direction Control Register								(Note 4)
LATB	PORTB Data Latch Register (Read and Write to Data Latch)								(Note 4)
PORTE ⁽¹⁾	—	—	_	_	RE3 ⁽³⁾	RE2	RE1	RE0	(Note 4)
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	(Note 4)
LATE ⁽¹⁾	_	_	_	_		PORTE D	ata Latch Re	egister	(Note 4)

 TABLE 2-3:
 REGISTERS ASSOCIATED WITH A/D OPERATION

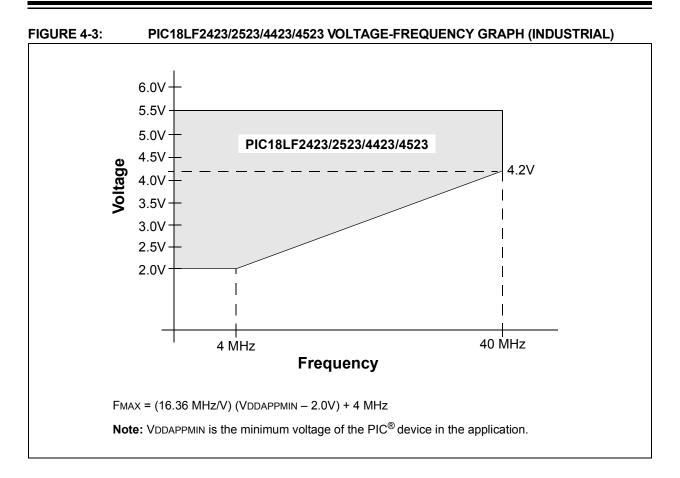
Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers and/or bits are not implemented on PIC18F2423/2523 devices and are read as '0'.

2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

4: For these Reset values, see Section 4.0 "Reset" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).


PIC18F2423/2523/4423/4523

REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2423/2523/4423/4523

R	R	R	R	R	R	R	R	
DEV11 ⁽¹⁾	DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	
bit 7						•	bit 0	
Legend:								
R = Read-only bit P = Programmable bit			U = Unimplemented bit, read as '0'					
-n = Value when device is unprogrammed			u = Unchange	ed from progran	nmed state			

bit 7-0 **DEV<11:4>:** Device ID bits⁽¹⁾ These bits are used with the DEV<3:0> bits in Device ID Register 1 to identify the part number. 0001 0001 = PIC18F2423/2523 devices 0001 0000 = PIC18F4423/4523 devices

Note 1: These values for DEV<11:4> may be shared with other devices. The specific device is always identified by using the entire DEV<11:0> bit sequence.

APPENDIX A: REVISION HISTORY

Revision A (June 2006)

Original data sheet for PIC18F2423/2523/4423/4523 devices.

Revision B (January 2007)

This revision includes updates to the packaging diagrams.

Revision C (September 2009)

Electrical specifications updated. Preliminary condition status removed. Converted document to the "mini data sheet" format.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F2423	PIC18F2523	PIC18F4423	PIC18F4523
Program Memory (Bytes)	16384	32768	16384	32768
Program Memory (Instructions)	8192	16384	8192	16384
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Parallel Communications (PSP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Packages	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN

TABLE B-1:DEVICE DIFFERENCES

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442"*. The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration*". This Application Note is available as Literature Number DS00726.

NOTES:

INDEX

Α	
A/D	25
A/D Converter Interrupt, Configuring	
Acquisition Requirements	
ADCON0 Register	25
ADCON1 Register	25
ADCON2 Register	25
ADRESH Register	25, 28
ADRESL Register	25
Analog Port Pins, Configuring	
Associated Registers	34
Configuring the Module	29
Conversion Clock (TAD)	31
Conversion Status (GO/DONE Bit)	
Conversions	33
Converter Characteristics	40
Discharge	33
Operation in Power-Managed Modes	
Selecting and Configuring Acquisition Time	31
Special Event Trigger (CCP)	34
Use of the CCP2 Trigger	34
Absolute Maximum Ratings	37
ADCON0 Register	
GO/DONE Bit	28
ADCON1 Register	25
ADCON2 Register	25
ADRESH Register	25
ADRESL Register	25, 28
Analog-to-Digital Converter. See A/D.	

B

13

С

. 34
46
. 51
. 51
. 51

D

Device Differences	45
Device Overview	9
Details on Individual Family Members	
Features (table)	
New Core Features	9
Other Special Features	
Documentation	
Related Data Sheet	9
E	
Electrical Characteristics	
Equations	
A/D Acquisition Time	
A/D Minimum Charging Time	
Calculating the Minimum Required	
Acquisition Time	
Errata	8

I

Internet Address	51
Interrupt Sources	
A/D Conversion Complete	29
Μ	
Microchip Internet Web Site	51
Migration from Baseline to Enhanced Devices	46
Migration from High-End to Enhanced Devices	47
Migration from Mid-Range to Enhanced Devices	47

Ρ

Pacl	kaging Information		43
	Functions		
	MCLR/VPP/RE3	14,	18
	OSC1/CLKI/RA7	14,	18
	OSC2/CLKO/RA6	14,	18
	RA0/AN0	15,	19
	RA1/AN1	15,	19
	RA2/AN2/VREF-/CVREF		
	RA3/AN3/VREF+		
	RA4/T0CKI/C1OUT	15,	19
	RA5/AN4/SS/HLVDIN/C2OUT	15,	19
	RB0/INT0/FLT0/AN12		
	RB1/INT1/AN10	16,	20
	RB2/INT2/AN8	16,	20
	RB3/AN9/CCP2		
	RB4/KBI0/AN11	16,	20
	RB5/KBI1/PGM	16.	20
	RB6/KBI2/PGC	16,	20
	RB7/KBI3/PGD	16,	20
	RC0/T10SO/T13CKI		
	RC1/T1OSI/CCP2		
	RC2/CCP1		
	RC2/CCP1/P1A		21
	RC3/SCK/SCL	17,	21
	RC4/SDI/SDA	17,	21
	RC5/SDO	17,	21
	RC6/TX/CK		
	RC7/RX/DT	17,	21
	RD0/PSP0		
	RD1/PSP1		
	RD2/PSP2		22
	RD3/PSP3		22
	RD4/PSP4		22
	RD5/PSP5/P1B		22
	RD6/PSP6/P1C		
	RD7/PSP7/P1D		
	RE0/RD/AN5		23
	RE1/WR/AN6		23
	RE2/CS/AN7		23
	VDD		
	Vss	17,	23
Pino	ut I/O Descriptions		
	PIC18F2423/2523		14
	PIC18F4423/4523		18
Pow	er-Managed Modes		
	and A/D Operation		32
	-		

R

Reader Response	52
Registers	
ADCON0 (A/D Control 0)	25
ADCON1 (A/D Control 1)	26
ADCON2 (A/D Control 2)	27
DEVID1 (Device ID 1)	35
DEVID2	
(Device ID 2)	36
Revision History	
S	
Special Features of the CPU	35

Т

Timing Diagrams A/D Conversion	41			
Timing Diagrams and Specifications	44			
A/D Conversion Requirements	41			
V				
Voltage-Frequency Graphics				
PIC18F2423/2523/4423/4523 (Extended)	38			
PIC18F2423/2523/4423/4523 (Industrial)	38			
PIC18LF2423/2523/4423/4523 (Industrial)	39			

W

WWW Address	51
WWW, On-Line Support	. 8