

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2523-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

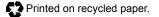
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

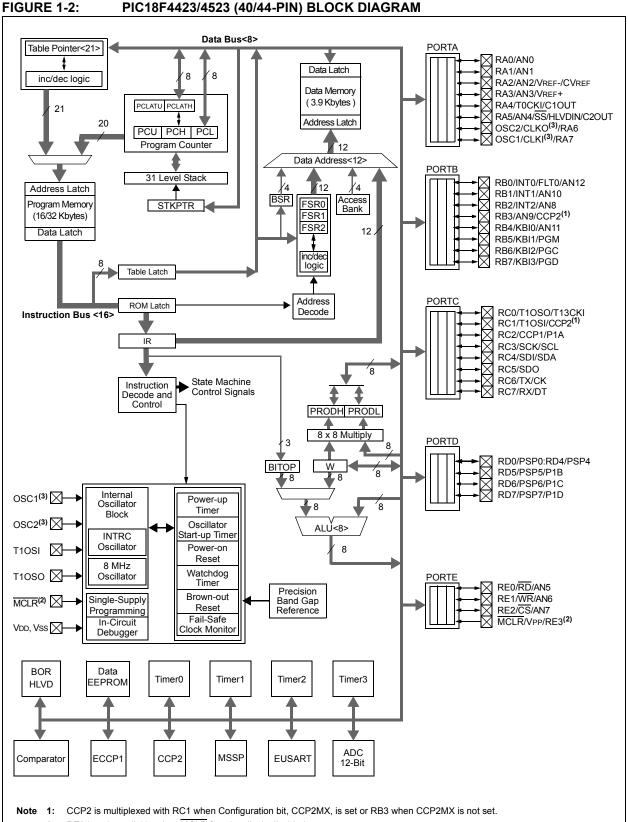
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.


To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

- **2:** RE3 is only available when MCLR functionality is disabled.
- 3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. For additional information, see Section 2.0 "Oscillator Configurations" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

	Pin Number		Pin	Buffer				
Pin Name	PDIP, SOIC	QFN	Ріп Туре	винег Туре	Description			
					PORTA is a bidirectional I/O port.			
RA0/AN0	2	27						
RA0			I/O	TTL	Digital I/O.			
AN0			I	Analog	Analog Input 0.			
RA1/AN1	3	28						
RA1			I/O	TTL	Digital I/O.			
AN1			I	Analog	Analog Input 1.			
RA2/AN2/VREF-/CVREF	4	1						
RA2			I/O	TTL	Digital I/O.			
AN2			I	Analog				
VREF-				Analog				
CVREF			0	Analog	Comparator reference voltage output.			
RA3/AN3/VREF+	5	2						
RA3			I/O	TTL	Digital I/O.			
AN3				Analog				
VREF+			I	Analog	A/D reference voltage (high) input.			
RA4/T0CKI/C1OUT	6	3						
RA4			I/O	ST	Digital I/O.			
TOCKI				ST	Timer0 external clock input.			
C1OUT			0		Comparator 1 output.			
RA5/AN4/SS/HLVDIN/	7	4						
C2OUT			1/0					
RA5 AN4			I/O		Digital I/O. Analog Input 4.			
AN4 SS				Analog TTL	SPI slave select input.			
HLVDIN				Analog				
C2OUT	1		Ö		Comparator 2 output.			
RA6			-		See the OSC2/CLKO/RA6 pin.			
RA7					See the OSC1/CLKI/RA7 pin.			
		ام ام	<u> </u>					
Legend: TTL = TTL c ST = Schm					CMOS = CMOS compatible input or output vels I = Input			
O = Outpu			with C	INICS IE	P = Power			

TABLE 1-2:	PIC18F2423/2523 PINOUT I/O DESCRIPTIONS	

$$O = Output$$

$$I^2C = I^2C^{\text{TM}}/\text{SMBus}$$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

	Pin Number		Pin Buffe						
Pin Name	PDIP, SOIC	QFN	Туре	Buffer Type	Description				
					PORTC is a bidirectional I/O port.				
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	11	8	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.				
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽²⁾	12	9	I/O I I/O	ST Analog ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.				
RC2/CCP1 RC2 CCP1	13	10	I/O I/O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output.				
RC3/SCK/SCL RC3 SCK SCL	14	11	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.				
RC4/SDI/SDA RC4 SDI SDA	15	12	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.				
RC5/SDO RC5 SDO	16	13	I/O O	ST —	Digital I/O. SPI data out.				
RC6/TX/CK RC6 TX CK	17	14	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT).				
RC7/RX/DT RC7 RX DT	18	15	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK).				
RE3		_		_	See MCLR/VPP/RE3 pin.				
Vss	8, 19 క	5, 16	Р	_	Ground reference for logic and I/O pins.				
VDD	20	17	Р		Positive supply for logic and I/O pins.				
DT RE3 Vss	20 ompatible tt Trigger	17 e input	I/O — P P	ST — —	EUSART synchronous data (see re See MCLR/VPP/RE3 pin. Ground reference for logic and I/O pins Positive supply for logic and I/O pins. CMOS = CMOS compatible				

Р

= Power

TABLE 1-2 :	PIC18F2423/2523 PINOUT I/O DESCRIPTIONS (CONTINUED)
--------------------	---

O = Output I^2C = $I^2C^{TM}/SMBus$ Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pi	n Numb	per	Pin	Buffer	Description		
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.		
VPP				Р		Programming voltage input.		
RE3					ST	Digital input.		
OSC1/CLKI/RA7 OSC1	13	32	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode;		
CLKI				I	CMOS	analog otherwise. External clock source input. Always associated with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)		
RA7				I/O	TTL	General purpose I/O pin.		
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.		
CLKO				0	_	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.		
RA6				I/O	TTL	General purpose I/O pin.		
ST = Sch O = Ou	_ compat nmitt Trig put ™/SMΒι	ger inpi		CMOSI	evels	CMOS = CMOS compatible input or output I = Input P = Power		

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pi	n Numb	ber	Pin	Buffer	Description		
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on a inputs.		
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	33	9	8	I/O I I	TTL ST ST Analog	Digital I/O. External Interrupt 0. PWM Fault input for Enhanced CCP1. Analog Input 12.		
RB1/INT1/AN10 RB1 INT1 AN10	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 1. Analog Input 10.		
RB2/INT2/AN8 RB2 INT2 AN8	35	11	10	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 2. Analog Input 8.		
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	36	12	11	I/O I I/O	TTL Analog ST	Digital I/O. Analog Input 9. Capture 2 input/Compare 2 output/PWM2 output.		
RB4/KBI0/AN11 RB4 KBI0 AN11	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog Input 11.		
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.		
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.		
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.		
O = Out	mitt Trig put ™/SMBเ	iger inpi is	ut with C			CMOS = CMOS compatible input or output I = Input P = Power it CCD2MX is set		

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Din Nama	Pin Number			Pin	Buffer	Description		
Pin Name	PDIP QFN TQFP Type Type		Туре	Description				
						PORTC is a bidirectional I/O port.		
RC0/T1OSO/T13CKI	15	34	32					
RC0				I/O	ST	Digital I/O.		
T1OSO				0	—	Timer1 oscillator output.		
T13CKI				Ι	ST	Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2	16	35	35					
RC1				I/O	ST	Digital I/O.		
T1OSI				I	CMOS	Timer1 oscillator input.		
CCP2 ⁽²⁾				I/O	ST	Capture 2 input/Compare 2 output/PWM2 output.		
RC2/CCP1/P1A	17	36	36					
RC2				I/O	ST	Digital I/O.		
CCP1				I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.		
P1A				0		Enhanced CCP1 output.		
RC3/SCK/SCL	18	37	37					
RC3				I/O	ST	Digital I/O.		
SCK				I/O	ST	Synchronous serial clock input/output for SPI mode.		
SCL				I/O	l ² C	Synchronous serial clock input/output for I ² C [™] mod		
	22	42	42	1/0	10			
RC4/SDI/SDA RC4	23	42	42	I/O	ST	Digital I/O.		
SDI				10	ST	SPI data in.		
SDA				I/O	I ² C	I^2C data I/O.		
RC5/SDO	24	43	43					
RC5	27	40		I/O	ST	Digital I/O.		
SDO				0	_	SPI data out.		
RC6/TX/CK	25	44	44					
RC6	20			I/O	ST	Digital I/O.		
ТХ				0		EUSART asynchronous transmit.		
CK				I/O	ST	EUSART synchronous clock (see related RX/DT).		
RC7/RX/DT	26	1	1					
RC7				I/O	ST	Digital I/O.		
RX				I	ST	EUSART asynchronous receive.		
DT				I/O	ST	EUSART synchronous data (see related TX/CK).		
Legend: TTL = TTL						CMOS = CMOS compatible input or output		
	mitt Trig	ger inp	ut with C	CMOSI	evels	I = Input		
O = Out						P = Power		
$I^2C = I^2C$	™/SMBเ	IS						

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

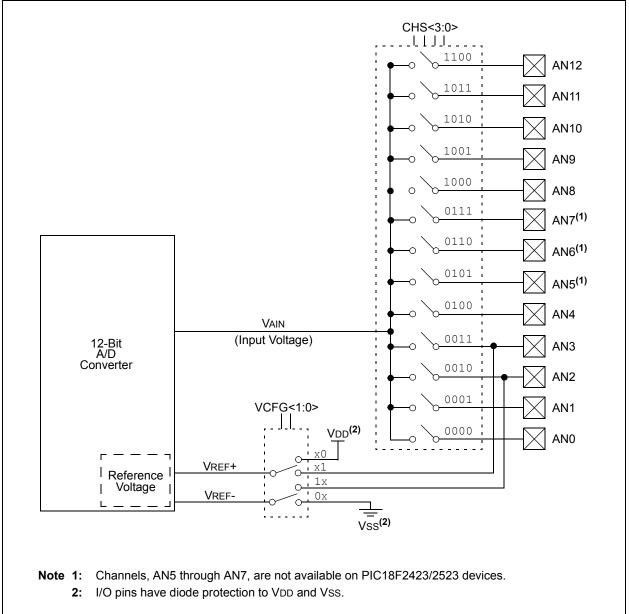
PIC18F2423/2523/4423/4523

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
bit 7	ADFM: A/D F	Result Format S	Select bit				
	1 = Right just 0 = Left justifi						
bit 6	•	ted: Read as '	0'				
bit 5-3	ACQT<2:0>:	A/D Acquisitio	n Time Select	t bits			
	111 = 20 T AD)					
	110 = 16 Tad)					
	101 = 12 TAD)					
	100 = 8 T AD						
	011 = 6 TAD 010 = 4 TAD						
	010 = 4 TAD 001 = 2 TAD						
	000 = 0 TAD ^{(*}	1)					
bit 2-0	ADCS<2:0>:	A/D Conversio	n Clock Sele	ct bits			
	111 = FRC (c	lock derived fro	om A/D RC os	scillator) ⁽¹⁾			
	110 = Fosc/6			,			
	101 = Fosc/*	16					
	100 = Fosc/4			(4)			
		lock derived fro	om A/D RC os	scillator) ⁽¹⁾			
	010 = Fosc/3						
	001 = Fosc/8 000 = Fosc/2	5					

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.


The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is <u>loaded</u> into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and A/D Interrupt Flag bit, ADIF, is set.

The block diagram of the A/D module is shown in Figure 2-1.

FIGURE 2-1: A/D BLOCK DIAGRAM

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option of having an automatically determined acquisition time.

Acquisition time may be set with the ACQT<2:0> bits (ADCON2<5:3>), which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition time is <u>selected</u> when ACQT<2:0> = 0.00. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT<2:0> bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 32 Tosc
 64 Tosc
- 4 Tosc
- Internal RC Oscillator
- 8 Tosc 16 Tosc
 -)SC

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD. (For more information, see parameter 130 on page 41.)

Table 2-2 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

A/D Clock So	Assumes TAD Min. = 0.8 μs	
Operation	Operation ADCS<2:0>	
2 Tosc	000	2.50 MHz
4 Tosc	100	5.00 MHz
8 Tosc	001	10.00 MHz
16 Tosc	101	20.00 MHz
32 Tosc	010	40.00 MHz
64 Tosc	110	40.00 MHz
RC ⁽²⁾	x11	1.00 MHz ⁽¹⁾

TABLE 2-2:TAD vs. DEVICE OPERATING FREQUENCIES

Note 1: The RC source has a typical TAD time of 2.5 μ s.

2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

2.8 Use of the CCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the CCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user or an appropriate TACQ time is selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(Note 4)		
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	(Note 4)		
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	(Note 4)		
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	(Note 4)		
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	(Note 4)		
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	(Note 4)		
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	(Note 4)		
ADRESH	A/D Result	A/D Result Register High Byte									
ADRESL	A/D Result	Register Lov	w Byte						(Note 4)		
ADCON0	—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	(Note 4)		
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	(Note 4)		
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	(Note 4)		
PORTA	RA7 ⁽²⁾	RA6 ⁽²⁾	RA5	RA4	RA3	RA2	RA1	RA0	(Note 4)		
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽²⁾	PORTA Da	ata Direction	Control Re	gister			(Note 4)		
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	(Note 4)		
TRISB	PORTB Dat	a Direction (Control Reg	ister					(Note 4)		
LATB	PORTB Dat	a Latch Reg	ister (Read	and Write to	Data Latc	h)			(Note 4)		
PORTE ⁽¹⁾	—	—	_	_	RE3 ⁽³⁾	RE2	RE1	RE0	(Note 4)		
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	(Note 4)		
LATE ⁽¹⁾	_	_	_	_		PORTE D	ata Latch Re	egister	(Note 4)		

 TABLE 2-3:
 REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers and/or bits are not implemented on PIC18F2423/2523 devices and are read as '0'.

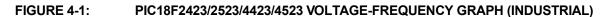
2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

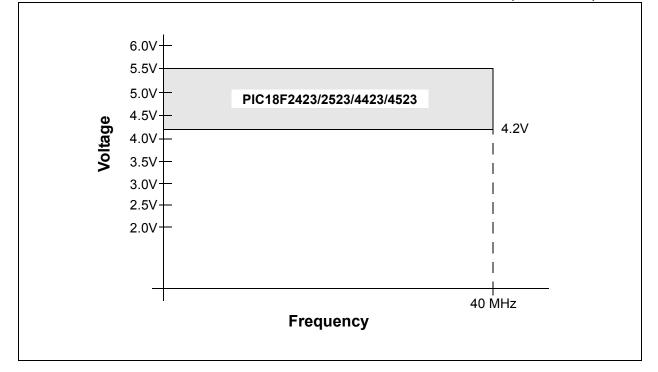
3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is '0'.

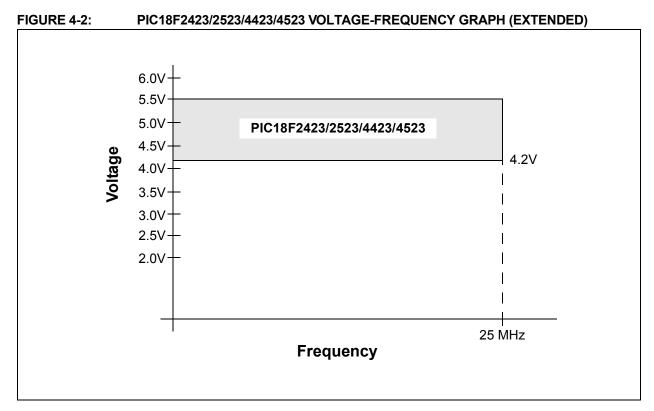
4: For these Reset values, see Section 4.0 "Reset" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

4.0 ELECTRICAL CHARACTERISTICS

Note: Other than some basic data, this section documents only the PIC18F2423/2523/4423/4523 devices' specifications that differ from those of the PIC18F2420/2520/4420/4520 devices. For detailed information on the electrical specifications shared by the PIC18F2423/2523/4423/4523 and PIC18F2420/2520/4420/4520 devices, see the *"PIC18F2420/2520/4420/4520 Data Sheet"* (DS39631).


Absolute Maximum Ratings^(†)


Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA


- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - 2: Voltage spikes below Vss at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC18F2423/2523/4423/4523

NOTES:

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442"*. The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration*". This Application Note is available as Literature Number DS00726.

R

Reader Response	52		
Registers			
ADCON0 (A/D Control 0)	25		
ADCON1 (A/D Control 1)	26		
ADCON2 (A/D Control 2)	27		
DEVID1 (Device ID 1)	35		
DEVID2			
(Device ID 2)	36		
Revision History			
S			
Special Features of the CPU35			

Т

Timing Diagrams A/D Conversion	41
Timing Diagrams and Specifications	44
A/D Conversion Requirements	41
V	
Voltage-Frequency Graphics	
PIC18F2423/2523/4423/4523 (Extended)	38
PIC18F2423/2523/4423/4523 (Industrial)	38
PIC18LF2423/2523/4423/4523 (Industrial)	39

W

WWW Address	51
WWW, On-Line Support	. 8

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
Fron	n: Name		
	Company		
	Address	<u>.</u>	
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
Appl	ication (optional):		
Wou	ld you like a reply?YN		
Devi	ce: PIC18F2423/2523/4423/4523	Literature Number: DS39755C	
Que	stions:		
1. \	What are the best features of this doc	ument?	
-			
-			
2. I	How does this document meet your h	ardware and software development needs?	
-			
-			
3. I	3. Do you find the organization of this document easy to follow? If not, why?		
-			
-	Meet additions to the desument days	withink would appear the structure and subject?	
4. \	what additions to the document do yo	ou think would enhance the structure and subject?	
-			
5. \	5. What deletions from the document could be made without affecting the overall usefulness?		
0.			
-			
6. I	Is there any incorrect or misleading information (what and where)?		
-			
7. I	How would you improve this documer	nt?	
-			
_			

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09