

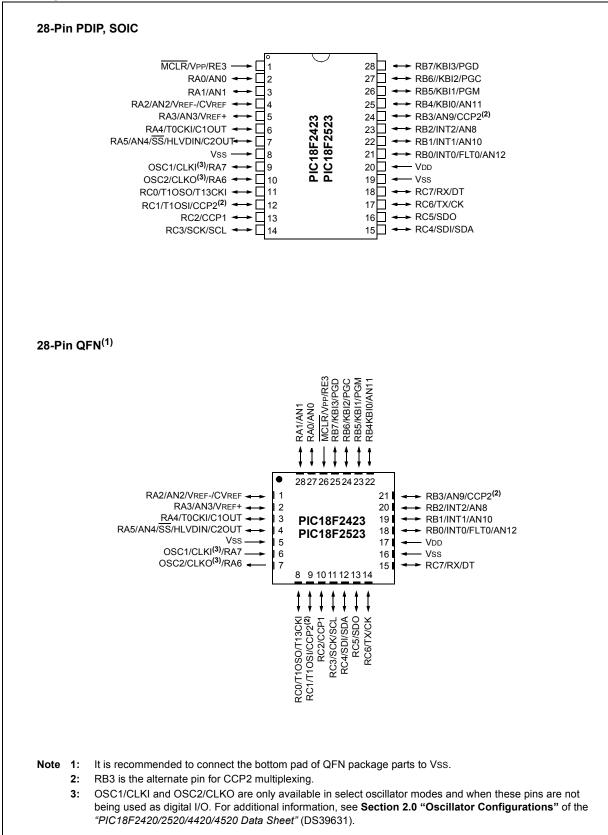
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

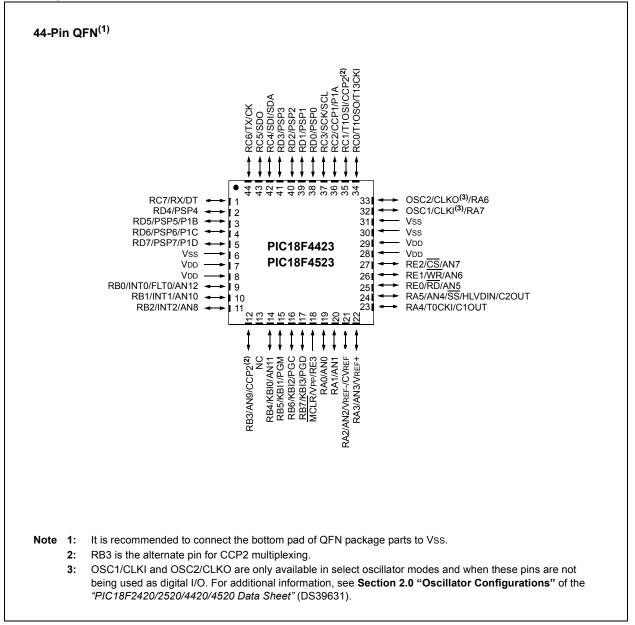
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

2014.10	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4523t-i-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

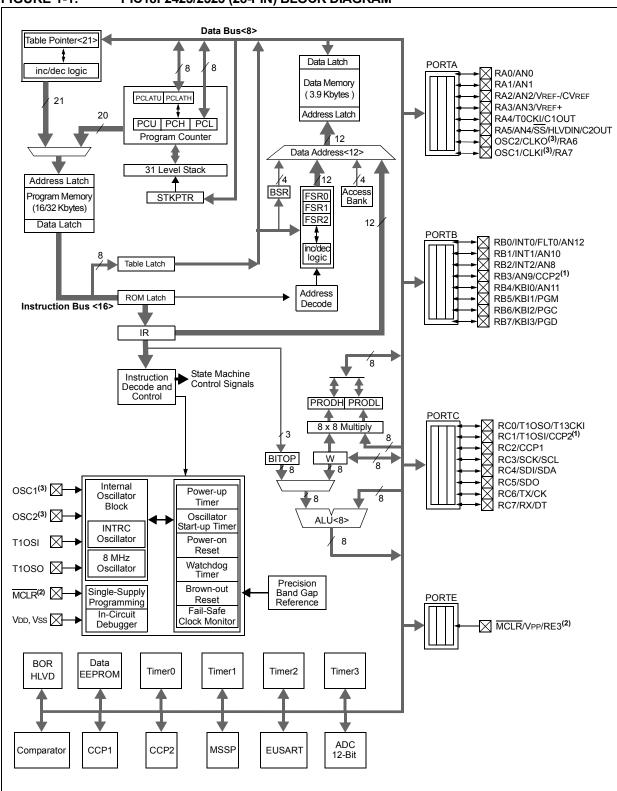
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)


When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Features	PIC18F2423	PIC18F2523	PIC18F4423	PIC18F4523
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	16,384	32,768	16,384	32,768
Program Memory (Instructions)	8,192	16,384	8,192	16,384
Data Memory (Bytes)	768	1,536	768	1,536
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	No	No	Yes	Yes
12-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable High/Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled			
Packages	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	28-Pin PDIP 28-Pin SOIC 28-Pin QFN	40-Pin PDIP 44-Pin QFN 44-Pin TQFP	40-Pin PDIP 44-Pin QFN 44-Pin TQFP

TABLE 1-1: DEVICE FEATURES

FIGURE 1-1: PIC18F2423/2523 (28-PIN) BLOCK DIAGRAM

Note 1: CCP2 is multiplexed with RC1 when Configuration bit, CCP2MX, is set or RB3 when CCP2MX is not set.

2: RE3 is only available when MCLR functionality is disabled.

3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. For additional information, see Section 2.0 "Oscillator Configurations" of the "PIC18F2420/2520/4420/4520 Data Sheet" (DS39631).

	Pin Number		Pin Buffer					
Pin Name	PDIP, SOIC	QFN	Ріп Туре	винег Туре	Description			
					PORTA is a bidirectional I/O port.			
RA0/AN0	2	27						
RA0			I/O	TTL	Digital I/O.			
AN0			I	Analog	Analog Input 0.			
RA1/AN1	3	28						
RA1			I/O	TTL	Digital I/O.			
AN1			I	Analog	Analog Input 1.			
RA2/AN2/VREF-/CVREF	4	1						
RA2			I/O	TTL	Digital I/O.			
AN2			I	Analog				
VREF-				Analog				
CVREF			0	Analog	Comparator reference voltage output.			
RA3/AN3/VREF+	5	2						
RA3			I/O	TTL	Digital I/O.			
AN3				Analog				
VREF+			I	Analog	A/D reference voltage (high) input.			
RA4/T0CKI/C1OUT	6	3						
RA4			I/O	ST	Digital I/O.			
TOCKI				ST	Timer0 external clock input.			
C1OUT			0		Comparator 1 output.			
RA5/AN4/SS/HLVDIN/	7	4						
C2OUT			1/0					
RA5 AN4			I/O		Digital I/O. Analog Input 4.			
AN4 SS				Analog TTL	SPI slave select input.			
HLVDIN				Analog				
C2OUT	1		Ö	— —	Comparator 2 output.			
RA6			-		See the OSC2/CLKO/RA6 pin.			
RA7					See the OSC1/CLKI/RA7 pin.			
		ام ام	<u> </u>					
Legend: TTL = TTL c ST = Schm					CMOS = CMOS compatible input or output vels I = Input			
O = Outpu			with C	INICS IE	P = Power			

TABLE 1-2:	PIC18F2423/2523 PINOUT I/O DESCRIPTIONS	

$$O = Output$$

$$I^2C = I^2C^{\text{TM}}/\text{SMBus}$$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Din Nama	Pin Number			Pin	Buffer	Description		
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTA is a bidirectional I/O port.		
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog Input 0.		
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog Input 1.		
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input. Comparator reference voltage output.		
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.		
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	23	23	I/O I O	ST ST	Digital I/O. Timer0 external clock input. Comparator 1 output.		
RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT	7	24	24	I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog Input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.		
RA6 RA7						See the OSC2/CLKO/RA6 pin. See the OSC1/CLKI/RA7 pin.		
Legend: TTL = TTL ST = Schr O = Outp	mitt Trig	ger inpl	ut ut with C	CMOSI	evels	CMOS = CMOS compatible input or output I = Input P = Power		

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

Pin Name	Pi	Pin Number			Buffer	Description
Fill Name	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when the PSP module is enabled.
RD0/PSP0 RD0 PSP0	19	38	38	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD1/PSP1 RD1 PSP1	20	39	39	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD2/PSP2 RD2 PSP2	21	40	40	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD3/PSP3 RD3 PSP3	22	41	41	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD4/PSP4 RD4 PSP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD7/PSP7/P1D RD7 PSP7 P1D	30	5	5	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power						

TABLE 1-3: PIC18F4423/4523 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output $I^{2}C = I^{2}C^{TM}/SMBus$

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

NOTES:

2.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has 10 inputs for the PIC18F2423/2523 devices and 13 for the PIC18F4423/4523 devices. This module allows conversion of an analog input signal to a corresponding 12-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

REGISTER 2-1:

Of the ADCONx registers:

- ADCON0 (shown in Register 2-1) Controls the module's operation
- ADCON1 (Register 2-2) Configures the functions of the port pins
- ADCON2 (Register 2-3) Configures the A/D clock source, programmed acquisition time and justification

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

ADCON0: A/D CONTROL REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-2	CHS<3:0>: Analog Channel Select bits
	0000 = Channel 0 (AN0)
	0001 = Channel 1 (AN1)
	0010 = Channel 2 (AN2)
	0011 = Channel 3 (AN3)
	0100 = Channel 4 (AN4)
	0101 = Channel 5 (AN5) ^(1,2)
	0110 = Channel 6 (AN6) ^(1,2)
	0111 = Channel 7 (AN7) ^(1,2)
	1000 = Channel 8 (AN8)
	1001 = Channel 9 (AN9)
	1010 = Channel 10 (AN10)
	1011 = Channel 11 (AN11)
	1100 = Channel 12 (AN12
	1101 = Unimplemented ⁽²⁾
	1110 = Unimplemented ⁽²⁾
	1111 = Unimplemented ⁽²⁾
bit 1	GO/DONE: A/D Conversion Status bit
	When ADON = 1:
	1 = A/D conversion in progress
	0 = A/D Idle
bit 0	ADON: A/D On bit
	1 = A/D Converter module is enabled
	0 = A/D Converter module is disabled
Note 1:	These channels are not implemented on PIC18F2423/2523 devices.
2.	Performing a conversion on unimplemented channels will return a floating input measurement

2: Performing a conversion on unimplemented channels will return a floating input measurement.

2.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used. The ACQT<2:0> bits do not need to be adjusted as the ADCS<2:0> bits adjust the TAD time for the new clock speed. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

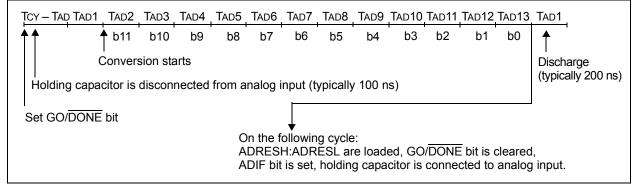
The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.
 - **3:** The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the PCFG<3:0> bits in ADCON1 are reset.

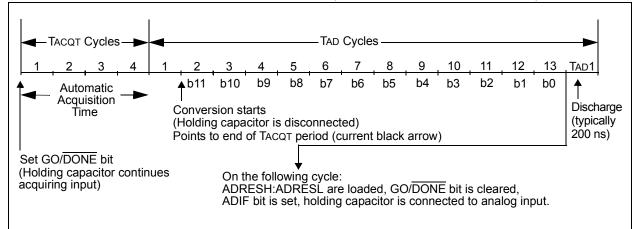
2.6 A/D Conversions

Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT<2:0> bits have been set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.


Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is completed or aborted, a 2 TcY wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

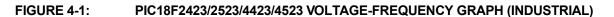
Note:	The GO/DONE bit should NOT be set in									
	the same instruction that turns on the A/D.									
	Code should wait at least 3 TAD after									
	enabling the A/D before beginning an									
	acquisition and conversion cycle.									

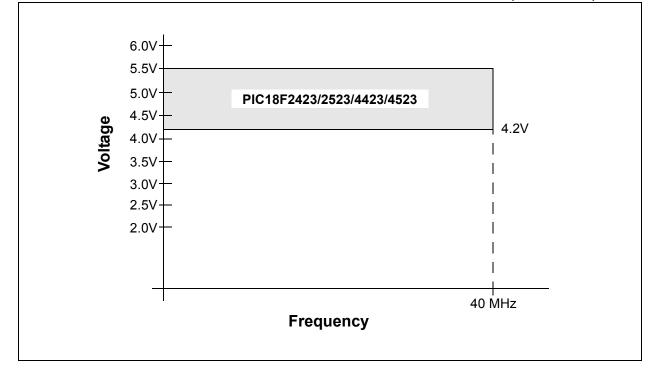

2.7 Discharge

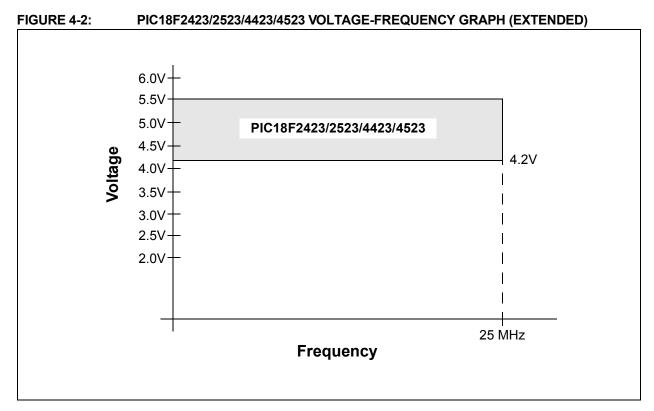
The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unitygain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

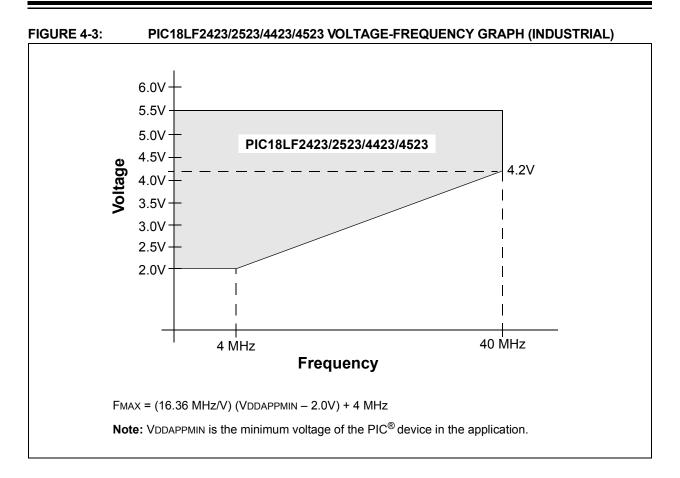
FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

PIC18F2423/2523/4423/4523

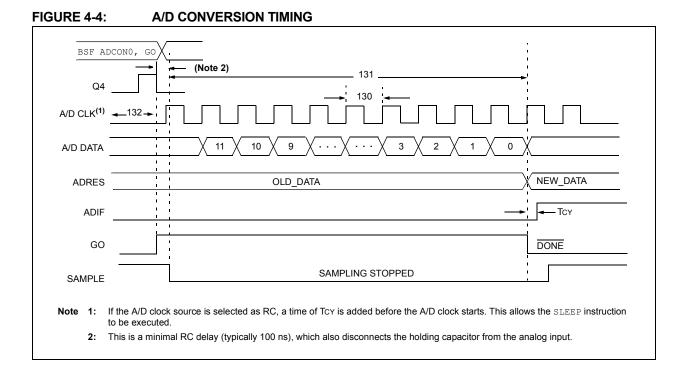

REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2423/2523/4423/4523


R	R	R	R	R	R	R	R		
DEV11 ⁽¹⁾	DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾		
bit 7						•	bit 0		
Legend:									
R = Read-only bit P = Programmable bit U = Unimplemented bit, read as '0'									
-n = Value when device is unprogrammed				u = Unchanged from programmed state					


bit 7-0 **DEV<11:4>:** Device ID bits⁽¹⁾ These bits are used with the DEV<3:0> bits in Device ID Register 1 to identify the part number. 0001 0001 = PIC18F2423/2523 devices 0001 0000 = PIC18F4423/4523 devices


Note 1: These values for DEV<11:4> may be shared with other devices. The specific device is always identified by using the entire DEV<11:0> bit sequence.

PIC18F2423/2523/4423/4523



PIC18F2423/2523/4423/4523

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
130	TAD	A/D Clock Period	PIC18FXXXX	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			PIC18 LF XXXX	1.4	25.0 ⁽¹⁾	μS	V _{DD} = 3.0V; Tosc based, VREF full range
			PIC18FXXXX		1	μS	A/D RC mode
			PIC18LFXXXX		3	μS	VDD = 3.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisition time) ⁽²⁾		13	14	Tad	
132	TACQ	Acquisition Time ⁽³⁾		1.4		μS	
135	Tswc	Switching Time from Convert \rightarrow Sample			(Note 4)		
137	TDIS	Discharge Time		0.2		μS	

TABLE 4-2: A/D CONVERSION REQUIREMENTS

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.

4: On the following cycle of the device clock.

5.0 PACKAGING INFORMATION

For packaging information, see **Section 28.0 "Packaging Information"** in the *"PIC18F2420/2520/4420/4520 Data Sheet"* (DS39631).

NOTES:

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com